5317 lines
144 KiB
Arduino
Raw Normal View History

//******************************************
// NINTENDO 64 MODULE
//******************************************
#ifdef enable_N64
/******************************************
Defines
*****************************************/
// These two macros toggle the eepDataPin/ControllerDataPin between input and output
// External 1K pull-up resistor from eepDataPin to VCC required
// 0x10 = 00010000 -> Port H Pin 4
#define N64_HIGH DDRH &= ~0x10
#define N64_LOW DDRH |= 0x10
// Read the current state(0/1) of the eepDataPin
#define N64_QUERY (PINH & 0x10)
/******************************************
Variables
*****************************************/
// Received N64 Eeprom data bits, 1 page
bool tempBits[65];
int eepPages;
// N64 Controller
// 256 bits of received Controller data + 8 bit CRC
char N64_raw_dump[265];
// Array that holds one Controller Pak block of 32 bytes data
byte myBlock[33];
String rawStr = ""; // above char array read into a string
struct {
char stick_x;
char stick_y;
}
N64_status;
//stings that hold the buttons
String button = "N/A";
String lastbutton = "N/A";
// Rom base address
unsigned long romBase = 0x10000000;
// Flashram type
byte flashramType = 1;
boolean MN63F81MPN = false;
//ControllerTest
bool quit = 1;
#ifdef savesummarytotxt
String CRC1 = "";
String CRC2 = "";
#endif
/******************************************
Menu
*****************************************/
// N64 start menu
static const char n64MenuItem1[] PROGMEM = "Game Cartridge";
static const char n64MenuItem2[] PROGMEM = "Controller";
static const char n64MenuItem3[] PROGMEM = "Flash Repro";
static const char n64MenuItem4[] PROGMEM = "Flash Gameshark";
static const char n64MenuItem5[] PROGMEM = "Reset";
static const char* const menuOptionsN64[] PROGMEM = {n64MenuItem1, n64MenuItem2, n64MenuItem3, n64MenuItem4, n64MenuItem5};
// N64 controller menu items
static const char N64ContMenuItem1[] PROGMEM = "Test Controller";
static const char N64ContMenuItem2[] PROGMEM = "Read ControllerPak";
static const char N64ContMenuItem3[] PROGMEM = "Write ControllerPak";
static const char N64ContMenuItem4[] PROGMEM = "Reset";
static const char* const menuOptionsN64Controller[] PROGMEM = {N64ContMenuItem1, N64ContMenuItem2, N64ContMenuItem3, N64ContMenuItem4};
// N64 cart menu items
static const char N64CartMenuItem1[] PROGMEM = "Read Rom";
static const char N64CartMenuItem2[] PROGMEM = "Read Save";
static const char N64CartMenuItem3[] PROGMEM = "Write Save";
static const char N64CartMenuItem4[] PROGMEM = "Force Savetype";
static const char N64CartMenuItem5[] PROGMEM = "Reset";
static const char* const menuOptionsN64Cart[] PROGMEM = {N64CartMenuItem1, N64CartMenuItem2, N64CartMenuItem3, N64CartMenuItem4, N64CartMenuItem5};
// N64 CRC32 error menu items
static const char N64CRCMenuItem1[] PROGMEM = "No";
static const char N64CRCMenuItem2[] PROGMEM = "Yes and keep old";
static const char N64CRCMenuItem3[] PROGMEM = "Yes and delete old";
static const char N64CRCMenuItem4[] PROGMEM = "Reset";
static const char* const menuOptionsN64CRC[] PROGMEM = {N64CRCMenuItem1, N64CRCMenuItem2, N64CRCMenuItem3, N64CRCMenuItem4};
// Rom menu
static const char N64RomItem1[] PROGMEM = "4MB";
static const char N64RomItem2[] PROGMEM = "8MB";
static const char N64RomItem3[] PROGMEM = "12MB";
static const char N64RomItem4[] PROGMEM = "16MB";
static const char N64RomItem5[] PROGMEM = "32MB";
static const char N64RomItem6[] PROGMEM = "64MB";
static const char* const romOptionsN64[] PROGMEM = {N64RomItem1, N64RomItem2, N64RomItem3, N64RomItem4, N64RomItem5, N64RomItem6};
// Save menu
static const char N64SaveItem1[] PROGMEM = "None";
static const char N64SaveItem2[] PROGMEM = "4K EEPROM";
static const char N64SaveItem3[] PROGMEM = "16K EEPROM";
static const char N64SaveItem4[] PROGMEM = "SRAM";
static const char N64SaveItem5[] PROGMEM = "FLASHRAM";
static const char* const saveOptionsN64[] PROGMEM = {N64SaveItem1, N64SaveItem2, N64SaveItem3, N64SaveItem4, N64SaveItem5};
// Repro write buffer menu
static const char N64BufferItem1[] PROGMEM = "no buffer";
static const char N64BufferItem2[] PROGMEM = "32 Byte";
static const char N64BufferItem3[] PROGMEM = "64 Byte";
static const char N64BufferItem4[] PROGMEM = "128 Byte";
static const char* const bufferOptionsN64[] PROGMEM = {N64BufferItem1, N64BufferItem2, N64BufferItem3, N64BufferItem4};
// Repro sector size menu
static const char N64SectorItem1[] PROGMEM = "8 KByte";
static const char N64SectorItem2[] PROGMEM = "32 KByte";
static const char N64SectorItem3[] PROGMEM = "64 KByte";
static const char N64SectorItem4[] PROGMEM = "128 KByte";
static const char* const sectorOptionsN64[] PROGMEM = {N64SectorItem1, N64SectorItem2, N64SectorItem3, N64SectorItem4};
// N64 start menu
void n64Menu() {
// create menu with title and 5 options to choose from
unsigned char n64Dev;
// Copy menuOptions out of progmem
convertPgm(menuOptionsN64, 5);
n64Dev = question_box(F("Select N64 device"), menuOptions, 5, 0);
// wait for user choice to come back from the question box menu
switch (n64Dev)
{
case 0:
display_Clear();
display_Update();
setup_N64_Cart();
printCartInfo_N64();
mode = mode_N64_Cart;
break;
case 1:
display_Clear();
display_Update();
setup_N64_Controller();
mode = mode_N64_Controller;
break;
case 2:
display_Clear();
display_Update();
setup_N64_Cart();
flashRepro_N64();
printCartInfo_N64();
mode = mode_N64_Cart;
break;
case 3:
display_Clear();
display_Update();
setup_N64_Cart();
flashGameshark_N64();
printCartInfo_N64();
mode = mode_N64_Cart;
break;
case 4:
resetArduino();
break;
}
}
// N64 Controller Menu
void n64ControllerMenu() {
// create menu with title and 4 options to choose from
unsigned char mainMenu;
// Copy menuOptions out of progmem
convertPgm(menuOptionsN64Controller, 4);
mainMenu = question_box(F("N64 Controller"), menuOptions, 4, 0);
// wait for user choice to come back from the question box menu
switch (mainMenu)
{
case 0:
resetController();
display_Clear();
display_Update();
#if defined(enable_OLED)
controllerTest_OLED();
#elif defined(enable_LCD)
controllerTest_LCD();
#elif defined(enable_serial)
controllerTest_Serial();
#endif
quit = 1;
break;
case 1:
resetController();
checkController();
display_Clear();
display_Update();
readMPK();
2022-09-10 14:35:47 +02:00
verifyCRC();
validateMPK();
println_Msg(F(""));
2022-06-14 15:25:53 +02:00
println_Msg(F("Press Button..."));
display_Update();
wait();
break;
case 2:
resetController();
checkController();
display_Clear();
display_Update();
// Change to root
filePath[0] = '\0';
sd.chdir("/");
// Launch file browser
fileBrowser(F("Select mpk file"));
display_Clear();
display_Update();
writeMPK();
2022-08-18 19:23:33 +02:00
delay(500);
verifyMPK();
println_Msg(F(""));
2022-06-14 15:25:53 +02:00
println_Msg(F("Press Button..."));
display_Update();
wait();
break;
case 3:
resetArduino();
break;
}
}
// N64 Cartridge Menu
void n64CartMenu() {
// create menu with title and 4 options to choose from
unsigned char mainMenu;
// Copy menuOptions out of progmem
convertPgm(menuOptionsN64Cart, 5);
mainMenu = question_box(F("N64 Cart Reader"), menuOptions, 5, 0);
// wait for user choice to come back from the question box menu
switch (mainMenu)
{
case 0:
sd.chdir("/");
readRom_N64();
break;
case 1:
sd.chdir("/");
display_Clear();
if (saveType == 1) {
println_Msg(F("Reading Sram..."));
display_Update();
readSram(32768, 1);
}
else if (saveType == 4) {
getFramType();
println_Msg(F("Reading Flashram..."));
display_Update();
readFram(flashramType);
}
else if ((saveType == 5) || (saveType == 6)) {
println_Msg(F("Reading Eep..."));
display_Update();
#ifdef clockgen_installed
readEeprom();
#else
readEeprom_CLK();
#endif
}
else {
print_Error(F("Savetype Error"), false);
}
println_Msg(F(""));
println_Msg(F("Press Button..."));
display_Update();
wait();
break;
case 2:
filePath[0] = '\0';
sd.chdir("/");
if (saveType == 1) {
// Launch file browser
fileBrowser(F("Select sra file"));
display_Clear();
writeSram(32768);
writeErrors = verifySram(32768, 1);
if (writeErrors == 0) {
println_Msg(F("Sram verified OK"));
display_Update();
}
else {
print_Msg(F("Error: "));
print_Msg(writeErrors);
println_Msg(F(" bytes "));
print_Error(F("did not verify."), false);
}
}
else if (saveType == 4) {
// Launch file browser
fileBrowser(F("Select fla file"));
display_Clear();
getFramType();
writeFram(flashramType);
print_Msg(F("Verifying..."));
display_Update();
writeErrors = verifyFram(flashramType);
if (writeErrors == 0) {
println_Msg(F("OK"));
display_Update();
}
else {
println_Msg("");
print_Msg(F("Error: "));
print_Msg(writeErrors);
println_Msg(F(" bytes "));
print_Error(F("did not verify."), false);
}
}
else if ((saveType == 5) || (saveType == 6)) {
// Launch file browser
fileBrowser(F("Select eep file"));
display_Clear();
#ifdef clockgen_installed
writeEeprom();
writeErrors = verifyEeprom();
#else
writeEeprom_CLK();
writeErrors = verifyEeprom_CLK();
#endif
if (writeErrors == 0) {
println_Msg(F("Eeprom verified OK"));
display_Update();
}
else {
print_Msg(F("Error: "));
print_Msg(writeErrors);
println_Msg(F(" bytes "));
print_Error(F("did not verify."), false);
}
}
else {
display_Clear();
print_Error(F("Savetype Error"), false);
}
println_Msg(F("Press Button..."));
display_Update();
wait();
break;
case 3:
// create submenu with title and 6 options to choose from
unsigned char N64SaveMenu;
// Copy menuOptions out of progmem
convertPgm(saveOptionsN64, 5);
N64SaveMenu = question_box(F("Select save type"), menuOptions, 5, 0);
// wait for user choice to come back from the question box menu
switch (N64SaveMenu)
{
case 0:
// None
saveType = 0;
break;
case 1:
// 4K EEPROM
saveType = 5;
eepPages = 64;
break;
case 2:
// 16K EEPROM
saveType = 6;
eepPages = 256;
break;
case 3:
// SRAM
saveType = 1;
break;
case 4:
// FLASHRAM
saveType = 4;
break;
}
break;
case 4:
resetArduino();
break;
}
}
/******************************************
Setup
*****************************************/
void setup_N64_Controller() {
// Output a low signal
PORTH &= ~(1 << 4);
// Set Controller Data Pin(PH4) to Input
DDRH &= ~(1 << 4);
}
void setup_N64_Cart() {
// Set Address Pins to Output and set them low
//A0-A7
DDRF = 0xFF;
PORTF = 0x00;
//A8-A15
DDRK = 0xFF;
PORTK = 0x00;
// Set Control Pins to Output RESET(PH0) WR(PH5) RD(PH6) aleL(PC0) aleH(PC1)
DDRH |= (1 << 0) | (1 << 5) | (1 << 6);
DDRC |= (1 << 0) | (1 << 1);
// Pull RESET(PH0) low until we are ready
PORTH &= ~(1 << 0);
// Output a high signal on WR(PH5) RD(PH6), pins are active low therefore everything is disabled now
PORTH |= (1 << 5) | (1 << 6);
// Pull aleL(PC0) low and aleH(PC1) high
PORTC &= ~(1 << 0);
PORTC |= (1 << 1);
#ifdef clockgen_installed
// Adafruit Clock Generator
initializeClockOffset();
if (!i2c_found) {
display_Clear();
print_Error(F("Clock Generator not found"), true);
}
// Set Eeprom clock to 2Mhz
clockgen.set_freq(200000000ULL, SI5351_CLK1);
// Start outputting Eeprom clock
clockgen.output_enable(SI5351_CLK1, 1); // Eeprom clock
#else
// Set Eeprom Clock Pin(PH1) to Output
DDRH |= (1 << 1);
// Output a high signal
PORTH |= (1 << 1);
#endif
// Set Eeprom Data Pin(PH4) to Input
DDRH &= ~(1 << 4);
// Activate Internal Pullup Resistors
//PORTH |= (1 << 4);
// Set sram base address
sramBase = 0x08000000;
#ifdef clockgen_installed
// Wait for clock generator
clockgen.update_status();
#endif
// Wait until all is stable
delay(300);
// Pull RESET(PH0) high to start eeprom
PORTH |= (1 << 0);
}
/******************************************
Low level functions
*****************************************/
// Switch Cartridge address/data pins to write
void adOut_N64() {
//A0-A7
DDRF = 0xFF;
PORTF = 0x00;
//A8-A15
DDRK = 0xFF;
PORTK = 0x00;
}
// Switch Cartridge address/data pins to read
void adIn_N64() {
//A0-A7
DDRF = 0x00;
//A8-A15
DDRK = 0x00;
//Enable internal pull-up resistors
//PORTF = 0xFF;
//PORTK = 0xFF;
}
// Set Cartridge address
void setAddress_N64(unsigned long myAddress) {
// Set address pins to output
adOut_N64();
// Split address into two words
word myAdrLowOut = myAddress & 0xFFFF;
word myAdrHighOut = myAddress >> 16;
// Switch WR(PH5) RD(PH6) ale_L(PC0) ale_H(PC1) to high (since the pins are active low)
PORTH |= (1 << 5) | (1 << 6);
PORTC |= (1 << 1);
__asm__("nop\n\t");
PORTC |= (1 << 0);
// Output high part to address pins
PORTF = myAdrHighOut & 0xFF;
PORTK = (myAdrHighOut >> 8) & 0xFF;
// Leave ale_H high for additional 62.5ns
__asm__("nop\n\t");
// Pull ale_H(PC1) low
PORTC &= ~(1 << 1);
// Output low part to address pins
PORTF = myAdrLowOut & 0xFF;
PORTK = (myAdrLowOut >> 8) & 0xFF;
// Leave ale_L high for ~125ns
__asm__("nop\n\t""nop\n\t");
// Pull ale_L(PC0) low
PORTC &= ~(1 << 0);
// Wait ~600ns just to be sure address is set
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
// Set data pins to input
adIn_N64();
}
// Read one word out of the cartridge
word readWord_N64() {
// Pull read(PH6) low
PORTH &= ~(1 << 6);
// Wait ~310ns
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
// Join bytes from PINF and PINK into a word
word tempWord = ( ( PINK & 0xFF ) << 8 ) | ( PINF & 0xFF );
// Pull read(PH6) high
PORTH |= (1 << 6);
// Wait 62.5ns
__asm__("nop\n\t");
return tempWord;
}
// Write one word to data pins of the cartridge
void writeWord_N64(word myWord) {
// Set address pins to output
adOut_N64();
// Output word to AD0-AD15
PORTF = myWord & 0xFF;
PORTK = (myWord >> 8) & 0xFF;
// Wait ~62.5ns
__asm__("nop\n\t");
// Pull write(PH5) low
PORTH &= ~(1 << 5);
// Wait ~310ns
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
// Pull write(PH5) high
PORTH |= (1 << 5);
// Wait ~125ns
__asm__("nop\n\t""nop\n\t");
// Set data pins to input
adIn_N64();
}
/******************************************
N64 Controller CRC Functions
*****************************************/
static word addrCRC(word address) {
// CRC table
word xor_table[16] = { 0x0, 0x0, 0x0, 0x0, 0x0, 0x15, 0x1F, 0x0B, 0x16, 0x19, 0x07, 0x0E, 0x1C, 0x0D, 0x1A, 0x01 };
word crc = 0;
// Make sure we have a valid address
address &= ~0x1F;
// Go through each bit in the address, and if set, xor the right value into the output
for (int i = 15; i >= 5; i--) {
// Is this bit set?
if ( ((address >> i) & 0x1)) {
crc ^= xor_table[i];
}
}
// Just in case
crc &= 0x1F;
// Create a new address with the CRC appended
return address | crc;
}
static uint8_t dataCRC( uint8_t *data ) {
uint8_t ret = 0;
for ( int i = 0; i <= 32; i++ ) {
for ( int j = 7; j >= 0; j-- ) {
int tmp = 0;
if ( ret & 0x80 ) {
tmp = 0x85;
}
ret <<= 1;
if ( i < 32 ) {
if ( data[i] & (0x01 << j) ) {
ret |= 0x1;
}
}
ret ^= tmp;
}
}
return ret;
}
/******************************************
N64 Controller Protocol Functions
*****************************************/
void N64_send(unsigned char *buffer, char length) {
// Send these bytes
char bits;
// This routine is very carefully timed by examining the assembly output.
// Do not change any statements, it could throw the timings off
//
// We get 16 cycles per microsecond, which should be plenty, but we need to
// be conservative. Most assembly ops take 1 cycle, but a few take 2
//
// I use manually constructed for-loops out of gotos so I have more control
// over the outputted assembly. I can insert nops where it was impossible
// with a for loop
asm volatile (";Starting outer for loop");
outer_loop:
{
asm volatile (";Starting inner for loop");
bits = 8;
inner_loop:
{
// Starting a bit, set the line low
asm volatile (";Setting line to low");
N64_LOW; // 1 op, 2 cycles
asm volatile (";branching");
if (*buffer >> 7) {
asm volatile (";Bit is a 1");
// 1 bit
// remain low for 1us, then go high for 3us
// nop block 1
asm volatile ("nop\nnop\nnop\nnop\nnop\n");
asm volatile (";Setting line to high");
N64_HIGH;
// nop block 2
// we'll wait only 2us to sync up with both conditions
// at the bottom of the if statement
asm volatile ("nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
);
}
else {
asm volatile (";Bit is a 0");
// 0 bit
// remain low for 3us, then go high for 1us
// nop block 3
asm volatile ("nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\n");
asm volatile (";Setting line to high");
N64_HIGH;
// wait for 1us
asm volatile ("; end of conditional branch, need to wait 1us more before next bit");
}
// end of the if, the line is high and needs to remain
// high for exactly 16 more cycles, regardless of the previous
// branch path
asm volatile (";finishing inner loop body");
--bits;
if (bits != 0) {
// nop block 4
// this block is why a for loop was impossible
asm volatile ("nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\n");
// rotate bits
asm volatile (";rotating out bits");
*buffer <<= 1;
goto inner_loop;
} // fall out of inner loop
}
asm volatile (";continuing outer loop");
// In this case: the inner loop exits and the outer loop iterates,
// there are /exactly/ 16 cycles taken up by the necessary operations.
// So no nops are needed here (that was lucky!)
--length;
if (length != 0) {
++buffer;
goto outer_loop;
} // fall out of outer loop
}
}
void N64_stop() {
// send a single stop (1) bit
// nop block 5
asm volatile ("nop\nnop\nnop\nnop\n");
N64_LOW;
// wait 1 us, 16 cycles, then raise the line
// 16-2=14
// nop block 6
asm volatile ("nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\n");
N64_HIGH;
}
void N64_get(word bitcount) {
// listen for the expected bitcount/8 bytes of data back from the controller and
// blast it out to the N64_raw_dump array, one bit per byte for extra speed.
asm volatile (";Starting to listen");
unsigned char timeout;
char *bitbin = N64_raw_dump;
// Again, using gotos here to make the assembly more predictable and
// optimization easier (please don't kill me)
read_loop:
timeout = 0x3f;
// wait for line to go low
while (N64_QUERY) {
if (!--timeout)
return;
}
// wait approx 2us and poll the line
asm volatile (
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
);
*bitbin = N64_QUERY;
++bitbin;
--bitcount;
if (bitcount == 0)
return;
// wait for line to go high again
// it may already be high, so this should just drop through
timeout = 0x3f;
while (!N64_QUERY) {
if (!--timeout)
return;
}
goto read_loop;
}
/******************************************
N64 Controller Functions
*****************************************/
void get_button()
{
// Command to send to the gamecube
// The last bit is rumble, flip it to rumble
// yes this does need to be inside the loop, the
// array gets mutilated when it goes through N64_send
unsigned char command[] = {
0x01
};
2022-09-10 15:57:01 +02:00
// Empty buffer
for (word i = 0; i < 265; i++) {
N64_raw_dump[i] = 0xFF;
}
// don't want interrupts getting in the way
noInterrupts();
// send those 3 bytes
N64_send(command, 1);
N64_stop();
// read in 32bits of data and dump it to N64_raw_dump
N64_get(32);
// end of time sensitive code
interrupts();
// The get_N64_status function sloppily dumps its data 1 bit per byte
// into the get_status_extended char array. It's our job to go through
// that and put each piece neatly into the struct N64_status
int i;
memset(&N64_status, 0, sizeof(N64_status));
// bits: joystick x value
// These are 8 bit values centered at 0x80 (128)
for (i = 0; i < 8; i++) {
N64_status.stick_x |= N64_raw_dump[16 + i] ? (0x80 >> i) : 0;
}
for (i = 0; i < 8; i++) {
N64_status.stick_y |= N64_raw_dump[24 + i] ? (0x80 >> i) : 0;
}
// read char array N64_raw_dump into string rawStr
rawStr = "";
for (i = 0; i < 16; i++) {
rawStr = rawStr + String(N64_raw_dump[i], DEC);
}
// Buttons (A,B,Z,S,DU,DD,DL,DR,0,0,L,R,CU,CD,CL,CR)
if (rawStr.substring(0, 16) == "0000000000000000") {
lastbutton = button;
button = F("Press a button");
}
else
{
for (int i = 0; i < 16; i++)
{
// seems to be 16, 8 or 4 depending on what pin is used
if (N64_raw_dump[i] == 16)
{
switch (i)
{
case 7:
button = F("D-Right");
break;
case 6:
button = F("D-Left");
break;
case 5:
button = F("D-Down");
break;
case 4:
button = F("D-Up");
break;
case 3:
button = F("START");
break;
case 2:
button = F("Z");
break;
case 1:
button = F("B");
break;
case 0:
button = F("A");
break;
case 15:
button = F("C-Right");
break;
case 14:
button = F("C-Left");
break;
case 13:
button = F("C-Down");
break;
case 12:
button = F("C-Up");
break;
case 11:
button = F("R");
break;
case 10:
button = F("L");
break;
}
}
}
}
}
/******************************************
N64 Controller Test
*****************************************/
#ifdef enable_serial
void controllerTest_Serial() {
while (quit) {
// Get Button and analog stick
get_button();
// Print Button
String buttonc = String("Button: " + String(button) + " ");
Serial.print(buttonc);
// Print Stick X Value
String stickx = String("X: " + String(N64_status.stick_x, DEC) + " ");
Serial.print(stickx);
// Print Stick Y Value
String sticky = String(" Y: " + String(N64_status.stick_y, DEC) + " ");
Serial.println(sticky);
if (button == "Press a button" && lastbutton == "Z") {
// Quit
Serial.println("");
quit = 0;
}
}
}
#endif
#ifdef enable_LCD
#define CENTER 64
// on which screens do we start
int startscreen = 1;
int test = 1;
void printSTR(String st, int x, int y)
{
char buf[st.length() + 1];
if (x == CENTER) {
x = 64 - (((st.length() - 5) / 2) * 4);
}
st.toCharArray(buf, st.length() + 1);
display.drawStr(x, y, buf);
}
void nextscreen()
{
if (button == "Press a button" && lastbutton == "START")
{
// reset button
lastbutton = "N/A";
display.clearDisplay();
if (startscreen != 4)
startscreen = startscreen + 1;
else
{
startscreen = 1;
test = 1;
}
}
else if (button == "Press a button" && lastbutton == "Z" && startscreen == 4)
{
// Quit
quit = 0;
}
}
void controllerTest_LCD() {
int mode = 0;
//name of the current displayed result
String anastick = "";
// Graph
int xax = 24; // midpoint x
int yax = 24; // midpoint y
int zax = 24; // size
// variables to display test data of different sticks
int upx = 0;
int upy = 0;
int uprightx = 0;
int uprighty = 0;
int rightx = 0;
int righty = 0;
int downrightx = 0;
int downrighty = 0;
int downx = 0;
int downy = 0;
int downleftx = 0;
int downlefty = 0;
int leftx = 0;
int lefty = 0;
int upleftx = 0;
int uplefty = 0;
// variables to save test data
int bupx = 0;
int bupy = 0;
int buprightx = 0;
int buprighty = 0;
int brightx = 0;
int brighty = 0;
int bdownrightx = 0;
int bdownrighty = 0;
int bdownx = 0;
int bdowny = 0;
int bdownleftx = 0;
int bdownlefty = 0;
int bleftx = 0;
int blefty = 0;
int bupleftx = 0;
int buplefty = 0;
int results = 0;
int prevStickX = 0;
while (quit) {
// Get Button and analog stick
get_button();
switch (startscreen)
{
case 1:
{
delay(20);
display.clearDisplay();
display.drawStr(32, 8, "Controller Test");
display.drawLine(0, 10, 128, 10);
// Print Button
printSTR(" " + button + " ", CENTER, 20);
// Print Stick X Value
String stickx = String("X: " + String(N64_status.stick_x, DEC) + " ");
printSTR(stickx, 36, 38);
// Print Stick Y Value
String sticky = String("Y: " + String(N64_status.stick_y, DEC) + " ");
printSTR(sticky, 74, 38);
printSTR("(Continue with START)", 16, 55);
//Update LCD
display.updateDisplay();
// go to next screen
nextscreen();
break;
}
case 2:
{
display.drawStr(36, 8, "Range Test");
display.drawLine(0, 9, 128, 9);
if (mode == 0)
{
// Print Stick X Value
String stickx = String("X:" + String(N64_status.stick_x, DEC) + " ");
printSTR(stickx, 22 + 54, 26);
// Print Stick Y Value
String sticky = String("Y:" + String(N64_status.stick_y, DEC) + " ");
printSTR(sticky, 22 + 54, 36);
}
// Draw Axis
display.drawPixel(10 + xax, 12 + yax);
display.drawPixel(10 + xax, 12 + yax - 80 / 4);
display.drawPixel(10 + xax, 12 + yax + 80 / 4);
display.drawPixel(10 + xax + 80 / 4, 12 + yax);
display.drawPixel(10 + xax - 80 / 4, 12 + yax);
// Draw corners
display.drawPixel(10 + xax - 68 / 4, 12 + yax - 68 / 4);
display.drawPixel(10 + xax + 68 / 4, 12 + yax + 68 / 4);
display.drawPixel(10 + xax + 68 / 4, 12 + yax - 68 / 4);
display.drawPixel(10 + xax - 68 / 4, 12 + yax + 68 / 4);
//Draw Analog Stick
if (mode == 1)
{
display.drawPixel(10 + xax + N64_status.stick_x / 4, 12 + yax - N64_status.stick_y / 4);
//Update LCD
display.updateDisplay();
}
else
{
display.drawCircle(10 + xax + N64_status.stick_x / 4, 12 + yax - N64_status.stick_y / 4, 2);
//Update LCD
display.updateDisplay();
delay(20);
display.clearDisplay();
}
// switch mode
if (button == "Press a button" && lastbutton == "Z")
{
if (mode == 0)
{
mode = 1;
display.clearDisplay();
}
else
{
mode = 0;
display.clearDisplay();
}
}
// go to next screen
nextscreen();
break;
}
case 3:
{
display.setDrawColor(0);
display.drawPixel(22 + prevStickX, 40);
display.setDrawColor(1);
printSTR("Skipping Test", 34, 8);
display.drawLine(0, 9, 128, 9);
display.drawFrame(22 + 0, 15, 22 + 59, 21);
if (N64_status.stick_x > 0) {
display.drawLine(22 + N64_status.stick_x, 15, 22 + N64_status.stick_x, 35);
display.drawPixel(22 + N64_status.stick_x, 40);
prevStickX = N64_status.stick_x;
}
printSTR("Try to fill the box by", 22, 45);
printSTR("slowly moving right", 22, 55);
//Update LCD
display.updateDisplay();
if (button == "Press a button" && lastbutton == "Z")
{
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
// go to next screen
nextscreen();
break;
}
case 4:
{
switch ( test )
{
case 0: // Display results
{
switch (results)
{
case 0:
{
anastick = "YOURS";
upx = bupx;
upy = bupy;
uprightx = buprightx;
uprighty = buprighty;
rightx = brightx;
righty = brighty;
downrightx = bdownrightx;
downrighty = bdownrighty;
downx = bdownx;
downy = bdowny;
downleftx = bdownleftx;
downlefty = bdownlefty;
leftx = bleftx;
lefty = blefty;
upleftx = bupleftx;
uplefty = buplefty;
if (button == "Press a button" && lastbutton == "A")
{
// reset button
lastbutton = "N/A";
results = 1;
}
break;
}
case 1:
{
anastick = "ORIG";
upx = 1;
upy = 84;
uprightx = 67;
uprighty = 68;
rightx = 83;
righty = -2;
downrightx = 67;
downrighty = -69;
downx = 3;
downy = -85;
downleftx = -69;
downlefty = -70;
leftx = -85;
lefty = 0;
upleftx = -68;
uplefty = 68;
if (button == "Press a button" && lastbutton == "A")
{
// reset button
lastbutton = "N/A";
results = 0;
}
break;
}
} //results
delay(20);
display.clearDisplay();
printSTR(anastick, 22 + 50, 15);
display.drawStr(22 + 50, 25, "U:");
printSTR(String(upy), 100, 25);
display.drawStr(22 + 50, 35, "D:");
printSTR(String(downy), 100, 35);
display.drawStr(22 + 50, 45, "L:");
printSTR(String(leftx), 100, 45);
display.drawStr(22 + 50, 55, "R:");
printSTR(String(rightx), 100, 55);
display.drawLine(xax + upx / 4, yax - upy / 4, xax + uprightx / 4, yax - uprighty / 4);
display.drawLine(xax + uprightx / 4, yax - uprighty / 4, xax + rightx / 4, yax - righty / 4);
display.drawLine(xax + rightx / 4, yax - righty / 4, xax + downrightx / 4, yax - downrighty / 4);
display.drawLine(xax + downrightx / 4, yax - downrighty / 4, xax + downx / 4, yax - downy / 4);
display.drawLine(xax + downx / 4, yax - downy / 4, xax + downleftx / 4, yax - downlefty / 4);
display.drawLine(xax + downleftx / 4, yax - downlefty / 4, xax + leftx / 4, yax - lefty / 4);
display.drawLine(xax + leftx / 4, yax - lefty / 4, xax + upleftx / 4, yax - uplefty / 4);
display.drawLine(xax + upleftx / 4, yax - uplefty / 4, xax + upx / 4, yax - upy / 4);
display.drawPixel(xax, yax);
//Update LCD
display.updateDisplay();
break;
} //display results
case 1:// +y Up
{
display.drawStr(34, 26, "Hold Stick Up");
display.drawStr(34, 34, "then press A");
//display.drawBitmap(110, 60, ana1);
if (button == "Press a button" && lastbutton == "A")
{
bupx = N64_status.stick_x;
bupy = N64_status.stick_y;
// reset button
lastbutton = "N/A";
display.clearDisplay();
test = 2;
}
break;
}
case 2:// +y+x Up-Right
{
display.drawStr(42, 26, "Up-Right" );
//display.drawBitmap(110, 60, ana2);
if (button == "Press a button" && lastbutton == "A")
{
buprightx = N64_status.stick_x;
buprighty = N64_status.stick_y;
test = 3;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 3:// +x Right
{
display.drawStr(50, 26, "Right" );
//display.drawBitmap(110, 60, ana3);
if (button == "Press a button" && lastbutton == "A")
{
brightx = N64_status.stick_x;
brighty = N64_status.stick_y;
test = 4;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 4:// -y+x Down-Right
{
display.drawStr(38, 26, "Down-Right");
//display.drawBitmap(110, 60, ana4);
if (button == "Press a button" && lastbutton == "A")
{
bdownrightx = N64_status.stick_x;
bdownrighty = N64_status.stick_y;
test = 5;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 5:// -y Down
{
display.drawStr(49, 26, "Down");
//display.drawBitmap(110, 60, ana5);
if (button == "Press a button" && lastbutton == "A")
{
bdownx = N64_status.stick_x;
bdowny = N64_status.stick_y;
test = 6;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 6:// -y-x Down-Left
{
display.drawStr(39, 26, "Down-Left");
//display.drawBitmap(110, 60, ana6);
if (button == "Press a button" && lastbutton == "A")
{
bdownleftx = N64_status.stick_x;
bdownlefty = N64_status.stick_y;
test = 7;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 7:// -x Left
{
display.drawStr(51, 26, "Left" );
//display.drawBitmap(110, 60, ana7);
if (button == "Press a button" && lastbutton == "A")
{
bleftx = N64_status.stick_x;
blefty = N64_status.stick_y;
test = 8;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 8:// +y+x Up-Left
{
display.drawStr(43, 26, "Up-Left");
//display.drawBitmap(110, 60, ana8);
if (button == "Press a button" && lastbutton == "A")
{
bupleftx = N64_status.stick_x;
buplefty = N64_status.stick_y;
test = 0;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
}
if (test != 0)
{
display.drawStr(38, 8, "Benchmark");
display.drawLine(0, 9, 128, 9);
}
display.updateDisplay();
// go to next screen
nextscreen();
break;
}
}
}
}
#endif
#ifdef enable_OLED
#define CENTER 64
void oledPrint(const char string[], int x, int y) {
if (x == CENTER)
x = 64 - (strlen(string) / 2) * 6;
display.setCursor(x, y);
display.print(string);
}
void oledPrint(int number, int x, int y) {
display.setCursor(x, y);
display.print(number);
}
void printSTR(String st, int x, int y)
{
char buf[st.length() + 1];
st.toCharArray(buf, st.length() + 1);
oledPrint(buf, x, y);
}
void controllerTest_OLED() {
// on which screens do we start
int startscreen = 1;
int mode = 0;
int test = 1;
//name of the current displayed result
String anastick = "";
int prevStickX = 0;
// Graph
int xax = 22 + 24; // midpoint x
int yax = 24; // midpoint y
int zax = 24; // size
// variables to display test data of different sticks
int upx = 0;
int upy = 0;
int uprightx = 0;
int uprighty = 0;
int rightx = 0;
int righty = 0;
int downrightx = 0;
int downrighty = 0;
int downx = 0;
int downy = 0;
int downleftx = 0;
int downlefty = 0;
int leftx = 0;
int lefty = 0;
int upleftx = 0;
int uplefty = 0;
// variables to save test data
int bupx = 0;
int bupy = 0;
int buprightx = 0;
int buprighty = 0;
int brightx = 0;
int brighty = 0;
int bdownrightx = 0;
int bdownrighty = 0;
int bdownx = 0;
int bdowny = 0;
int bdownleftx = 0;
int bdownlefty = 0;
int bleftx = 0;
int blefty = 0;
int bupleftx = 0;
int buplefty = 0;
int results = 0;
while (quit) {
// Get Button and analog stick
get_button();
switch (startscreen)
{
case 1:
{
display.clearDisplay();
oledPrint("Button Test", CENTER, 0);
display.drawLine(22 + 0, 10, 22 + 84, 10, WHITE);
// Print Button
printSTR(" " + button + " ", CENTER, 20);
// Print Stick X Value
String stickx = String("X: " + String(N64_status.stick_x, DEC) + " ");
printSTR(stickx, 22 + 0, 38);
// Print Stick Y Value
String sticky = String("Y: " + String(N64_status.stick_y, DEC) + " ");
printSTR(sticky, 22 + 60, 38);
printSTR("(Continue with START)", 0, 55);
//Update LCD
display.display();
// go to next screen
if (button == "Press a button" && lastbutton == "START")
{
// reset button
lastbutton = "N/A";
display.clearDisplay();
if (startscreen != 4)
startscreen = startscreen + 1;
else
{
startscreen = 1;
test = 1;
}
}
else if (button == "Press a button" && lastbutton == "Z" && startscreen == 4)
{
// Quit
quit = 0;
}
break;
}
case 2:
{
oledPrint("Range Test", CENTER, 55);
display.drawLine(22 + 0, 50, 22 + 84, 50, WHITE);
// Print Stick X Value
String stickx = String("X:" + String(N64_status.stick_x, DEC) + " ");
printSTR(stickx, 22 + 54, 8);
// Print Stick Y Value
String sticky = String("Y:" + String(N64_status.stick_y, DEC) + " ");
printSTR(sticky, 22 + 54, 18);
// Draw Axis
//display.drawLine(xax - zax, yax, xax + zax, yax, WHITE);
//display.drawLine(xax, yax - zax, xax, yax + zax, WHITE);
display.drawPixel(xax, yax, WHITE);
display.drawPixel(xax, yax - 80 / 4, WHITE);
display.drawPixel(xax, yax + 80 / 4, WHITE);
display.drawPixel(xax + 80 / 4, yax, WHITE);
display.drawPixel(xax - 80 / 4, yax, WHITE);
// Draw corners
display.drawPixel(xax - 68 / 4, yax - 68 / 4, WHITE);
display.drawPixel(xax + 68 / 4, yax + 68 / 4, WHITE);
display.drawPixel(xax + 68 / 4, yax - 68 / 4, WHITE);
display.drawPixel(xax - 68 / 4, yax + 68 / 4, WHITE);
//Draw Analog Stick
if (mode == 1)
{
display.drawPixel(xax + N64_status.stick_x / 4, yax - N64_status.stick_y / 4, WHITE);
//Update LCD
display.display();
}
else
{
display.drawCircle(xax + N64_status.stick_x / 4, yax - N64_status.stick_y / 4, 2, WHITE);
//Update LCD
display.display();
display.clearDisplay();
}
// switch mode
if (button == "Press a button" && lastbutton == "Z")
{
if (mode == 0)
{
mode = 1;
display.clearDisplay();
}
else
{
mode = 0;
display.clearDisplay();
}
}
// go to next screen
if (button == "Press a button" && lastbutton == "START")
{
// reset button
lastbutton = "N/A";
display.clearDisplay();
if (startscreen != 4)
startscreen = startscreen + 1;
else
{
startscreen = 1;
test = 1;
}
}
else if (button == "Press a button" && lastbutton == "Z" && startscreen == 4)
{
// Quit
quit = 0;
}
break;
}
case 3:
{
display.drawPixel(22 + prevStickX, 40, BLACK);
oledPrint("Skipping Test", CENTER, 0);
display.drawLine(22 + 0, 10, 22 + 83, 10, WHITE);
display.drawRect(22 + 0, 15, 22 + 59, 21, WHITE);
if (N64_status.stick_x > 0) {
display.drawLine(22 + N64_status.stick_x, 15, 22 + N64_status.stick_x, 35, WHITE);
display.drawPixel(22 + N64_status.stick_x, 40, WHITE);
prevStickX = N64_status.stick_x;
}
printSTR("Try to fill box by", 0, 45);
printSTR("slowly moving right", 0, 55);
//Update LCD
display.display();
if (button == "Press a button" && lastbutton == "Z")
{
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
// go to next screen
if (button == "Press a button" && lastbutton == "START")
{
// reset button
lastbutton = "N/A";
display.clearDisplay();
if (startscreen != 4)
startscreen = startscreen + 1;
else
{
startscreen = 1;
test = 1;
}
}
else if (button == "Press a button" && lastbutton == "Z" && startscreen == 4)
{
// Quit
quit = 0;
}
break;
}
case 4:
{
switch ( test )
{
case 0: // Display results
{
switch (results)
{
case 0:
{
anastick = "YOURS";
upx = bupx;
upy = bupy;
uprightx = buprightx;
uprighty = buprighty;
rightx = brightx;
righty = brighty;
downrightx = bdownrightx;
downrighty = bdownrighty;
downx = bdownx;
downy = bdowny;
downleftx = bdownleftx;
downlefty = bdownlefty;
leftx = bleftx;
lefty = blefty;
upleftx = bupleftx;
uplefty = buplefty;
if (button == "Press a button" && lastbutton == "A")
{
// reset button
lastbutton = "N/A";
results = 1;
}
break;
}
case 1:
{
anastick = "ORIG";
upx = 1;
upy = 84;
uprightx = 67;
uprighty = 68;
rightx = 83;
righty = -2;
downrightx = 67;
downrighty = -69;
downx = 3;
downy = -85;
downleftx = -69;
downlefty = -70;
leftx = -85;
lefty = 0;
upleftx = -68;
uplefty = 68;
if (button == "Press a button" && lastbutton == "A")
{
// reset button
lastbutton = "N/A";
results = 0;
}
break;
}
} //results
display.clearDisplay();
printSTR(anastick, 22 + 50, 0);
oledPrint("U:", 22 + 50, 10);
oledPrint(upy, 100, 10);
oledPrint("D:", 22 + 50, 20);
oledPrint(downy, 100, 20);
oledPrint("L:", 22 + 50, 30);
oledPrint(leftx, 100, 30);
oledPrint("R:", 22 + 50, 40);
oledPrint(rightx, 100, 40);
display.drawLine(xax + upx / 4, yax - upy / 4, xax + uprightx / 4, yax - uprighty / 4, WHITE);
display.drawLine(xax + uprightx / 4, yax - uprighty / 4, xax + rightx / 4, yax - righty / 4, WHITE);
display.drawLine(xax + rightx / 4, yax - righty / 4, xax + downrightx / 4, yax - downrighty / 4, WHITE);
display.drawLine(xax + downrightx / 4, yax - downrighty / 4, xax + downx / 4, yax - downy / 4, WHITE);
display.drawLine(xax + downx / 4, yax - downy / 4, xax + downleftx / 4, yax - downlefty / 4, WHITE);
display.drawLine(xax + downleftx / 4, yax - downlefty / 4, xax + leftx / 4, yax - lefty / 4, WHITE);
display.drawLine(xax + leftx / 4, yax - lefty / 4, xax + upleftx / 4, yax - uplefty / 4, WHITE);
display.drawLine(xax + upleftx / 4, yax - uplefty / 4, xax + upx / 4, yax - upy / 4, WHITE);
display.drawPixel(xax, yax, WHITE);
printSTR("(Quit with Z)", 25, 55);
//Update LCD
display.display();
break;
} //display results
case 1:// +y Up
{
oledPrint("Hold Stick Up", CENTER, 18);
oledPrint("then press A", CENTER, 28);
//myOLED.drawBitmap(110, 60, ana1);
if (button == "Press a button" && lastbutton == "A")
{
bupx = N64_status.stick_x;
bupy = N64_status.stick_y;
// reset button
lastbutton = "N/A";
display.clearDisplay();
test = 2;
}
break;
}
case 2:// +y+x Up-Right
{
oledPrint("Up-Right", CENTER, 22 );
//myOLED.drawBitmap(110, 60, ana2);
if (button == "Press a button" && lastbutton == "A")
{
buprightx = N64_status.stick_x;
buprighty = N64_status.stick_y;
test = 3;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 3:// +x Right
{
oledPrint("Right", CENTER, 22 );
//myOLED.drawBitmap(110, 60, ana3);
if (button == "Press a button" && lastbutton == "A")
{
brightx = N64_status.stick_x;
brighty = N64_status.stick_y;
test = 4;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 4:// -y+x Down-Right
{
oledPrint("Down-Right", CENTER, 22 );
//myOLED.drawBitmap(110, 60, ana4);
if (button == "Press a button" && lastbutton == "A")
{
bdownrightx = N64_status.stick_x;
bdownrighty = N64_status.stick_y;
test = 5;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 5:// -y Down
{
oledPrint("Down", CENTER, 22 );
//myOLED.drawBitmap(110, 60, ana5);
if (button == "Press a button" && lastbutton == "A")
{
bdownx = N64_status.stick_x;
bdowny = N64_status.stick_y;
test = 6;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 6:// -y-x Down-Left
{
oledPrint("Down-Left", CENTER, 22 );
//myOLED.drawBitmap(110, 60, ana6);
if (button == "Press a button" && lastbutton == "A")
{
bdownleftx = N64_status.stick_x;
bdownlefty = N64_status.stick_y;
test = 7;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 7:// -x Left
{
oledPrint("Left", CENTER, 22 );
//myOLED.drawBitmap(110, 60, ana7);
if (button == "Press a button" && lastbutton == "A")
{
bleftx = N64_status.stick_x;
blefty = N64_status.stick_y;
test = 8;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 8:// +y+x Up-Left
{
oledPrint("Up-Left", CENTER, 22);
//myOLED.drawBitmap(110, 60, ana8);
if (button == "Press a button" && lastbutton == "A")
{
bupleftx = N64_status.stick_x;
buplefty = N64_status.stick_y;
test = 0;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
}
if (test != 0)
{
oledPrint("Benchmark", CENTER, 0);
display.drawLine(22 + 0, 9, 22 + 83, 9, WHITE);
printSTR("(Quit with Z)", 25, 55);
}
display.display();
// go to next screen
if (button == "Press a button" && lastbutton == "START")
{
// reset button
lastbutton = "N/A";
display.clearDisplay();
if (startscreen != 4)
startscreen = startscreen + 1;
else
{
startscreen = 1;
test = 1;
}
}
else if (button == "Press a button" && lastbutton == "Z" && startscreen == 4)
{
// Quit
quit = 0;
}
break;
}
}
}
}
#endif
/******************************************
N64 Controller Pak Functions
(connected via Controller)
*****************************************/
// Reset the controller
void resetController() {
// Reset controller
unsigned char command[] = {0xFF};
// don't want interrupts getting in the way
noInterrupts();
// Send command
N64_send(command, 1);
// Send stop
N64_stop();
// Enable interrupts
interrupts();
delay(100);
}
// read 3 bytes from controller
void checkController() {
display_Clear();
// Check if line is HIGH
if (!N64_QUERY)
print_Error(F("Data line LOW"), true);
// Send status command
unsigned char command[] = {0x0};
2022-09-10 15:57:01 +02:00
// Empty buffer
for (word i = 0; i < 265; i++) {
N64_raw_dump[i] = 0xFF;
}
// don't want interrupts getting in the way
noInterrupts();
N64_send(command, 1);
N64_stop();
// read in data
N64_get(32);
// end of time sensitive code
interrupts();
// Empty N64_raw_dump into myBlock
for (word i = 0; i < 32; i += 8) {
boolean byteFlipped[9];
// Flip byte order
byteFlipped[0] = N64_raw_dump[i + 7];
byteFlipped[1] = N64_raw_dump[i + 6];
byteFlipped[2] = N64_raw_dump[i + 5];
byteFlipped[3] = N64_raw_dump[i + 4];
byteFlipped[4] = N64_raw_dump[i + 3];
byteFlipped[5] = N64_raw_dump[i + 2];
byteFlipped[6] = N64_raw_dump[i + 1];
byteFlipped[7] = N64_raw_dump[i + 0];
// Join bits into one byte
unsigned char myByte = 0;
for (byte j = 0; j < 8; ++j) {
if (byteFlipped[j]) {
myByte |= 1 << j;
}
}
if ((i == 0) && (myByte != 0x05))
print_Error(F("Controller not found"), true);
if ((i == 16) && (myByte != 0x01))
print_Error(F("Controller Pak not found"), true);
if ((i == 16) && (myByte == 0x04))
print_Error(F("CRC Error"), true);
}
}
// read 32bytes from controller pak and calculate CRC
2022-09-10 14:35:47 +02:00
byte readBlock(word myAddress) {
// Calculate the address CRC
word myAddressCRC = addrCRC(myAddress);
// Read Controller Pak command
unsigned char command[] = {0x02};
// Address Command
unsigned char addressHigh[] = {(unsigned char)(myAddressCRC >> 8)};
unsigned char addressLow[] = {(unsigned char)(myAddressCRC & 0xff)};
2022-09-10 15:57:01 +02:00
// Empty buffer
for (word i = 0; i < 265; i++) {
N64_raw_dump[i] = 0xFF;
}
// don't want interrupts getting in the way
noInterrupts();
// send those 3 bytes
N64_send(command, 1);
N64_send(addressHigh, 1);
N64_send(addressLow, 1);
N64_stop();
// read in 32 byte data + 1 byte crc
N64_get(264);
// end of time sensitive code
interrupts();
// Empty N64_raw_dump into myBlock
for (word i = 0; i < 256; i += 8) {
boolean byteFlipped[9];
// Flip byte order
byteFlipped[0] = N64_raw_dump[i + 7];
byteFlipped[1] = N64_raw_dump[i + 6];
byteFlipped[2] = N64_raw_dump[i + 5];
byteFlipped[3] = N64_raw_dump[i + 4];
byteFlipped[4] = N64_raw_dump[i + 3];
byteFlipped[5] = N64_raw_dump[i + 2];
byteFlipped[6] = N64_raw_dump[i + 1];
byteFlipped[7] = N64_raw_dump[i + 0];
// Join bits into one byte
unsigned char myByte = 0;
for (byte j = 0; j < 8; ++j) {
if (byteFlipped[j]) {
myByte |= 1 << j;
}
}
// Save byte into block array
myBlock[i / 8] = myByte;
}
// Get CRC of block send
boolean byteFlipped[9];
// Flip byte order
byteFlipped[0] = N64_raw_dump[256 + 7];
byteFlipped[1] = N64_raw_dump[256 + 6];
byteFlipped[2] = N64_raw_dump[256 + 5];
byteFlipped[3] = N64_raw_dump[256 + 4];
byteFlipped[4] = N64_raw_dump[256 + 3];
byteFlipped[5] = N64_raw_dump[256 + 2];
byteFlipped[6] = N64_raw_dump[256 + 1];
byteFlipped[7] = N64_raw_dump[256 + 0];
unsigned char blockCRC = 0;
for (byte k = 0; k < 8; ++k) {
if (byteFlipped[k]) {
blockCRC |= 1 << k;
}
}
// Calculate CRC of block received
unsigned char myCRC = dataCRC(&myBlock[0]);
// Compare
if (blockCRC != myCRC) {
display_Clear();
2022-09-10 14:35:47 +02:00
// Close the file:
myFile.close();
println_Msg(F("Controller Pak was"));
println_Msg(F("not dumped due to a"));
print_Error(F("protocol CRC error"), true);
}
2022-09-10 14:35:47 +02:00
return blockCRC;
}
// reads the MPK file to the sd card
void readMPK() {
// Change to root
sd.chdir("/");
// Make MPK directory
sd.mkdir("N64/MPK", true);
// Change to MPK directory
sd.chdir("N64/MPK");
// Get name, add extension and convert to char array for sd lib
EEPROM_readAnything(0, foldern);
sprintf(fileName, "%d", foldern);
strcat(fileName, ".mpk");
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
2022-09-10 14:35:47 +02:00
//open crc file on sd card
sprintf(filePath, "%d", foldern - 1);
strcat(filePath, ".crc");
FsFile crcFile;
if (!crcFile.open(filePath, O_RDWR | O_CREAT)) {
print_Error(F("Can't open file on SD"), true);
}
//open mpk file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(F("Can't open file on SD"), true);
}
2022-08-17 22:53:07 +02:00
print_Msg(F("Saving N64/MPK/"));
println_Msg(fileName);
display_Update();
2022-08-18 19:23:33 +02:00
// Dummy write because first write to file takes 1 second and messes up timing
blinkLED();
myFile.write(0xFF);
myFile.rewind();
blinkLED();
2022-08-17 22:53:07 +02:00
2022-09-10 15:57:01 +02:00
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(0x7FFF);
draw_progressbar(0, totalProgressBar);
2022-08-18 19:23:33 +02:00
// Controller paks, which all have 32kB of space, are mapped between 0x0000 0x7FFF
// Read 512 byte into sdBuffer
for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += 512) {
// Read 32 byte block
for (word currBlock = 0; currBlock < 512; currBlock += 32) {
2022-09-10 14:35:47 +02:00
// Read one block of the Controller Pak into array myBlock and write CRC of that block to crc file
crcFile.write(readBlock(currSdBuffer + currBlock));
2022-08-18 19:23:33 +02:00
// Copy block to SdBuffer
for (byte currByte = 0; currByte < 32; currByte++) {
sdBuffer[currBlock + currByte] = myBlock[currByte];
}
2022-08-17 22:53:07 +02:00
// Real N64 has about 627us pause between banks, add a bit extra delay
2022-08-18 19:23:33 +02:00
if (currBlock < 479)
delayMicroseconds(800);
}
2022-08-18 19:23:33 +02:00
// This will take 1300us
blinkLED();
myFile.write(sdBuffer, 512);
2022-08-17 22:53:07 +02:00
// Blink led
blinkLED();
// Update progress bar
2022-08-18 19:23:33 +02:00
processedProgressBar += 512;
2022-08-17 22:53:07 +02:00
draw_progressbar(processedProgressBar, totalProgressBar);
}
// Close the file:
myFile.close();
2022-09-10 14:35:47 +02:00
crcFile.close();
}
// verifies if read was successful
void verifyCRC() {
writeErrors = 0;
println_Msg(F("Verifying..."));
display_Update();
//open CRC file on sd card
FsFile crcFile;
if (!crcFile.open(filePath, O_READ)) {
print_Error(F("Can't open file on SD"), true);
}
//open MPK file on sd card
if (!myFile.open(fileName, O_READ)) {
print_Error(F("Can't open file on SD"), true);
}
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(0x7FFF);
draw_progressbar(0, totalProgressBar);
// Controller paks, which all have 32kB of space, are mapped between 0x0000 0x7FFF
for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += 512) {
// Read 32 bytes into SD buffer
myFile.read(sdBuffer, 512);
// Compare 32 byte block CRC to CRC from file
for (word currBlock = 0; currBlock < 512; currBlock += 32) {
// Calculate CRC of block and compare against crc file
if (dataCRC(&sdBuffer[currBlock]) != crcFile.read())
writeErrors++;
}
// Blink led
blinkLED();
// Update progress bar
processedProgressBar += 512;
draw_progressbar(processedProgressBar, totalProgressBar);
}
// Close the file:
myFile.close();
crcFile.close();
if (writeErrors == 0) {
println_Msg(F("Read successfully"));
display_Update();
}
else {
print_Msg(F("Error: "));
print_Msg(writeErrors);
println_Msg(F(" blocks "));
print_Error(F("did not verify."), false);
}
}
// Calculates the checksum of the header
boolean checkHeader(byte startAddress) {
word sum = 0;
// first 28 bytes are the header, then comes the checksum(word) followed by the reverse checksum(0xFFF2 - checksum)
for (int i = 0; i < 28; i += 2) {
word tempword = (((sdBuffer[startAddress + i] & 0xFF) << 8) | (sdBuffer[startAddress + i + 1] & 0xFF));
sum += tempword;
}
if ((((sdBuffer[startAddress + 28] & 0xFF) << 8) | (sdBuffer[startAddress + 29] & 0xFF)) != (sum & 0xFFFF)) {
return 0;
}
else {
return 1;
}
}
// verifies if Controller Pak holds valid header data
2022-09-10 14:35:47 +02:00
void validateMPK() {
//open file on sd card
if (!myFile.open(fileName, O_READ)) {
print_Error(F("Can't open file"), true);
}
// Read first 256 byte which contains the header including checksum and reverse checksum and three copies of it
myFile.read(sdBuffer, 256);
2022-09-10 14:35:47 +02:00
//Check all four header copies
writeErrors = 0;
if (!checkHeader(0x20))
writeErrors++;
if (!checkHeader(0x60))
writeErrors++;
if (!checkHeader(0x80))
writeErrors++;
if (!checkHeader(0xC0))
writeErrors++;
2022-09-10 15:15:32 +02:00
print_Msg(F("HDR: "));
2022-09-10 14:35:47 +02:00
print_Msg(4 - writeErrors);
print_Msg(F("/4 - "));
display_Update();
// Check both TOC copies
writeErrors = 0;
word sum = 0;
// Read 2nd and 3rd 256 byte page with TOC info
for (word currSdBuffer = 0x100; currSdBuffer < 0x300; currSdBuffer += 256) {
sum = 0;
// Read 256 bytes into SD buffer
myFile.read(sdBuffer, 256);
// Calculate TOC checksum
for (int i = 5; i < 128; i++ ) {
sum += sdBuffer[(i << 1) + 1];
}
if (sdBuffer[1] != (sum & 0xFF))
writeErrors++;
}
2022-09-10 14:35:47 +02:00
print_Msg(F("ToC: "));
print_Msg(2 - writeErrors);
println_Msg(F("/2"));
display_Update();
// Close the file:
myFile.close();
}
void writeMPK() {
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
2022-08-17 22:53:07 +02:00
print_Msg(F("Writing "));
print_Msg(filePath);
println_Msg(F("..."));
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
2022-08-17 22:53:07 +02:00
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(0x7FFF);
draw_progressbar(0, totalProgressBar);
2022-08-18 19:23:33 +02:00
for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += 512) {
// Read 512 bytes into SD buffer, takes 1500us
myFile.read(sdBuffer, 512);
// Write 32 byte block
for (word currBlock = 0; currBlock < 512; currBlock += 32) {
// Calculate the address CRC
word myAddressCRC = addrCRC(currSdBuffer + currBlock);
// Copy 32 byte block from SdBuffer
for (byte currByte = 0; currByte < 32; currByte++) {
myBlock[currByte] = sdBuffer[currBlock + currByte] ;
}
// Write Controller Pak command
unsigned char command[] = {0x03};
// Address Command
unsigned char addressHigh[] = {(unsigned char)(myAddressCRC >> 8)};
unsigned char addressLow[] = {(unsigned char)(myAddressCRC & 0xff)};
// don't want interrupts getting in the way
noInterrupts();
// Send write command
N64_send(command, 1);
// Send block number
N64_send(addressHigh, 1);
N64_send(addressLow, 1);
// Send data to write
N64_send(myBlock, 32);
// Send stop
N64_stop();
// Enable interrupts
interrupts();
// Real N64 has about 627us pause between banks, add a bit extra delay
if (currBlock < 479)
delayMicroseconds(1500);
}
2022-08-17 22:53:07 +02:00
// Blink led
blinkLED();
// Update progress bar
2022-08-18 19:23:33 +02:00
processedProgressBar += 512;
2022-08-17 22:53:07 +02:00
draw_progressbar(processedProgressBar, totalProgressBar);
}
// Close the file:
myFile.close();
}
else {
2022-08-19 19:27:28 +02:00
print_Error(F("Can't open file on SD"), true);
}
}
// verifies if write was successful
void verifyMPK() {
writeErrors = 0;
println_Msg(F("Verifying..."));
display_Update();
//open file on sd card
2022-08-19 19:27:28 +02:00
if (!myFile.open(filePath, O_READ)) {
print_Error(F("Can't open file on SD"), true);
}
2022-08-17 22:53:07 +02:00
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(0x7FFF);
draw_progressbar(0, totalProgressBar);
// Controller paks, which all have 32kB of space, are mapped between 0x0000 0x7FFF
2022-08-18 19:23:33 +02:00
for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += 512) {
// Read 512 bytes into SD buffer
myFile.read(sdBuffer, 512);
// Compare 32 byte block
for (word currBlock = 0; currBlock < 512; currBlock += 32) {
// Read one block of the Controller Pak into array myBlock
readBlock(currSdBuffer + currBlock);
// Check against file on SD card
for (byte currByte = 0; currByte < 32; currByte++) {
if (sdBuffer[currBlock + currByte] != myBlock[currByte]) {
writeErrors++;
}
}
2022-08-18 19:23:33 +02:00
// Real N64 has about 627us pause between banks, add a bit extra delay
if (currBlock < 479)
delayMicroseconds(1500);
}
2022-08-17 22:53:07 +02:00
// Blink led
blinkLED();
// Update progress bar
2022-08-18 19:23:33 +02:00
processedProgressBar += 512;
2022-08-17 22:53:07 +02:00
draw_progressbar(processedProgressBar, totalProgressBar);
}
2022-08-17 22:53:07 +02:00
// Close the file:
myFile.close();
if (writeErrors == 0) {
2022-09-10 15:57:01 +02:00
println_Msg(F("Written successfully"));
display_Update();
}
else {
print_Msg(F("Error: "));
print_Msg(writeErrors);
println_Msg(F(" bytes "));
print_Error(F("did not verify."), false);
}
}
/******************************************
N64 Cartridge functions
*****************************************/
void printCartInfo_N64() {
// Check cart
getCartInfo_N64();
// Print start page
if (cartSize != 0) {
2022-07-26 23:26:20 +02:00
display_Clear();
println_Msg(F("N64 Cartridge Info"));
println_Msg(F(""));
print_Msg(F("Name: "));
println_Msg(romName);
print_Msg(F("ID: "));
print_Msg(cartID);
print_Msg(F(" Size: "));
print_Msg(cartSize);
println_Msg(F("MB"));
print_Msg(F("Save: "));
switch (saveType) {
case 1:
println_Msg(F("Sram"));
break;
case 4:
println_Msg(F("Flashram"));
break;
case 5:
println_Msg(F("4K Eeprom"));
eepPages = 64;
break;
case 6:
println_Msg(F("16K Eeprom"));
eepPages = 256;
break;
default:
println_Msg(F("unknown"));
break;
}
print_Msg(F("Version: 1."));
println_Msg(romVersion);
// Wait for user input
println_Msg(F(" "));
println_Msg(F("Press Button..."));
display_Update();
wait();
}
else {
// Display error
2022-07-26 23:26:20 +02:00
display_Clear();
println_Msg(F("GAMEPAK ERROR"));
println_Msg("");
print_Msg(F("Name: "));
println_Msg(romName);
print_Msg(F("ID: "));
println_Msg(cartID);
print_Msg(F("CRC1: "));
println_Msg(checksumStr);
display_Update();
strcpy(romName, "GPERROR");
print_Error(F("Cartridge unknown"), false);
2022-07-26 23:26:20 +02:00
println_Msg("");
println_Msg(F("Press Button..."));
display_Update();
wait();
// Set cartsize manually
unsigned char N64RomMenu;
// Copy menuOptions out of progmem
convertPgm(romOptionsN64, 6);
N64RomMenu = question_box(F("Select ROM size"), menuOptions, 6, 0);
// wait for user choice to come back from the question box menu
switch (N64RomMenu)
{
case 0:
// 4MB
cartSize = 4;
break;
case 1:
// 8MB
cartSize = 8;
break;
case 2:
// 12MB
cartSize = 12;
break;
case 3:
// 16MB
cartSize = 16;
break;
case 4:
// 32MB
cartSize = 32;
break;
case 5:
// 64MB
cartSize = 64;
break;
}
}
}
// improved strcmp function that ignores case to prevent checksum comparison issues
int strcicmp(char const * a, char const * b)
{
for (;; a++, b++) {
int d = tolower((unsigned char) * a) - tolower((unsigned char) * b);
if (d != 0 || !*a)
return d;
}
}
2022-06-17 23:57:29 +02:00
/* look-up the calculated crc in the file n64.txt on sd card
boolean searchCRC(char crcStr[9]) {
boolean result = 0;
char tempStr2[2];
char tempStr1[9];
char tempStr[5];
// Change to root dir
sd.chdir("/");
if (myFile.open("n64.txt", O_READ)) {
// Loop through file
while (myFile.available()) {
// Read 8 bytes into String, do it one at a time so byte order doesn't get mixed up
sprintf(tempStr1, "%c", myFile.read());
for (byte i = 0; i < 7; i++) {
sprintf(tempStr2, "%c", myFile.read());
strcat(tempStr1, tempStr2);
}
// Check if string is a match
if (strcicmp(tempStr1, crcStr) == 0) {
// Skip the , in the file
myFile.seekSet(myFile.curPosition() + 1);
// Read 4 bytes into String, do it one at a time so byte order doesn't get mixed up
sprintf(tempStr, "%c", myFile.read());
for (byte i = 0; i < 3; i++) {
sprintf(tempStr2, "%c", myFile.read());
strcat(tempStr, tempStr2);
}
if (strcmp(tempStr, cartID) == 0) {
result = 1;
break;
}
else {
result = 0;
break;
}
}
// If no match, empty string, advance by 12 and try again
else {
myFile.seekSet(myFile.curPosition() + 12);
}
}
// Close the file:
myFile.close();
return result;
}
else {
print_Error(F("n64.txt missing"), true);
}
2022-06-17 23:57:29 +02:00
}*/
// look-up cart id in file n64.txt on sd card
void getCartInfo_N64() {
char tempStr2[2];
char tempStr[9];
// cart not in list
cartSize = 0;
saveType = 0;
// Read cart id
idCart();
2022-07-26 23:26:20 +02:00
display_Clear();
println_Msg(F("Searching database..."));
display_Update();
if (myFile.open("n64.txt", O_READ)) {
// Loop through file
while (myFile.available()) {
2022-06-17 23:57:29 +02:00
// Skip first line with name
skip_line(&myFile);
// Skip over the CRC32 checksum
2022-06-17 23:57:29 +02:00
myFile.seekSet(myFile.curPosition() + 9);
// Read 8 bytes into String, do it one at a time so byte order doesn't get mixed up
sprintf(tempStr, "%c", myFile.read());
for (byte i = 0; i < 7; i++) {
sprintf(tempStr2, "%c", myFile.read());
strcat(tempStr, tempStr2);
}
// Check if string is a match
if (strcmp(tempStr, checksumStr) == 0) {
// Skip the , in the file
myFile.seekSet(myFile.curPosition() + 1);
// Read the next ascii character and subtract 48 to convert to decimal
cartSize = myFile.read() - 48;
// Remove leading 0 for single digit cart sizes
if (cartSize != 0) {
cartSize = cartSize * 10 + myFile.read() - 48;
}
else {
cartSize = myFile.read() - 48;
}
// Skip the , in the file
myFile.seekSet(myFile.curPosition() + 1);
// Read the next ascii character and subtract 48 to convert to decimal
saveType = myFile.read() - 48;
2022-06-17 23:57:29 +02:00
// End loop
break;
}
2022-06-17 23:57:29 +02:00
// If no match skip to next entry
else {
2022-06-17 23:57:29 +02:00
// skip rest of line
myFile.seekSet(myFile.curPosition() + 7);
// skip third empty line
skip_line(&myFile);
}
}
// Close the file:
myFile.close();
}
else {
print_Error(F("n64.txt missing"), true);
}
}
// Read rom ID
void idCart() {
// Set the address
setAddress_N64(romBase);
// Read first 64 bytes of rom
for (int c = 0; c < 64; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
// CRC1
sprintf(checksumStr, "%02X%02X%02X%02X", sdBuffer[0x10], sdBuffer[0x11], sdBuffer[0x12], sdBuffer[0x13]);
// Get cart id
cartID[0] = sdBuffer[0x3B];
cartID[1] = sdBuffer[0x3C];
cartID[2] = sdBuffer[0x3D];
cartID[3] = sdBuffer[0x3E];
// Get rom version
romVersion = sdBuffer[0x3F];
// Get name
byte myByte = 0;
byte myLength = 0;
for (unsigned int i = 0; i < 20; i++) {
myByte = sdBuffer[0x20 + i];
if (isprint(myByte) && myByte != '<' && myByte != '>' && myByte != ':' && myByte != '"' && myByte != '/' && myByte != '\\' && myByte != '|' && myByte != '?' && myByte != '*') {
romName[myLength] = char(myByte);
} else {
if (romName[myLength - 1] == 0x5F) myLength--;
romName[myLength] = 0x5F;
}
myLength++;
}
// Strip trailing white space
for (unsigned int i = myLength - 1; i > 0; i--) {
if ((romName[i] != 0x5F) && (romName[i] != 0x20)) break;
romName[i] = 0x00;
myLength--;
}
// If name consists out of all japanese characters use cart id
if (myLength == 0) {
romName[0] = sdBuffer[0x3B];
romName[1] = sdBuffer[0x3C];
romName[2] = sdBuffer[0x3D];
romName[3] = sdBuffer[0x3E];
}
#ifdef savesummarytotxt
// Get CRC1
for (int i = 0; i < 4; i++) {
if (sdBuffer[0x10 + i] < 0x10) {
CRC1 += '0';
}
CRC1 += String(sdBuffer[0x10 + i], HEX);
}
// Get CRC2
for (int i = 0; i < 4; i++) {
if (sdBuffer[0x14 + i] < 0x10) {
CRC2 += '0';
}
CRC2 += String(sdBuffer[0x14 + i], HEX);
}
#endif
}
/******************************************
Eeprom functions (without Adafruit clockgen)
*****************************************/
// Send a clock pulse of 2us length, 50% duty, 500kHz
void pulseClock_N64(unsigned int times) {
for (unsigned int i = 0; i < (times * 2); i++) {
// Switch the clock pin to 0 if it's 1 and 0 if it's 1
PORTH ^= (1 << 1);
// without the delay the clock pulse would be 1.5us and 666kHz
//__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t"));
}
}
// Send one byte of data to eeprom
void sendData_CLK(byte data) {
for (byte i = 0; i < 8; i++) {
// pull data line low
N64_LOW;
// if current bit is 1, pull high after ~1us, 2 cycles
if (data >> 7) {
pulseClock_N64(2);
N64_HIGH;
pulseClock_N64(6);
}
// if current bit is 0 pull high after ~3us, 6 cycles
else {
pulseClock_N64(6);
N64_HIGH;
pulseClock_N64(2);
}
// rotate to the next bit
data <<= 1;
}
}
// Send stop bit to eeprom
void sendStop_CLK() {
N64_LOW;
pulseClock_N64(2);
N64_HIGH;
pulseClock_N64(4);
}
// Capture 8 bytes in 64 bits into bit array tempBits
void readData_CLK() {
for (byte i = 0; i < 64; i++) {
// pulse clock until we get response from eeprom
while (N64_QUERY) {
pulseClock_N64(1);
}
// Skip over the 1us low part of a high bit
pulseClock_N64(3);
// Read bit
tempBits[i] = N64_QUERY;
// wait for line to go high again
while (!N64_QUERY) {
pulseClock_N64(1);
}
}
}
// Write Eeprom to cartridge
void writeEeprom_CLK() {
if ((saveType == 5) || (saveType == 6)) {
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
println_Msg(F("Writing..."));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (byte i = 0; i < (eepPages / 64); i++) {
myFile.read(sdBuffer, 512);
// Disable interrupts for more uniform clock pulses
noInterrupts();
for (byte pageNumber = 0; pageNumber < 64; pageNumber++) {
// Blink led
blinkLED();
// Wait ~50ms between page writes or eeprom will have write errors
pulseClock_N64(26000);
// Send write command
sendData_CLK(0x05);
// Send page number
sendData_CLK(pageNumber + (i * 64));
// Send data to write
for (byte j = 0; j < 8; j++) {
sendData_CLK(sdBuffer[(pageNumber * 8) + j]);
}
sendStop_CLK();
}
interrupts();
}
// Close the file:
myFile.close();
println_Msg(F("Done"));
display_Update();
delay(600);
}
else {
print_Error(F("SD Error"), true);
}
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Dump Eeprom to SD
void readEeprom_CLK() {
if ((saveType == 5) || (saveType == 6)) {
// Wait 50ms or eeprom might lock up
pulseClock_N64(26000);
// Get name, add extension and convert to char array for sd lib
strcpy(fileName, romName);
strcat(fileName, ".eep");
// create a new folder for the save file
EEPROM_readAnything(0, foldern);
sprintf(folder, "N64/SAVE/%s/%d", romName, foldern);
sd.mkdir(folder, true);
sd.chdir(folder);
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(F("Can't create file on SD"), true);
}
for (byte i = 0; i < (eepPages / 64); i++) {
// Disable interrupts for more uniform clock pulses
noInterrupts();
for (byte pageNumber = 0; pageNumber < 64; pageNumber++) {
// Blink led
blinkLED();
// Send read command
sendData_CLK(0x04);
// Send Page number
sendData_CLK(pageNumber + (i * 64));
// Send stop bit
sendStop_CLK();
// read data
readData_CLK();
sendStop_CLK();
// OR 8 bits into one byte for a total of 8 bytes
for (byte j = 0; j < 64; j += 8) {
sdBuffer[(pageNumber * 8) + (j / 8)] = tempBits[0 + j] << 7 | tempBits[1 + j] << 6 | tempBits[2 + j] << 5 | tempBits[3 + j] << 4 | tempBits[4 + j] << 3 | tempBits[5 + j] << 2 | tempBits[6 + j] << 1 | tempBits[7 + j];
}
// Wait 50ms between pages or eeprom might lock up
pulseClock_N64(26000);
}
interrupts();
// Write 64 pages at once to the SD card
myFile.write(sdBuffer, 512);
}
// Close the file:
myFile.close();
//clear the screen
display_Clear();
print_Msg(F("Saved to "));
print_Msg(folder);
println_Msg(F("/"));
display_Update();
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Check if a write succeeded, returns 0 if all is ok and number of errors if not
unsigned long verifyEeprom_CLK() {
if ((saveType == 5) || (saveType == 6)) {
writeErrors = 0;
// Wait 50ms or eeprom might lock up
pulseClock_N64(26000);
display_Clear();
print_Msg(F("Verifying against "));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (byte i = 0; i < (eepPages / 64); i++) {
// Disable interrupts for more uniform clock pulses
noInterrupts();
for (byte pageNumber = 0; pageNumber < 64; pageNumber++) {
// Blink led
blinkLED();
// Send read command
sendData_CLK(0x04);
// Send Page number
sendData_CLK(pageNumber + (i * 64));
// Send stop bit
sendStop_CLK();
// read data
readData_CLK();
sendStop_CLK();
// OR 8 bits into one byte for a total of 8 bytes
for (byte j = 0; j < 64; j += 8) {
sdBuffer[(pageNumber * 8) + (j / 8)] = tempBits[0 + j] << 7 | tempBits[1 + j] << 6 | tempBits[2 + j] << 5 | tempBits[3 + j] << 4 | tempBits[4 + j] << 3 | tempBits[5 + j] << 2 | tempBits[6 + j] << 1 | tempBits[7 + j];
}
// Wait 50ms between pages or eeprom might lock up
pulseClock_N64(26000);
}
interrupts();
// Check sdBuffer content against file on sd card
for (int c = 0; c < 512; c++) {
if (myFile.read() != sdBuffer[c]) {
writeErrors++;
}
}
}
// Close the file:
myFile.close();
}
else {
// SD Error
writeErrors = 999999;
print_Error(F("SD Error"), true);
}
// Return 0 if verified ok, or number of errors
return writeErrors;
}
else {
print_Error(F("Savetype Error"), true);
}
}
/******************************************
Eeprom functions (with Adafruit clockgen)
*****************************************/
// Send one byte of data to eeprom
void sendData(byte data) {
for (byte i = 0; i < 8; i++) {
// pull data line low
N64_LOW;
// if current bit is 1, pull high after ~1us
if (data >> 7) {
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
N64_HIGH;
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
}
// if current bit is 0 pull high after ~3us
else {
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
N64_HIGH;
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
}
// rotate to the next bit
data <<= 1;
}
}
// Send stop bit to eeprom
void sendStop() {
N64_LOW;
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
N64_HIGH;
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
}
// Capture 8 bytes in 64 bits into bit array tempBits
void readData() {
for (byte i = 0; i < 64; i++) {
// wait until we get response from eeprom
while (N64_QUERY) {
}
// Skip over the 1us low part of a high bit, Arduino running at 16Mhz -> one nop = 62.5ns
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
// Read bit
tempBits[i] = N64_QUERY;
// wait for line to go high again
while (!N64_QUERY) {
__asm__("nop\n\t");
}
}
}
// Write Eeprom to cartridge
void writeEeprom() {
if ((saveType == 5) || (saveType == 6)) {
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
println_Msg(F("Writing..."));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (byte i = 0; i < (eepPages / 64); i++) {
myFile.read(sdBuffer, 512);
// Disable interrupts for more uniform clock pulses
noInterrupts();
for (byte pageNumber = 0; pageNumber < 64; pageNumber++) {
// Blink led
blinkLED();
// Wait ~50ms between page writes or eeprom will have write errors, Arduino running at 16Mhz -> one nop = 62.5ns
for (long i = 0; i < 115000; i++) {
__asm__("nop\n\t");
}
// Send write command
sendData(0x05);
// Send page number
sendData(pageNumber + (i * 64));
// Send data to write
for (byte j = 0; j < 8; j++) {
sendData(sdBuffer[(pageNumber * 8) + j]);
}
sendStop();
}
interrupts();
}
// Close the file:
myFile.close();
println_Msg(F("Done"));
display_Update();
delay(600);
}
else {
print_Error(F("SD Error"), true);
}
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Dump Eeprom to SD
void readEeprom() {
if ((saveType == 5) || (saveType == 6)) {
// Get name, add extension and convert to char array for sd lib
strcpy(fileName, romName);
strcat(fileName, ".eep");
// create a new folder for the save file
EEPROM_readAnything(0, foldern);
sprintf(folder, "N64/SAVE/%s/%d", romName, foldern);
sd.mkdir(folder, true);
sd.chdir(folder);
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(F("Can't create file on SD"), true);
}
for (byte i = 0; i < (eepPages / 64); i++) {
// Disable interrupts for more uniform clock pulses
noInterrupts();
for (byte pageNumber = 0; pageNumber < 64; pageNumber++) {
// Blink led
blinkLED();
// Send read command
sendData(0x04);
// Send Page number
sendData(pageNumber + (i * 64));
// Send stop bit
sendStop();
// read data
readData();
sendStop();
// OR 8 bits into one byte for a total of 8 bytes
for (byte j = 0; j < 64; j += 8) {
sdBuffer[(pageNumber * 8) + (j / 8)] = tempBits[0 + j] << 7 | tempBits[1 + j] << 6 | tempBits[2 + j] << 5 | tempBits[3 + j] << 4 | tempBits[4 + j] << 3 | tempBits[5 + j] << 2 | tempBits[6 + j] << 1 | tempBits[7 + j];
}
// Wait ~600us between pages
for (int i = 0; i < 2000; i++) {
__asm__("nop\n\t");
}
}
interrupts();
// Write 64 pages at once to the SD card
myFile.write(sdBuffer, 512);
}
// Close the file:
myFile.close();
//clear the screen
display_Clear();
print_Msg(F("Saved to "));
print_Msg(folder);
println_Msg(F("/"));
display_Update();
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Check if a write succeeded, returns 0 if all is ok and number of errors if not
unsigned long verifyEeprom() {
if ((saveType == 5) || (saveType == 6)) {
writeErrors = 0;
display_Clear();
print_Msg(F("Verifying against "));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (byte i = 0; i < (eepPages / 64); i++) {
// Disable interrupts for more uniform clock pulses
noInterrupts();
for (byte pageNumber = 0; pageNumber < 64; pageNumber++) {
// Blink led
blinkLED();
// Send read command
sendData(0x04);
// Send Page number
sendData(pageNumber + (i * 64));
// Send stop bit
sendStop();
// read data
readData();
sendStop();
// OR 8 bits into one byte for a total of 8 bytes
for (byte j = 0; j < 64; j += 8) {
sdBuffer[(pageNumber * 8) + (j / 8)] = tempBits[0 + j] << 7 | tempBits[1 + j] << 6 | tempBits[2 + j] << 5 | tempBits[3 + j] << 4 | tempBits[4 + j] << 3 | tempBits[5 + j] << 2 | tempBits[6 + j] << 1 | tempBits[7 + j];
}
// Wait ~600us between pages
for (int i = 0; i < 2000; i++) {
__asm__("nop\n\t");
}
}
interrupts();
// Check sdBuffer content against file on sd card
for (int c = 0; c < 512; c++) {
if (myFile.read() != sdBuffer[c]) {
writeErrors++;
}
}
}
// Close the file:
myFile.close();
}
else {
// SD Error
writeErrors = 999999;
print_Error(F("SD Error"), true);
}
// Return 0 if verified ok, or number of errors
return writeErrors;
}
else {
print_Error(F("Savetype Error"), true);
}
}
/******************************************
SRAM functions
*****************************************/
// Write sram to cartridge
void writeSram(unsigned long sramSize) {
if (saveType == 1) {
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
println_Msg(F("Writing..."));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (unsigned long currByte = sramBase; currByte < (sramBase + sramSize); currByte += 512) {
// Read save from SD into buffer
myFile.read(sdBuffer, 512);
// Set the address for the next 512 bytes
setAddress_N64(currByte);
for (int c = 0; c < 512; c += 2) {
// Join bytes to word
word myWord = ( ( sdBuffer[c] & 0xFF ) << 8 ) | ( sdBuffer[c + 1] & 0xFF );
// Write word
writeWord_N64(myWord);
}
}
// Close the file:
myFile.close();
println_Msg(F("Done"));
display_Update();
}
else {
print_Error(F("SD Error"), true);
}
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Read sram and save to the SD card
void readSram(unsigned long sramSize, byte flashramType) {
int offset = 512;
int bufferSize = 512;
if (flashramType == 2) {
offset = 64;
bufferSize = 128;
}
// Get name, add extension and convert to char array for sd lib
strcpy(fileName, romName);
if (saveType == 4) {
strcat(fileName, ".fla");
}
else if (saveType == 1) {
strcat(fileName, ".sra");
}
else {
print_Error(F("Savetype Error"), true);
}
// create a new folder for the save file
EEPROM_readAnything(0, foldern);
sprintf(folder, "N64/SAVE/%s/%d", romName, foldern);
sd.mkdir(folder, true);
sd.chdir(folder);
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(F("SD Error"), true);
}
for (unsigned long currByte = sramBase; currByte < (sramBase + (sramSize / flashramType)); currByte += offset) {
// Set the address
setAddress_N64(currByte);
for (int c = 0; c < bufferSize; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
myFile.write(sdBuffer, bufferSize);
}
// Close the file:
myFile.close();
print_Msg(F("Saved to "));
print_Msg(folder);
println_Msg(F("/"));
display_Update();
}
unsigned long verifySram(unsigned long sramSize, byte flashramType) {
writeErrors = 0;
int offset = 512;
int bufferSize = 512;
if (flashramType == 2) {
offset = 64;
bufferSize = 128;
}
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (unsigned long currByte = sramBase; currByte < (sramBase + (sramSize / flashramType)); currByte += offset) {
// Set the address
setAddress_N64(currByte);
for (int c = 0; c < bufferSize; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
// Check sdBuffer content against file on sd card
for (int i = 0; i < bufferSize; i++) {
if (myFile.read() != sdBuffer[i]) {
writeErrors++;
}
}
}
// Close the file:
myFile.close();
}
else {
print_Error(F("SD Error"), true);
}
// Return 0 if verified ok, or number of errors
return writeErrors;
}
/******************************************
Flashram functions
*****************************************/
// Send a command to the flashram command register
void sendFramCmd (unsigned long myCommand) {
// Split command into two words
word myComLowOut = myCommand & 0xFFFF;
word myComHighOut = myCommand >> 16;
// Set address to command register
setAddress_N64(0x08010000);
// Send command
writeWord_N64(myComHighOut);
writeWord_N64(myComLowOut);
}
// Init fram
void initFram() {
// FRAM_EXECUTE_CMD
sendFramCmd(0xD2000000);
delay(10);
// FRAM_EXECUTE_CMD
sendFramCmd(0xD2000000);
delay(10);
//FRAM_STATUS_MODE_CMD
sendFramCmd(0xE1000000);
delay(10);
}
void writeFram(byte flashramType) {
if (saveType == 4) {
// Erase fram
eraseFram();
// Check if empty
if (blankcheck_N64(flashramType) == 0) {
println_Msg(F("OK"));
display_Update();
}
else {
2022-06-16 17:17:16 +02:00
println_Msg(F("FAIL"));
display_Update();
}
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
print_Msg(F("Writing "));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
// Init fram
initFram();
// Write all 8 fram banks
print_Msg(F("Bank "));
for (byte bank = 0; bank < 8; bank++) {
print_Msg(bank);
print_Msg(F(" "));
display_Update();
// Write one bank of 128*128 bytes
for (byte offset = 0; offset < 128; offset++) {
// Read save from SD into buffer
myFile.read(sdBuffer, 128);
// FRAM_WRITE_MODE_CMD
sendFramCmd(0xB4000000);
delay(1);
// Set the address for the next 128 bytes
setAddress_N64(0x08000000);
// Send 128 bytes, 64 words
for (byte c = 0; c < 128; c += 2) {
// Join two bytes into one word
word myWord = ( ( sdBuffer[c] & 0xFF ) << 8 ) | ( sdBuffer[c + 1] & 0xFF );
// Write word
writeWord_N64(myWord);
}
// Delay between each "DMA"
delay(1);
//FRAM_WRITE_OFFSET_CMD + offset
sendFramCmd((0xA5000000 | (((bank * 128) + offset) & 0xFFFF)));
delay(1);
// FRAM_EXECUTE_CMD
sendFramCmd(0xD2000000);
while (waitForFram(flashramType)) {
delay(1);
}
}
// Delay between banks
delay(20);
}
println_Msg("");
// Close the file:
myFile.close();
}
else {
print_Error(F("SD Error"), true);
}
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Delete all 8 flashram banks
void eraseFram() {
if (saveType == 4) {
print_Msg(F("Erasing..."));
display_Update();
// Init fram
initFram();
// Erase fram
// 0x4B00007F 0x4B0000FF 0x4B00017F 0x4B0001FF 0x4B00027F 0x4B0002FF 0x4B00037F 0x4B0003FF
for (unsigned long bank = 0x4B00007F; bank < 0x4B00047F; bank += 0x80) {
sendFramCmd(bank);
delay(10);
// FRAM_ERASE_MODE_CMD
sendFramCmd(0x78000000);
delay(10);
// FRAM_EXECUTE_CMD
sendFramCmd(0xD2000000);
while (waitForFram(flashramType)) {
delay(1);
}
}
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Read flashram
void readFram(byte flashramType) {
if (saveType == 4) {
// Put flashram into read mode
// FRAM_READ_MODE_CMD
sendFramCmd(0xF0000000);
// Read Flashram
readSram(131072, flashramType);
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Verify flashram
unsigned long verifyFram(byte flashramType) {
// Put flashram into read mode
// FRAM_READ_MODE_CMD
sendFramCmd(0xF0000000);
writeErrors = verifySram(131072, flashramType);
return writeErrors;
}
// Blankcheck flashram
unsigned long blankcheck_N64(byte flashramType) {
writeErrors = 0;
int offset = 512;
int bufferSize = 512;
if (flashramType == 2) {
offset = 64;
bufferSize = 128;
}
// Put flashram into read mode
// FRAM_READ_MODE_CMD
sendFramCmd(0xF0000000);
// Read Flashram
for (unsigned long currByte = sramBase; currByte < (sramBase + (131072 / flashramType)); currByte += offset) {
// Set the address for the next 512 bytes
setAddress_N64(currByte);
for (int c = 0; c < bufferSize; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
// Check sdBuffer content against file on sd card
for (int i = 0; i < bufferSize; i++) {
if (0xFF != sdBuffer[i]) {
writeErrors++;
}
}
}
// Return 0 if verified ok, or number of errors
return writeErrors;
}
// Wait until current operation is done
byte waitForFram(byte flashramType) {
byte framStatus = 0;
byte statusMXL1100[] = {0x11, 0x11, 0x80, 0x01, 0x00, 0xC2, 0x00, 0x1E};
byte statusMXL1101[] = {0x11, 0x11, 0x80, 0x01, 0x00, 0xC2, 0x00, 0x1D};
byte statusMN63F81[] = {0x11, 0x11, 0x80, 0x01, 0x00, 0x32, 0x00, 0xF1};
// FRAM_STATUS_MODE_CMD
sendFramCmd(0xE1000000);
delay(1);
// Set address to Fram status register
setAddress_N64(0x08000000);
// Read Status
for (byte c = 0; c < 8; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
if (flashramType == 2) {
for (byte c = 0; c < 8; c++) {
if (statusMXL1100[c] != sdBuffer[c]) {
framStatus = 1;
}
}
}
else if (flashramType == 1) {
//MX29L1101
if (MN63F81MPN == false) {
for (byte c = 0; c < 8; c++) {
if (statusMXL1101[c] != sdBuffer[c]) {
framStatus = 1;
}
}
}
//MN63F81MPN
else if (MN63F81MPN == true) {
for (byte c = 0; c < 8; c++) {
if (statusMN63F81[c] != sdBuffer[c]) {
framStatus = 1;
}
}
}
}
return framStatus;
}
// Get flashram type
void getFramType() {
// FRAM_STATUS_MODE_CMD
sendFramCmd(0xE1000000);
delay(10);
// Set address to Fram status register
setAddress_N64(0x08000000);
// Read Status
for (byte c = 0; c < 8; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
//MX29L1100
if (sdBuffer[7] == 0x1e ) {
flashramType = 2;
println_Msg(F("Type: MX29L1100"));
display_Update();
}
//MX29L1101
else if (sdBuffer[7] == 0x1d ) {
flashramType = 1;
MN63F81MPN = false;
println_Msg(F("Type: MX29L1101"));
display_Update();
}
//MN63F81MPN
else if (sdBuffer[7] == 0xf1 ) {
flashramType = 1;
MN63F81MPN = true;
println_Msg(F("Type: MN63F81MPN"));
display_Update();
}
// 29L1100KC-15B0 compat MX29L1101
else if ((sdBuffer[7] == 0x8e ) || (sdBuffer[7] == 0x84 )) {
flashramType = 1;
MN63F81MPN = false;
println_Msg(F("Type: 29L1100KC-15B0"));
println_Msg(F("(compat. MX29L1101)"));
display_Update();
}
// Type unknown
else {
for (byte c = 0; c < 8; c++) {
print_Msg(sdBuffer[c], HEX);
print_Msg(F(", "));
}
print_Error(F("Flashram unknown"), true);
}
}
/******************************************
Rom functions
*****************************************/
// Read rom and save to the SD card
void readRom_N64() {
// Get name, add extension and convert to char array for sd lib
strcpy(fileName, romName);
strcat(fileName, ".Z64");
redumpnewfolder:
// create a new folder
EEPROM_readAnything(0, foldern);
sprintf(folder, "N64/ROM/%s/%d", romName, foldern);
sd.mkdir(folder, true);
sd.chdir(folder);
display_Clear();
print_Msg(F("Saving to "));
print_Msg(folder);
println_Msg(F("/..."));
display_Update();
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
redumpsamefolder:
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(F("SD Error"), true);
}
// dumping rom slow
#ifndef fastcrc
// get current time
unsigned long startTime = millis();
for (unsigned long currByte = romBase; currByte < (romBase + (cartSize * 1024 * 1024)); currByte += 512) {
// Blink led
if (currByte % 16384 == 0)
blinkLED();
// Set the address for the next 512 bytes
setAddress_N64(currByte);
for (int c = 0; c < 512; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
myFile.write(sdBuffer, 512);
}
// Close the file:
myFile.close();
if (compareCRC("n64.txt", 0, 1, 0)) {
#else
// dumping rom fast
byte buffer[1024] = { 0 };
// get current time
unsigned long startTime = millis();
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(cartSize) * 1024 * 1024;
draw_progressbar(0, totalProgressBar);
// prepare crc32
uint32_t oldcrc32 = 0xFFFFFFFF;
uint32_t tab_value = 0;
uint8_t idx = 0;
// run combined dumper + crc32 routine for better performance, as N64 ROMs are quite large for an 8bit micro
// currently dumps + checksums a 32MB cart in 170 seconds (down from 347 seconds)
for (unsigned long currByte = romBase; currByte < (romBase + (cartSize * 1024 * 1024)); currByte += 1024) {
// Blink led
if (currByte % 16384 == 0)
blinkLED();
// Set the address for the first 512 bytes to dump
setAddress_N64(currByte);
// Wait 62.5ns (safety)
NOP;
for (int c = 0; c < 512; c += 2) {
// Pull read(PH6) low
PORTH &= ~(1 << 6);
// Wait ~310ns
NOP; NOP; NOP; NOP; NOP;
// data on PINK and PINF is valid now, read into sd card buffer
buffer[c] = PINK; // hiByte
buffer[c + 1] = PINF; // loByte
// Pull read(PH6) high
PORTH |= (1 << 6);
// crc32 update
idx = ((oldcrc32) ^ (buffer[c]));
tab_value = pgm_read_dword(crc_32_tab + idx);
oldcrc32 = tab_value ^ ((oldcrc32) >> 8);
idx = ((oldcrc32) ^ (buffer[c + 1]));
tab_value = pgm_read_dword(crc_32_tab + idx);
oldcrc32 = tab_value ^ ((oldcrc32) >> 8);
}
// Set the address for the next 512 bytes to dump
setAddress_N64(currByte + 512);
// Wait 62.5ns (safety)
NOP;
for (int c = 512; c < 1024; c += 2) {
// Pull read(PH6) low
PORTH &= ~(1 << 6);
// Wait ~310ns
NOP; NOP; NOP; NOP; NOP;
// data on PINK and PINF is valid now, read into sd card buffer
buffer[c] = PINK; // hiByte
buffer[c + 1] = PINF; // loByte
// Pull read(PH6) high
PORTH |= (1 << 6);
// crc32 update
idx = ((oldcrc32) ^ (buffer[c])) & 0xff;
tab_value = pgm_read_dword(crc_32_tab + idx);
oldcrc32 = tab_value ^ ((oldcrc32) >> 8);
idx = ((oldcrc32) ^ (buffer[c + 1])) & 0xff;
tab_value = pgm_read_dword(crc_32_tab + idx);
oldcrc32 = tab_value ^ ((oldcrc32) >> 8);
}
processedProgressBar += 1024;
draw_progressbar(processedProgressBar, totalProgressBar);
// write out 1024 bytes to file
myFile.write(buffer, 1024);
}
// Close the file:
myFile.close();
// convert checksum to string
char crcStr[9];
2022-06-17 23:57:29 +02:00
sprintf(crcStr, "%08lX", ~oldcrc32);
// Search n64.txt for crc
if (compareCRC("n64.txt", crcStr, 1, 0)) {
2022-06-17 23:57:29 +02:00
#endif
unsigned long timeElapsed = (millis() - startTime) / 1000; // seconds
print_Msg(F("Done ("));
print_Msg(timeElapsed); // include elapsed time
println_Msg(F("s)"));
println_Msg(F(""));
println_Msg(F("Press Button..."));
display_Update();
// This saves a tt file with rom info next to the dumped rom
#ifdef savesummarytotxt
savesummary_N64(1, crcStr, timeElapsed);
2022-06-16 15:15:43 +02:00
#endif
#ifdef global_log
save_log();
#endif
wait();
}
else {
// Dump was bad or unknown
errorLvl = 1;
setColor_RGB(255, 0, 0);
println_Msg(F(""));
println_Msg(F("Press Button..."));
display_Update();
// This saves a tt file with rom info next to the dumped rom
#ifdef savesummarytotxt
savesummary_N64(0, crcStr, timeElapsed);
#endif
wait();
// N64 CRC32 error Menu
unsigned char CRCMenu;
// Copy menuOptions out of progmem
convertPgm(menuOptionsN64CRC, 4);
CRCMenu = question_box(F("Redump cartridge?"), menuOptions, 4, 0);
// wait for user choice to come back from the question box menu
switch (CRCMenu)
{
case 0:
// Return to N64 menu
display_Clear();
break;
case 1:
// Dump again into new folder
display_Clear();
setColor_RGB(0, 0, 0);
goto redumpnewfolder;
break;
case 2:
// Dump again into same folder
// Change to last directory
sd.chdir(folder);
// Delete old file
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(F("SD Error"), true);
}
if (!myFile.remove()) {
print_Error(F("Delete Error"), true);
}
// Dump again
display_Clear();
println_Msg(F("Reading Rom..."));
display_Update();
setColor_RGB(0, 0, 0);
goto redumpsamefolder;
break;
case 3:
// Reset
resetArduino();
break;
}
}
}
#ifdef savesummarytotxt
// Save an info.txt with information on the dumped rom to the SD card
void savesummary_N64(boolean checkfound, char crcStr[9], unsigned long timeElapsed) {
// Open file on sd card
if (!myFile.open("N64/ROM/n64log.txt", O_RDWR | O_CREAT | O_APPEND)) {
print_Error(F("SD Error"), true);
}
//Write the info
myFile.print(F("Name\t: "));
myFile.println(romName);
myFile.print(F("ID\t: "));
myFile.println(cartID);
myFile.print(F("ROM CRC1: "));
myFile.println(CRC1);
myFile.print(F("ROM CRC2: "));
myFile.println(CRC2);
myFile.print(F("Size\t: "));
myFile.print(cartSize);
myFile.println(F("MB"));
myFile.print(F("Save\t: "));
switch (saveType) {
case 1:
myFile.println(F("Sram"));
break;
case 4:
myFile.println(F("Flashram"));
break;
case 5:
myFile.println(F("4K Eeprom"));
break;
case 6:
myFile.println(F("16K Eeprom"));
break;
default:
myFile.println(F("unknown"));
break;
}
myFile.print(F("Version\t: 1."));
myFile.println(romVersion);
myFile.print(F("Saved To: "));
myFile.println(folder);
#ifdef RTC_installed
myFile.print(F("Dumped\t: "));
myFile.println(RTCStamp());
#endif
myFile.print(F("CRC\t: "));
myFile.print(crcStr);
if (checkfound) {
// Dump was a known good rom
// myFile.println(F("Checksum matches"));
myFile.println(" [Match]");
}
else {
// myFile.println(F("Checksum not found"));
myFile.println(" [No Match]");
}
myFile.print(F("Time\t: "));
myFile.println(timeElapsed);
myFile.println(F(" "));
// Close the file:
myFile.close();
}
#endif
/******************************************
N64 Repro Flashrom Functions
*****************************************/
void flashRepro_N64() {
unsigned long sectorSize;
byte bufferSize;
// Check flashrom ID's
idFlashrom_N64();
// If the ID is known continue
if (cartSize != 0) {
// Print flashrom name
if ((strcmp(flashid, "227E") == 0) && (strcmp(cartID, "2201") == 0)) {
print_Msg(F("Spansion S29GL256N"));
if (cartSize == 64)
println_Msg(F(" x2"));
else
println_Msg("");
}
else if ((strcmp(flashid, "227E") == 0) && (strcmp(cartID, "2101") == 0)) {
print_Msg(F("Spansion S29GL128N"));
}
else if ((strcmp(flashid, "227E") == 0) && (strcmp(cartID, "2100") == 0)) {
print_Msg(F("ST M29W128GL"));
}
else if ((strcmp(flashid, "22C9") == 0) || (strcmp(flashid, "22CB") == 0)) {
print_Msg(F("Macronix MX29LV640"));
if (cartSize == 16)
println_Msg(F(" x2"));
else
println_Msg("");
}
else if (strcmp(flashid, "8816") == 0)
println_Msg(F("Intel 4400L0ZDQ0"));
else if (strcmp(flashid, "7E7E") == 0)
println_Msg(F("Fujitsu MSP55LV100S"));
else if ((strcmp(flashid, "227E") == 0) && (strcmp(cartID, "2301") == 0))
println_Msg(F("Fujitsu MSP55LV512"));
else if ((strcmp(flashid, "227E") == 0) && (strcmp(cartID, "3901") == 0))
println_Msg(F("Intel 512M29EW"));
// Print info
print_Msg(F("ID: "));
print_Msg(flashid);
print_Msg(F(" Size: "));
print_Msg(cartSize);
println_Msg(F("MB"));
println_Msg("");
println_Msg(F("This will erase your"));
println_Msg(F("Repro Cartridge."));
println_Msg(F("Attention: Use 3.3V!"));
println_Msg("");
2022-06-14 15:25:53 +02:00
println_Msg(F("Press Button..."));
display_Update();
wait();
}
else {
println_Msg(F("Unknown flashrom"));
print_Msg(F("ID: "));
print_Msg(vendorID);
print_Msg(F(" "));
print_Msg(flashid);
print_Msg(F(" "));
println_Msg(cartID);
println_Msg(F(" "));
println_Msg(F("Press button for"));
println_Msg(F("manual config"));
println_Msg(F("This will erase your"));
println_Msg(F("Repro Cartridge."));
println_Msg(F("Attention: Use 3.3V!"));
display_Update();
wait();
// clear IDs
sprintf(vendorID, "%s", "CONF");
sprintf(flashid, "%s", "CONF");
sprintf(cartID, "%s", "CONF");
// Set cartsize manually
unsigned char N64RomMenu;
// Copy menuOptions out of progmem
convertPgm(romOptionsN64, 6);
N64RomMenu = question_box(F("Select flash size"), menuOptions, 6, 0);
// wait for user choice to come back from the question box menu
switch (N64RomMenu)
{
case 0:
// 4MB
cartSize = 4;
break;
case 1:
// 8MB
cartSize = 8;
break;
case 2:
// 12MB
cartSize = 12;
break;
case 3:
// 16MB
cartSize = 16;
break;
case 4:
// 32MB
cartSize = 32;
break;
case 5:
// 64MB
cartSize = 64;
break;
}
// Set flash buffer manually
unsigned char N64BufferMenu;
// Copy menuOptions out of progmem
convertPgm(bufferOptionsN64, 4);
N64BufferMenu = question_box(F("Select buffer size"), menuOptions, 4, 0);
// wait for user choice to come back from the question box menu
switch (N64BufferMenu)
{
case 0:
// no buffer
bufferSize = 0;
break;
case 1:
// 32 byte buffer
bufferSize = 32;
break;
case 2:
// 64 byte buffer
bufferSize = 64;
break;
case 3:
// 128 byte buffer
bufferSize = 128;
break;
}
// Set sector size manually
unsigned char N64SectorMenu;
// Copy menuOptions out of progmem
convertPgm(sectorOptionsN64, 4);
N64SectorMenu = question_box(F("Select sector size"), menuOptions, 4, 0);
// wait for user choice to come back from the question box menu
switch (N64SectorMenu)
{
case 0:
// 8KB sectors
sectorSize = 0x2000;
break;
case 1:
// 32KB sectors
sectorSize = 0x8000;
break;
case 2:
// 64KB sectors
sectorSize = 0x10000;
break;
case 3:
// 128KB sectors
sectorSize = 0x20000;
break;
}
}
// Launch file browser
filePath[0] = '\0';
sd.chdir("/");
fileBrowser(F("Select z64 file"));
display_Clear();
display_Update();
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
// Get rom size from file
fileSize = myFile.fileSize();
print_Msg(F("File size: "));
print_Msg(fileSize / 1048576);
println_Msg(F("MB"));
display_Update();
// Compare file size to flashrom size
if ((fileSize / 1048576) > cartSize) {
print_Error(F("File too big"), true);
}
// Erase needed sectors
if (strcmp(flashid, "227E") == 0) {
// Spansion S29GL256N or Fujitsu MSP55LV512 with 0x20000 sector size and 32 byte buffer
eraseSector_N64(0x20000);
}
else if (strcmp(flashid, "7E7E") == 0) {
// Fujitsu MSP55LV100S
eraseMSP55LV100_N64();
}
else if ((strcmp(flashid, "8813") == 0) || (strcmp(flashid, "8816") == 0)) {
// Intel 4400L0ZDQ0
eraseIntel4400_N64();
resetIntel4400_N64();
}
else if ((strcmp(flashid, "22C9") == 0) || (strcmp(flashid, "22CB") == 0)) {
// Macronix MX29LV640, C9 is top boot and CB is bottom boot block
eraseSector_N64(0x8000);
}
else {
eraseFlashrom_N64();
}
// Check if erase was successful
if (blankcheckFlashrom_N64()) {
// Write flashrom
println_Msg(F("OK"));
print_Msg(F("Writing "));
println_Msg(filePath);
display_Update();
if ((strcmp(cartID, "3901") == 0) && (strcmp(flashid, "227E") == 0)) {
// Intel 512M29EW(64MB) with 0x20000 sector size and 128 byte buffer
writeFlashBuffer_N64(0x20000, 128);
}
else if ((strcmp(cartID, "2100") == 0) && (strcmp(flashid, "227E") == 0)) {
// ST M29W128GH(16MB) with 0x20000 sector size and 64 byte buffer
writeFlashBuffer_N64(0x20000, 64);
}
else if (strcmp(flashid, "227E") == 0) {
// Spansion S29GL128N/S29GL256N or Fujitsu MSP55LV512 with 0x20000 sector size and 32 byte buffer
writeFlashBuffer_N64(0x20000, 32);
}
else if (strcmp(flashid, "7E7E") == 0) {
//Fujitsu MSP55LV100S
writeMSP55LV100_N64(0x20000);
}
else if ((strcmp(flashid, "22C9") == 0) || (strcmp(flashid, "22CB") == 0)) {
// Macronix MX29LV640 without buffer and 0x8000 sector size
writeFlashrom_N64(0x8000);
}
else if ((strcmp(flashid, "8813") == 0) || (strcmp(flashid, "8816") == 0)) {
// Intel 4400L0ZDQ0
writeIntel4400_N64();
resetIntel4400_N64();
}
else if (bufferSize == 0) {
writeFlashrom_N64(sectorSize);
}
else {
writeFlashBuffer_N64(sectorSize, bufferSize);
}
// Close the file:
myFile.close();
// Verify
print_Msg(F("Verifying..."));
display_Update();
writeErrors = verifyFlashrom_N64();
if (writeErrors == 0) {
println_Msg(F("OK"));
display_Update();
}
else {
print_Msg(writeErrors);
print_Msg(F(" bytes "));
print_Error(F("did not verify."), false);
}
}
else {
// Close the file
myFile.close();
print_Error(F("failed"), false);
}
}
else {
print_Error(F("Can't open file"), false);
}
println_Msg(F("Press Button..."));
display_Update();
wait();
display_Clear();
display_Update();
}
// Reset to read mode
void resetIntel4400_N64() {
for (unsigned long currPartition = 0; currPartition < (cartSize * 0x100000); currPartition += 0x20000) {
setAddress_N64(romBase + currPartition);
writeWord_N64(0xFF);
}
}
// Reset Fujitsu MSP55LV100S
void resetMSP55LV100_N64(unsigned long flashBase) {
// Send reset Command
setAddress_N64(flashBase);
writeWord_N64(0xF0F0);
delay(100);
}
// Common reset command
void resetFlashrom_N64(unsigned long flashBase) {
// Send reset Command
setAddress_N64(flashBase);
writeWord_N64(0xF0);
delay(100);
}
void idFlashrom_N64() {
// Set size to 0 if no ID is found
cartSize = 0;
// Send flashrom ID command
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(romBase + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0x90);
// Read 1 byte vendor ID
setAddress_N64(romBase);
sprintf(vendorID, "%02X", readWord_N64());
// Read 2 bytes flashrom ID
sprintf(flashid, "%04X", readWord_N64());
// Read 2 bytes secondary flashrom ID
setAddress_N64(romBase + 0x1C);
sprintf(cartID, "%04X", ((readWord_N64() << 8) | (readWord_N64() & 0xFF)));
// Spansion S29GL256N(32MB/64MB) with either one or two flashrom chips
if ((strcmp(cartID, "2201") == 0) && (strcmp(flashid, "227E") == 0)) {
cartSize = 32;
// Reset flashrom
resetFlashrom_N64(romBase);
// Test for second flashrom chip at 0x2000000 (32MB)
setAddress_N64(romBase + 0x2000000 + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(romBase + 0x2000000 + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + 0x2000000 + (0x555 << 1));
writeWord_N64(0x90);
char tempID[5];
setAddress_N64(romBase + 0x2000000);
// Read manufacturer ID
readWord_N64();
// Read flashrom ID
sprintf(tempID, "%04X", readWord_N64());
// Check if second flashrom chip is present
if (strcmp(tempID, "227E") == 0) {
cartSize = 64;
}
resetFlashrom_N64(romBase + 0x2000000);
}
// Macronix MX29LV640(8MB/16MB) with either one or two flashrom chips
else if ((strcmp(flashid, "22C9") == 0) || (strcmp(flashid, "22CB") == 0)) {
cartSize = 8;
resetFlashrom_N64(romBase + 0x800000);
// Test for second flashrom chip at 0x800000 (8MB)
setAddress_N64(romBase + 0x800000 + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(romBase + 0x800000 + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + 0x800000 + (0x555 << 1));
writeWord_N64(0x90);
char tempID[5];
setAddress_N64(romBase + 0x800000);
// Read manufacturer ID
readWord_N64();
// Read flashrom ID
sprintf(tempID, "%04X", readWord_N64());
// Check if second flashrom chip is present
if ((strcmp(tempID, "22C9") == 0) || (strcmp(tempID, "22CB") == 0)) {
cartSize = 16;
}
resetFlashrom_N64(romBase + 0x800000);
}
// Intel 4400L0ZDQ0 (64MB)
else if (strcmp(flashid, "8816") == 0) {
// Found first flashrom chip, set to 32MB
cartSize = 32;
resetIntel4400_N64();
// Test if second half of the flashrom might be hidden
setAddress_N64(romBase + 0x2000000 + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(romBase + 0x2000000 + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + 0x2000000 + (0x555 << 1));
writeWord_N64(0x90);
// Read manufacturer ID
setAddress_N64(romBase + 0x2000000);
readWord_N64();
// Read flashrom ID
sprintf(cartID, "%04X", readWord_N64());
if (strcmp(cartID, "8813") == 0) {
cartSize = 64;
strncpy(flashid , cartID, 5);
}
resetIntel4400_N64();
// Empty cartID string
cartID[0] = '\0';
}
//Fujitsu MSP55LV512/Spansion S29GL512N (64MB)
else if ((strcmp(cartID, "2301") == 0) && (strcmp(flashid, "227E") == 0)) {
cartSize = 64;
// Reset flashrom
resetFlashrom_N64(romBase);
}
// Spansion S29GL128N(16MB) with one flashrom chip
else if ((strcmp(cartID, "2101") == 0) && (strcmp(flashid, "227E") == 0)) {
cartSize = 16;
// Reset flashrom
resetFlashrom_N64(romBase);
}
// ST M29W128GL(16MB) with one flashrom chip
else if ((strcmp(cartID, "2100") == 0) && (strcmp(flashid, "227E") == 0)) {
cartSize = 16;
// Reset flashrom
resetFlashrom_N64(romBase);
}
// Intel 512M29EW(64MB) with one flashrom chip
else if ((strcmp(cartID, "3901") == 0) && (strcmp(flashid, "227E") == 0)) {
cartSize = 64;
// Reset flashrom
resetFlashrom_N64(romBase);
}
// Unknown 227E type
else if (strcmp(flashid, "227E") == 0) {
cartSize = 0;
// Reset flashrom
resetFlashrom_N64(romBase);
}
//Test for Fujitsu MSP55LV100S (64MB)
else {
// Send flashrom ID command
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0xAAAA);
setAddress_N64(romBase + (0x2AA << 1));
writeWord_N64(0x5555);
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0x9090);
setAddress_N64(romBase);
// Read 1 byte vendor ID
readWord_N64();
// Read 2 bytes flashrom ID
sprintf(cartID, "%04X", readWord_N64());
if (strcmp(cartID, "7E7E") == 0) {
resetMSP55LV100_N64(romBase);
cartSize = 64;
strncpy(flashid , cartID, 5);
}
}
if ((strcmp(flashid, "1240") == 0) && (strcmp(cartID, "1240") == 0)) {
print_Error(F("Please reseat cartridge"), true);
}
}
// Erase Intel flashrom
void eraseIntel4400_N64() {
unsigned long flashBase = romBase;
print_Msg(F("Erasing..."));
display_Update();
// If the game is smaller than 32Mbit only erase the needed blocks
unsigned long lastBlock = 0x1FFFFFF;
if (fileSize < 0x1FFFFFF)
lastBlock = fileSize;
// Erase 4 blocks with 16kwords each
for (unsigned long currBlock = 0x0; currBlock < 0x1FFFF; currBlock += 0x8000) {
// Unlock block command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x60);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Erase command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x20);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Read the status register
setAddress_N64(flashBase + currBlock);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(flashBase + currBlock);
statusReg = readWord_N64();
}
}
// Erase up to 255 blocks with 64kwords each
for (unsigned long currBlock = 0x20000; currBlock < lastBlock; currBlock += 0x1FFFF) {
// Unlock block command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x60);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Erase command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x20);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Read the status register
setAddress_N64(flashBase + currBlock);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(flashBase + currBlock);
statusReg = readWord_N64();
}
// Blink led
blinkLED();
}
// Check if we should erase the second chip too
if ((cartSize = 64) && (fileSize > 0x2000000)) {
// Switch base address to second chip
flashBase = romBase + 0x2000000;
// 255 blocks with 64kwords each
for (unsigned long currBlock = 0x0; currBlock < 0x1FDFFFF; currBlock += 0x1FFFF) {
// Unlock block command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x60);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Erase command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x20);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Read the status register
setAddress_N64(flashBase + currBlock);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(flashBase + currBlock);
statusReg = readWord_N64();
}
// Blink led
blinkLED();
}
// 4 blocks with 16kword each
for (unsigned long currBlock = 0x1FE0000; currBlock < 0x1FFFFFF; currBlock += 0x8000) {
// Unlock block command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x60);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Erase command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x20);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Read the status register
setAddress_N64(flashBase + currBlock);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(flashBase + currBlock);
statusReg = readWord_N64();
}
}
}
}
// Erase Fujutsu MSP55LV100S
void eraseMSP55LV100_N64() {
unsigned long flashBase = romBase;
unsigned long sectorSize = 0x20000;
print_Msg(F("Erasing..."));
display_Update();
for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) {
// Blink led
blinkLED();
// Send Erase Command to first chip
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAAAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x5555);
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0x8080);
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAAAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x5555);
setAddress_N64(romBase + currSector);
writeWord_N64(0x3030);
// Read the status register
setAddress_N64(romBase + currSector);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(romBase + currSector);
statusReg = readWord_N64();
}
// Read the status register
setAddress_N64(romBase + currSector);
statusReg = readWord_N64();
while ((statusReg | 0x7FFF) != 0xFFFF) {
setAddress_N64(romBase + currSector);
statusReg = readWord_N64();
}
}
}
// Common chip erase command
void eraseFlashrom_N64() {
print_Msg(F("Chip erase..."));
display_Update();
// Send Erase Command
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(romBase + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0x80);
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(romBase + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0x10);
// Read the status register
setAddress_N64(romBase);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(romBase);
statusReg = readWord_N64();
// Blink led
blinkLED();
delay(500);
}
}
// Common sector erase command
void eraseSector_N64(unsigned long sectorSize) {
unsigned long flashBase = romBase;
print_Msg(F("Sector erase..."));
display_Update();
for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) {
// Blink led
blinkLED();
// Spansion S29GL256N(32MB/64MB) with two flashrom chips
if ((currSector == 0x2000000) && (strcmp(cartID, "2201") == 0) && (strcmp(flashid, "227E") == 0)) {
// Change to second chip
flashBase = romBase + 0x2000000;
}
// Macronix MX29LV640(8MB/16MB) with two flashrom chips
else if ((currSector == 0x800000) && ((strcmp(flashid, "22C9") == 0) || (strcmp(flashid, "22CB") == 0))) {
flashBase = romBase + 0x800000;
}
// Send Erase Command
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0x80);
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + currSector);
writeWord_N64(0x30);
// Read the status register
setAddress_N64(romBase + currSector);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(romBase + currSector);
statusReg = readWord_N64();
}
}
}
boolean blankcheckFlashrom_N64() {
for (unsigned long currByte = romBase; currByte < romBase + fileSize; currByte += 512) {
// Blink led
if (currByte % 131072 == 0)
blinkLED();
// Set the address
setAddress_N64(currByte);
for (int c = 0; c < 512; c += 2) {
if (readWord_N64() != 0xFFFF) {
return 0;
}
}
}
return 1;
}
// Write Intel flashrom
void writeIntel4400_N64() {
for (unsigned long currSector = 0; currSector < fileSize; currSector += 131072) {
// Blink led
blinkLED();
// Write to flashrom
for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) {
// Fill SD buffer
myFile.read(sdBuffer, 512);
// Write 32 words at a time
for (int currWriteBuffer = 0; currWriteBuffer < 512; currWriteBuffer += 64) {
// Buffered program command
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
writeWord_N64(0xE8);
// Check Status register
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
statusReg = readWord_N64();
}
// Write word count (minus 1)
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
writeWord_N64(0x1F);
// Write buffer
for (byte currByte = 0; currByte < 64; currByte += 2) {
// Join two bytes into one word
word currWord = ( ( sdBuffer[currWriteBuffer + currByte] & 0xFF ) << 8 ) | ( sdBuffer[currWriteBuffer + currByte + 1] & 0xFF );
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + currByte);
writeWord_N64(currWord);
}
// Write Buffer to Flash
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 62);
writeWord_N64(0xD0);
// Read the status register at last written address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 62);
statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 62);
statusReg = readWord_N64();
}
}
}
}
}
// Write Fujitsu MSP55LV100S flashrom consisting out of two MSP55LV512 flashroms one used for the high byte the other for the low byte
void writeMSP55LV100_N64(unsigned long sectorSize) {
unsigned long flashBase = romBase;
for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) {
// Blink led
blinkLED();
// Write to flashrom
for (unsigned long currSdBuffer = 0; currSdBuffer < sectorSize; currSdBuffer += 512) {
// Fill SD buffer
myFile.read(sdBuffer, 512);
// Write 32 bytes at a time
for (int currWriteBuffer = 0; currWriteBuffer < 512; currWriteBuffer += 32) {
// 2 unlock commands
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAAAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x5555);
// Write buffer load command at sector address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
writeWord_N64(0x2525);
// Write word count (minus 1) at sector address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
writeWord_N64(0x0F0F);
// Define variable before loop so we can use it later when reading the status register
word currWord;
for (byte currByte = 0; currByte < 32; currByte += 2) {
// Join two bytes into one word
currWord = ( ( sdBuffer[currWriteBuffer + currByte] & 0xFF ) << 8 ) | ( sdBuffer[currWriteBuffer + currByte + 1] & 0xFF );
// Load Buffer Words
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + currByte);
writeWord_N64(currWord);
}
// Write Buffer to Flash
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 30);
writeWord_N64(0x2929);
// Read the status register at last written address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 30);
word statusReg = readWord_N64();
while ((statusReg | 0x7F7F) != (currWord | 0x7F7F)) {
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 30);
statusReg = readWord_N64();
}
}
}
}
}
// Write Spansion S29GL256N flashrom using the 32 byte write buffer
void writeFlashBuffer_N64(unsigned long sectorSize, byte bufferSize) {
unsigned long flashBase = romBase;
for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) {
// Blink led
blinkLED();
// Spansion S29GL256N(32MB/64MB) with two flashrom chips
if ((currSector == 0x2000000) && (strcmp(cartID, "2201") == 0)) {
flashBase = romBase + 0x2000000;
}
// Write to flashrom
for (unsigned long currSdBuffer = 0; currSdBuffer < sectorSize; currSdBuffer += 512) {
// Fill SD buffer
myFile.read(sdBuffer, 512);
// Write 32 bytes at a time
for (int currWriteBuffer = 0; currWriteBuffer < 512; currWriteBuffer += bufferSize) {
// 2 unlock commands
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x55);
// Write buffer load command at sector address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
writeWord_N64(0x25);
// Write word count (minus 1) at sector address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
writeWord_N64((bufferSize / 2) - 1);
// Define variable before loop so we can use it later when reading the status register
word currWord;
for (byte currByte = 0; currByte < bufferSize; currByte += 2) {
// Join two bytes into one word
currWord = ( ( sdBuffer[currWriteBuffer + currByte] & 0xFF ) << 8 ) | ( sdBuffer[currWriteBuffer + currByte + 1] & 0xFF );
// Load Buffer Words
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + currByte);
writeWord_N64(currWord);
}
// Write Buffer to Flash
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + bufferSize - 2);
writeWord_N64(0x29);
// Read the status register at last written address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + bufferSize - 2);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != (currWord | 0xFF7F)) {
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + bufferSize - 2);
statusReg = readWord_N64();
}
}
}
}
}
// Write MX29LV640 flashrom without write buffer
void writeFlashrom_N64(unsigned long sectorSize) {
unsigned long flashBase = romBase;
for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) {
// Blink led
blinkLED();
// Macronix MX29LV640(8MB/16MB) with two flashrom chips
if (currSector == 0x800000) {
flashBase = romBase + 0x800000;
}
// Write to flashrom
for (unsigned long currSdBuffer = 0; currSdBuffer < sectorSize; currSdBuffer += 512) {
// Fill SD buffer
myFile.read(sdBuffer, 512);
for (int currByte = 0; currByte < 512; currByte += 2) {
// Join two bytes into one word
word currWord = ( ( sdBuffer[currByte] & 0xFF ) << 8 ) | ( sdBuffer[currByte + 1] & 0xFF );
// 2 unlock commands
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x55);
// Program command
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xA0);
// Write word
setAddress_N64(romBase + currSector + currSdBuffer + currByte);
writeWord_N64(currWord);
// Read the status register
setAddress_N64(romBase + currSector + currSdBuffer + currByte);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != (currWord | 0xFF7F)) {
setAddress_N64(romBase + currSector + currSdBuffer + currByte);
statusReg = readWord_N64();
}
}
}
}
}
unsigned long verifyFlashrom_N64() {
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
writeErrors = 0;
for (unsigned long currSector = 0; currSector < fileSize; currSector += 131072) {
// Blink led
blinkLED();
for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) {
// Fill SD buffer
myFile.read(sdBuffer, 512);
for (int currByte = 0; currByte < 512; currByte += 2) {
// Join two bytes into one word
word currWord = ( ( sdBuffer[currByte] & 0xFF ) << 8 ) | ( sdBuffer[currByte + 1] & 0xFF );
// Read flash
setAddress_N64(romBase + currSector + currSdBuffer + currByte);
// Compare both
if (readWord_N64() != currWord) {
writeErrors++;
// Abord if too many errors
if (writeErrors > 20) {
print_Msg(F("More than "));
// Close the file:
myFile.close();
return writeErrors;
}
}
}
}
}
// Close the file:
myFile.close();
return writeErrors;
}
else {
println_Msg(F("Can't open file"));
display_Update();
return 9999;
}
}
/******************************************
N64 Gameshark Flash Functions
*****************************************/
void flashGameshark_N64() {
// Check flashrom ID's
idGameshark_N64();
// Check for SST 29LE010 (0808)/SST 28LF040 (0404)/AMTEL AT29LV010A (3535)/SST 29EE010 (0707)
// !!!! This has been confirmed to allow reading of v1.07, v1.09, v2.0-2.21, v3.2-3.3 !!!!
// !!!! 29LE010/29EE010/AT29LV010A are very similar and can possibly be written to with this process. !!!!
// !!!! !!!!
// !!!! PROCEED AT YOUR OWN RISK !!!!
// !!!! !!!!
// !!!! SST 29EE010 may have a 5V requirement for writing however dumping works at 3V. As such it is not !!!!
// !!!! advised to write to a cart with this chip until further testing can be completed. !!!!
if (strcmp(flashid, "0808") == 0 || strcmp(flashid, "0404") == 0 || strcmp(flashid, "3535") == 0 || strcmp(flashid, "0707") == 0) {
backupGameshark_N64();
println_Msg("");
println_Msg(F("This will erase your"));
println_Msg(F("Gameshark cartridge"));
println_Msg(F("Attention: Use 3.3V!"));
println_Msg(F("Power OFF if Unsure!"));
2022-06-14 15:25:53 +02:00
println_Msg(F("Press Button..."));
display_Update();
wait();
// Launch file browser
filePath[0] = '\0';
sd.chdir("/");
fileBrowser(F("Select z64 file"));
display_Clear();
display_Update();
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
// Get rom size from file
fileSize = myFile.fileSize();
print_Msg(F("File size: "));
print_Msg(fileSize / 1024);
println_Msg(F("KB"));
display_Update();
// Compare file size to flashrom size
if (fileSize > 262144) {
print_Error(F("File too big"), true);
}
// SST 29LE010, chip erase not needed as this eeprom automaticly erases during the write cycle
eraseGameshark_N64();
// Write flashrom
print_Msg(F("Writing "));
println_Msg(filePath);
display_Update();
writeGameshark_N64();
// Close the file:
myFile.close();
// Verify
print_Msg(F("Verifying..."));
display_Update();
writeErrors = verifyGameshark_N64();
if (writeErrors == 0) {
println_Msg(F("OK"));
println_Msg(F(""));
println_Msg(F("Turn Cart Reader off now"));
display_Update();
while (1);
}
else {
print_Msg(writeErrors);
print_Msg(F(" bytes "));
print_Error(F("did not verify."), false);
}
}
else {
print_Error(F("Can't open file"), false);
}
}
// If the ID is unknown show error message
else {
print_Msg(F("ID: "));
println_Msg(flashid);
print_Error(F("Unknown flashrom"), false);
}
println_Msg(F("Press Button..."));
display_Update();
wait();
display_Clear();
display_Update();
}
//Test for SST 29LE010 or SST 28LF040 (0404) or AMTEL AT29LV010A (3535) or SST 29EE010 (0707)
void idGameshark_N64() {
//Send flashrom ID command
setAddress_N64(romBase + 0xAAAA);
writeWord_N64(0xAAAA);
setAddress_N64(romBase + 0x5554);
writeWord_N64(0x5555);
setAddress_N64(romBase + 0xAAAA);
writeWord_N64(0x9090);
setAddress_N64(romBase);
// Read 1 byte vendor ID
readWord_N64();
// Read 2 bytes flashrom ID
sprintf(flashid, "%04X", readWord_N64());
// Reset flashrom
resetGameshark_N64();
}
//Reset ST29LE010
void resetGameshark_N64() {
// Send reset Command
setAddress_N64(romBase + 0xAAAA);
writeWord_N64(0xAAAA);
setAddress_N64(romBase + 0x5554);
writeWord_N64(0x5555);
setAddress_N64(romBase + 0xAAAA);
writeWord_N64(0xF0F0);
delay(100);
}
// Read rom and save to the SD card
void backupGameshark_N64() {
// create a new folder
EEPROM_readAnything(0, foldern);
sprintf(fileName, "GS%d", foldern);
strcat(fileName, ".z64");
sd.mkdir("N64/ROM/Gameshark", true);
sd.chdir("N64/ROM/Gameshark");
display_Clear();
print_Msg(F("Saving "));
print_Msg(fileName);
println_Msg(F("..."));
display_Update();
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(F("SD Error"), true);
}
for (unsigned long currByte = romBase + 0xC00000; currByte < (romBase + 0xC00000 + 262144); currByte += 512) {
// Blink led
if (currByte % 16384 == 0)
blinkLED();
// Set the address for the next 512 bytes
setAddress_N64(currByte);
for (int c = 0; c < 512; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
myFile.write(sdBuffer, 512);
}
// Close the file:
myFile.close();
}
// Send chip erase to the two SST29LE010 inside the Gameshark
void eraseGameshark_N64() {
println_Msg(F("Erasing..."));
display_Update();
//Sending erase command according to datasheet
setAddress_N64(romBase + 0xAAAA);
writeWord_N64(0xAAAA);
setAddress_N64(romBase + 0x5554);
writeWord_N64(0x5555);
setAddress_N64(romBase + 0xAAAA);
writeWord_N64(0x8080);
setAddress_N64(romBase + 0xAAAA);
writeWord_N64(0xAAAA);
setAddress_N64(romBase + 0x5554);
writeWord_N64(0x5555);
setAddress_N64(romBase + 0xAAAA);
writeWord_N64(0x1010);
delay(20);
}
// Write Gameshark with 2x SST29LE010 Eeproms
void writeGameshark_N64() {
// Each 29LE010 has 1024 pages, each 128 bytes in size
for (unsigned long currPage = 0; currPage < fileSize / 2; currPage += 128) {
// Fill SD buffer with twice the amount since we flash 2 chips
myFile.read(sdBuffer, 256);
// Blink led
blinkLED();
//Send page write command to both flashroms
setAddress_N64(romBase + 0xAAAA);
writeWord_N64(0xAAAA);
setAddress_N64(romBase + 0x5554);
writeWord_N64(0x5555);
setAddress_N64(romBase + 0xAAAA);
writeWord_N64(0xA0A0);
// Write 1 page each, one flashrom gets the low byte, the other the high byte.
for (unsigned long currByte = 0; currByte < 256; currByte += 2) {
// Set address
setAddress_N64(romBase + 0xC00000 + (currPage * 2) + currByte);
// Join two bytes into one word
word currWord = ((sdBuffer[currByte] & 0xFF) << 8) | (sdBuffer[currByte + 1] & 0xFF);
// Send byte data
writeWord_N64(currWord);
}
delay(30);
}
}
unsigned long verifyGameshark_N64() {
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
writeErrors = 0;
for (unsigned long currSector = 0; currSector < fileSize; currSector += 131072) {
// Blink led
blinkLED();
for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) {
// Fill SD buffer
myFile.read(sdBuffer, 512);
for (int currByte = 0; currByte < 512; currByte += 2) {
// Join two bytes into one word
word currWord = ( ( sdBuffer[currByte] & 0xFF ) << 8 ) | ( sdBuffer[currByte + 1] & 0xFF );
// Read flash
setAddress_N64(romBase + 0xC00000 + currSector + currSdBuffer + currByte);
// Compare both
if (readWord_N64() != currWord) {
if ( (strcmp(flashid, "0808") == 0) && (currSector + currSdBuffer + currByte > 0x3F) && (currSector + currSdBuffer + currByte < 0x1080)) {
// Gameshark maps this area to the bootcode of the plugged in cartridge
}
else {
writeErrors++;
}
}
}
}
}
// Close the file:
myFile.close();
return writeErrors;
}
else {
println_Msg(F("Can't open file"));
display_Update();
return 9999;
}
}
#endif
//******************************************
// End of File
//******************************************