//****************************************** // NINTENDO 64 MODULE //****************************************** #ifdef enable_N64 /****************************************** Defines *****************************************/ // These two macros toggle the eepDataPin/ControllerDataPin between input and output // External 1K pull-up resistor from eepDataPin to VCC required // 0x10 = 00010000 -> Port H Pin 4 #define N64_HIGH DDRH &= ~0x10 #define N64_LOW DDRH |= 0x10 // Read the current state(0/1) of the eepDataPin #define N64_QUERY (PINH & 0x10) /****************************************** Variables *****************************************/ // Received N64 Eeprom data bits, 1 page bool tempBits[65]; int eepPages; // N64 Controller // 256 bits of received Controller data + 8 bit CRC char N64_raw_dump[265]; // Array that holds one Controller Pak block of 32 bytes data byte myBlock[33]; String rawStr = ""; // above char array read into a string struct { char stick_x; char stick_y; } N64_status; //stings that hold the buttons String button = "N/A"; String lastbutton = "N/A"; // Rom base address unsigned long romBase = 0x10000000; // Flashram type byte flashramType = 1; boolean MN63F81MPN = false; //ControllerTest bool quit = 1; #ifdef savesummarytotxt String CRC1 = ""; String CRC2 = ""; #endif /****************************************** Menu *****************************************/ // N64 start menu static const char n64MenuItem1[] PROGMEM = "Game Cartridge"; static const char n64MenuItem2[] PROGMEM = "Controller"; static const char n64MenuItem3[] PROGMEM = "Flash Repro"; static const char n64MenuItem4[] PROGMEM = "Flash Gameshark"; static const char n64MenuItem5[] PROGMEM = "Reset"; static const char* const menuOptionsN64[] PROGMEM = {n64MenuItem1, n64MenuItem2, n64MenuItem3, n64MenuItem4, n64MenuItem5}; // N64 controller menu items static const char N64ContMenuItem1[] PROGMEM = "Test Controller"; static const char N64ContMenuItem2[] PROGMEM = "Read ControllerPak"; static const char N64ContMenuItem3[] PROGMEM = "Write ControllerPak"; static const char N64ContMenuItem4[] PROGMEM = "Reset"; static const char* const menuOptionsN64Controller[] PROGMEM = {N64ContMenuItem1, N64ContMenuItem2, N64ContMenuItem3, N64ContMenuItem4}; // N64 cart menu items static const char N64CartMenuItem1[] PROGMEM = "Read ROM"; static const char N64CartMenuItem2[] PROGMEM = "Read Save"; static const char N64CartMenuItem3[] PROGMEM = "Write Save"; static const char N64CartMenuItem4[] PROGMEM = "Force Savetype"; static const char N64CartMenuItem5[] PROGMEM = "Reset"; static const char* const menuOptionsN64Cart[] PROGMEM = {N64CartMenuItem1, N64CartMenuItem2, N64CartMenuItem3, N64CartMenuItem4, N64CartMenuItem5}; // N64 CRC32 error menu items static const char N64CRCMenuItem1[] PROGMEM = "No"; static const char N64CRCMenuItem2[] PROGMEM = "Yes and keep old"; static const char N64CRCMenuItem3[] PROGMEM = "Yes and delete old"; static const char N64CRCMenuItem4[] PROGMEM = "Reset"; static const char* const menuOptionsN64CRC[] PROGMEM = {N64CRCMenuItem1, N64CRCMenuItem2, N64CRCMenuItem3, N64CRCMenuItem4}; // Rom menu static const char N64RomItem1[] PROGMEM = "4 MB"; static const char N64RomItem2[] PROGMEM = "8 MB"; static const char N64RomItem3[] PROGMEM = "12 MB"; static const char N64RomItem4[] PROGMEM = "16 MB"; static const char N64RomItem5[] PROGMEM = "32 MB"; static const char N64RomItem6[] PROGMEM = "64 MB"; static const char* const romOptionsN64[] PROGMEM = {N64RomItem1, N64RomItem2, N64RomItem3, N64RomItem4, N64RomItem5, N64RomItem6}; // Save menu static const char N64SaveItem1[] PROGMEM = "None"; static const char N64SaveItem2[] PROGMEM = "4K EEPROM"; static const char N64SaveItem3[] PROGMEM = "16K EEPROM"; static const char N64SaveItem4[] PROGMEM = "SRAM"; static const char N64SaveItem5[] PROGMEM = "FLASH"; static const char* const saveOptionsN64[] PROGMEM = {N64SaveItem1, N64SaveItem2, N64SaveItem3, N64SaveItem4, N64SaveItem5}; // Repro write buffer menu static const char N64BufferItem1[] PROGMEM = "No buffer"; static const char N64BufferItem2[] PROGMEM = "32 Byte"; static const char N64BufferItem3[] PROGMEM = "64 Byte"; static const char N64BufferItem4[] PROGMEM = "128 Byte"; static const char* const bufferOptionsN64[] PROGMEM = {N64BufferItem1, N64BufferItem2, N64BufferItem3, N64BufferItem4}; // Repro sector size menu static const char N64SectorItem1[] PROGMEM = "8 KB"; static const char N64SectorItem2[] PROGMEM = "32 KB"; static const char N64SectorItem3[] PROGMEM = "64 KB"; static const char N64SectorItem4[] PROGMEM = "128 KB"; static const char* const sectorOptionsN64[] PROGMEM = {N64SectorItem1, N64SectorItem2, N64SectorItem3, N64SectorItem4}; // N64 start menu void n64Menu() { // create menu with title and 5 options to choose from unsigned char n64Dev; // Copy menuOptions out of progmem convertPgm(menuOptionsN64, 5); n64Dev = question_box(F("Select N64 device"), menuOptions, 5, 0); // wait for user choice to come back from the question box menu switch (n64Dev) { case 0: display_Clear(); display_Update(); setup_N64_Cart(); printCartInfo_N64(); mode = mode_N64_Cart; break; case 1: display_Clear(); display_Update(); setup_N64_Controller(); mode = mode_N64_Controller; break; case 2: display_Clear(); display_Update(); setup_N64_Cart(); flashRepro_N64(); printCartInfo_N64(); mode = mode_N64_Cart; break; case 3: display_Clear(); display_Update(); setup_N64_Cart(); flashGameshark_N64(); printCartInfo_N64(); mode = mode_N64_Cart; break; case 4: resetArduino(); break; } } // N64 Controller Menu void n64ControllerMenu() { // create menu with title and 4 options to choose from unsigned char mainMenu; // Copy menuOptions out of progmem convertPgm(menuOptionsN64Controller, 4); mainMenu = question_box(F("N64 Controller"), menuOptions, 4, 0); // wait for user choice to come back from the question box menu switch (mainMenu) { case 0: resetController(); display_Clear(); display_Update(); #if defined(enable_OLED) controllerTest_OLED(); #elif defined(enable_LCD) controllerTest_LCD(); #elif defined(enable_serial) controllerTest_Serial(); #endif quit = 1; break; case 1: resetController(); checkController(); display_Clear(); display_Update(); readMPK(); verifyCRC(); validateMPK(); println_Msg(F("")); println_Msg(F("Press Button...")); display_Update(); wait(); break; case 2: resetController(); checkController(); display_Clear(); display_Update(); // Change to root filePath[0] = '\0'; sd.chdir("/"); // Launch file browser fileBrowser(F("Select mpk file")); display_Clear(); display_Update(); writeMPK(); delay(500); verifyMPK(); println_Msg(F("")); println_Msg(F("Press Button...")); display_Update(); wait(); break; case 3: resetArduino(); break; } } // N64 Cartridge Menu void n64CartMenu() { // create menu with title and 4 options to choose from unsigned char mainMenu; // Copy menuOptions out of progmem convertPgm(menuOptionsN64Cart, 5); mainMenu = question_box(F("N64 Cart Reader"), menuOptions, 5, 0); // wait for user choice to come back from the question box menu switch (mainMenu) { case 0: sd.chdir("/"); readRom_N64(); break; case 1: sd.chdir("/"); display_Clear(); if (saveType == 1) { println_Msg(F("Reading SRAM...")); display_Update(); readSram(32768, 1); } else if (saveType == 4) { getFramType(); println_Msg(F("Reading FLASH...")); display_Update(); readFram(flashramType); } else if ((saveType == 5) || (saveType == 6)) { println_Msg(F("Reading EEPROM...")); display_Update(); #ifdef clockgen_installed readEeprom(); #else readEeprom_CLK(); #endif } else { print_Error(F("Savetype Error"), false); } println_Msg(F("")); println_Msg(F("Press Button...")); display_Update(); wait(); break; case 2: filePath[0] = '\0'; sd.chdir("/"); if (saveType == 1) { // Launch file browser fileBrowser(F("Select sra file")); display_Clear(); writeSram(32768); writeErrors = verifySram(32768, 1); if (writeErrors == 0) { println_Msg(F("SRAM verified OK")); display_Update(); } else { print_Msg(F("Error: ")); print_Msg(writeErrors); println_Msg(F(" bytes ")); print_Error(F("did not verify."), false); } } else if (saveType == 4) { // Launch file browser fileBrowser(F("Select fla file")); display_Clear(); getFramType(); writeFram(flashramType); print_Msg(F("Verifying...")); display_Update(); writeErrors = verifyFram(flashramType); if (writeErrors == 0) { println_Msg(F("OK")); display_Update(); } else { println_Msg(""); print_Msg(F("Error: ")); print_Msg(writeErrors); println_Msg(F(" bytes ")); print_Error(F("did not verify."), false); } } else if ((saveType == 5) || (saveType == 6)) { // Launch file browser fileBrowser(F("Select eep file")); display_Clear(); #ifdef clockgen_installed writeEeprom(); writeErrors = verifyEeprom(); #else writeEeprom_CLK(); writeErrors = verifyEeprom_CLK(); #endif if (writeErrors == 0) { println_Msg(F("EEPROM verified OK")); display_Update(); } else { print_Msg(F("Error: ")); print_Msg(writeErrors); println_Msg(F(" bytes ")); print_Error(F("did not verify."), false); } } else { display_Clear(); print_Error(F("Save Type Error"), false); } println_Msg(F("Press Button...")); display_Update(); wait(); break; case 3: // create submenu with title and 6 options to choose from unsigned char N64SaveMenu; // Copy menuOptions out of progmem convertPgm(saveOptionsN64, 5); N64SaveMenu = question_box(F("Select save type"), menuOptions, 5, 0); // wait for user choice to come back from the question box menu switch (N64SaveMenu) { case 0: // None saveType = 0; break; case 1: // 4K EEPROM saveType = 5; eepPages = 64; break; case 2: // 16K EEPROM saveType = 6; eepPages = 256; break; case 3: // SRAM saveType = 1; break; case 4: // FLASHRAM saveType = 4; break; } break; case 4: resetArduino(); break; } } /****************************************** Setup *****************************************/ void setup_N64_Controller() { // Output a low signal PORTH &= ~(1 << 4); // Set Controller Data Pin(PH4) to Input DDRH &= ~(1 << 4); } void setup_N64_Cart() { // Set Address Pins to Output and set them low //A0-A7 DDRF = 0xFF; PORTF = 0x00; //A8-A15 DDRK = 0xFF; PORTK = 0x00; // Set Control Pins to Output RESET(PH0) WR(PH5) RD(PH6) aleL(PC0) aleH(PC1) DDRH |= (1 << 0) | (1 << 5) | (1 << 6); DDRC |= (1 << 0) | (1 << 1); // Pull RESET(PH0) low until we are ready PORTH &= ~(1 << 0); // Output a high signal on WR(PH5) RD(PH6), pins are active low therefore everything is disabled now PORTH |= (1 << 5) | (1 << 6); // Pull aleL(PC0) low and aleH(PC1) high PORTC &= ~(1 << 0); PORTC |= (1 << 1); #ifdef clockgen_installed // Adafruit Clock Generator initializeClockOffset(); if (!i2c_found) { display_Clear(); print_Error(F("Clock Generator not found"), true); } // Set Eeprom clock to 2Mhz clockgen.set_freq(200000000ULL, SI5351_CLK1); // Start outputting Eeprom clock clockgen.output_enable(SI5351_CLK1, 1); // Eeprom clock #else // Set Eeprom Clock Pin(PH1) to Output DDRH |= (1 << 1); // Output a high signal PORTH |= (1 << 1); #endif // Set Eeprom Data Pin(PH4) to Input DDRH &= ~(1 << 4); // Activate Internal Pullup Resistors //PORTH |= (1 << 4); // Set sram base address sramBase = 0x08000000; #ifdef clockgen_installed // Wait for clock generator clockgen.update_status(); #endif // Wait until all is stable delay(300); // Pull RESET(PH0) high to start eeprom PORTH |= (1 << 0); } /****************************************** Low level functions *****************************************/ // Switch Cartridge address/data pins to write void adOut_N64() { //A0-A7 DDRF = 0xFF; PORTF = 0x00; //A8-A15 DDRK = 0xFF; PORTK = 0x00; } // Switch Cartridge address/data pins to read void adIn_N64() { //A0-A7 DDRF = 0x00; //A8-A15 DDRK = 0x00; //Enable internal pull-up resistors //PORTF = 0xFF; //PORTK = 0xFF; } // Set Cartridge address void setAddress_N64(unsigned long myAddress) { // Set address pins to output adOut_N64(); // Split address into two words word myAdrLowOut = myAddress & 0xFFFF; word myAdrHighOut = myAddress >> 16; // Switch WR(PH5) RD(PH6) ale_L(PC0) ale_H(PC1) to high (since the pins are active low) PORTH |= (1 << 5) | (1 << 6); PORTC |= (1 << 1); __asm__("nop\n\t"); PORTC |= (1 << 0); // Output high part to address pins PORTF = myAdrHighOut & 0xFF; PORTK = (myAdrHighOut >> 8) & 0xFF; // Leave ale_H high for additional 62.5ns __asm__("nop\n\t"); // Pull ale_H(PC1) low PORTC &= ~(1 << 1); // Output low part to address pins PORTF = myAdrLowOut & 0xFF; PORTK = (myAdrLowOut >> 8) & 0xFF; // Leave ale_L high for ~125ns __asm__("nop\n\t""nop\n\t"); // Pull ale_L(PC0) low PORTC &= ~(1 << 0); // Wait ~600ns just to be sure address is set __asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t"); // Set data pins to input adIn_N64(); } // Read one word out of the cartridge word readWord_N64() { // Pull read(PH6) low PORTH &= ~(1 << 6); // Wait ~310ns __asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t"); // Join bytes from PINF and PINK into a word word tempWord = ( ( PINK & 0xFF ) << 8 ) | ( PINF & 0xFF ); // Pull read(PH6) high PORTH |= (1 << 6); // Wait 62.5ns __asm__("nop\n\t"); return tempWord; } // Write one word to data pins of the cartridge void writeWord_N64(word myWord) { // Set address pins to output adOut_N64(); // Output word to AD0-AD15 PORTF = myWord & 0xFF; PORTK = (myWord >> 8) & 0xFF; // Wait ~62.5ns __asm__("nop\n\t"); // Pull write(PH5) low PORTH &= ~(1 << 5); // Wait ~310ns __asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t"); // Pull write(PH5) high PORTH |= (1 << 5); // Wait ~125ns __asm__("nop\n\t""nop\n\t"); // Set data pins to input adIn_N64(); } /****************************************** N64 Controller CRC Functions *****************************************/ static word addrCRC(word address) { // CRC table word xor_table[16] = { 0x0, 0x0, 0x0, 0x0, 0x0, 0x15, 0x1F, 0x0B, 0x16, 0x19, 0x07, 0x0E, 0x1C, 0x0D, 0x1A, 0x01 }; word crc = 0; // Make sure we have a valid address address &= ~0x1F; // Go through each bit in the address, and if set, xor the right value into the output for (int i = 15; i >= 5; i--) { // Is this bit set? if ( ((address >> i) & 0x1)) { crc ^= xor_table[i]; } } // Just in case crc &= 0x1F; // Create a new address with the CRC appended return address | crc; } static uint8_t dataCRC( uint8_t *data ) { uint8_t ret = 0; for ( int i = 0; i <= 32; i++ ) { for ( int j = 7; j >= 0; j-- ) { int tmp = 0; if ( ret & 0x80 ) { tmp = 0x85; } ret <<= 1; if ( i < 32 ) { if ( data[i] & (0x01 << j) ) { ret |= 0x1; } } ret ^= tmp; } } return ret; } /****************************************** N64 Controller Protocol Functions *****************************************/ void N64_send(unsigned char *buffer, char length) { // Send these bytes char bits; // This routine is very carefully timed by examining the assembly output. // Do not change any statements, it could throw the timings off // // We get 16 cycles per microsecond, which should be plenty, but we need to // be conservative. Most assembly ops take 1 cycle, but a few take 2 // // I use manually constructed for-loops out of gotos so I have more control // over the outputted assembly. I can insert nops where it was impossible // with a for loop asm volatile (";Starting outer for loop"); outer_loop: { asm volatile (";Starting inner for loop"); bits = 8; inner_loop: { // Starting a bit, set the line low asm volatile (";Setting line to low"); N64_LOW; // 1 op, 2 cycles asm volatile (";branching"); if (*buffer >> 7) { asm volatile (";Bit is a 1"); // 1 bit // remain low for 1us, then go high for 3us // nop block 1 asm volatile ("nop\nnop\nnop\nnop\nnop\n"); asm volatile (";Setting line to high"); N64_HIGH; // nop block 2 // we'll wait only 2us to sync up with both conditions // at the bottom of the if statement asm volatile ("nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" ); } else { asm volatile (";Bit is a 0"); // 0 bit // remain low for 3us, then go high for 1us // nop block 3 asm volatile ("nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\n"); asm volatile (";Setting line to high"); N64_HIGH; // wait for 1us asm volatile ("; end of conditional branch, need to wait 1us more before next bit"); } // end of the if, the line is high and needs to remain // high for exactly 16 more cycles, regardless of the previous // branch path asm volatile (";finishing inner loop body"); --bits; if (bits != 0) { // nop block 4 // this block is why a for loop was impossible asm volatile ("nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\n"); // rotate bits asm volatile (";rotating out bits"); *buffer <<= 1; goto inner_loop; } // fall out of inner loop } asm volatile (";continuing outer loop"); // In this case: the inner loop exits and the outer loop iterates, // there are /exactly/ 16 cycles taken up by the necessary operations. // So no nops are needed here (that was lucky!) --length; if (length != 0) { ++buffer; goto outer_loop; } // fall out of outer loop } } void N64_stop() { // send a single stop (1) bit // nop block 5 asm volatile ("nop\nnop\nnop\nnop\n"); N64_LOW; // wait 1 us, 16 cycles, then raise the line // 16-2=14 // nop block 6 asm volatile ("nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\n"); N64_HIGH; } void N64_get(word bitcount) { // listen for the expected bitcount/8 bytes of data back from the controller and // blast it out to the N64_raw_dump array, one bit per byte for extra speed. asm volatile (";Starting to listen"); unsigned char timeout; char *bitbin = N64_raw_dump; // Again, using gotos here to make the assembly more predictable and // optimization easier (please don't kill me) read_loop: timeout = 0x3f; // wait for line to go low while (N64_QUERY) { if (!--timeout) return; } // wait approx 2us and poll the line asm volatile ( "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" ); *bitbin = N64_QUERY; ++bitbin; --bitcount; if (bitcount == 0) return; // wait for line to go high again // it may already be high, so this should just drop through timeout = 0x3f; while (!N64_QUERY) { if (!--timeout) return; } goto read_loop; } /****************************************** N64 Controller Functions *****************************************/ void get_button() { // Command to send to the gamecube // The last bit is rumble, flip it to rumble // yes this does need to be inside the loop, the // array gets mutilated when it goes through N64_send unsigned char command[] = { 0x01 }; // Empty buffer for (word i = 0; i < 265; i++) { N64_raw_dump[i] = 0xFF; } // don't want interrupts getting in the way noInterrupts(); // send those 3 bytes N64_send(command, 1); N64_stop(); // read in 32bits of data and dump it to N64_raw_dump N64_get(32); // end of time sensitive code interrupts(); // The get_N64_status function sloppily dumps its data 1 bit per byte // into the get_status_extended char array. It's our job to go through // that and put each piece neatly into the struct N64_status int i; memset(&N64_status, 0, sizeof(N64_status)); // bits: joystick x value // These are 8 bit values centered at 0x80 (128) for (i = 0; i < 8; i++) { N64_status.stick_x |= N64_raw_dump[16 + i] ? (0x80 >> i) : 0; } for (i = 0; i < 8; i++) { N64_status.stick_y |= N64_raw_dump[24 + i] ? (0x80 >> i) : 0; } // read char array N64_raw_dump into string rawStr rawStr = ""; for (i = 0; i < 16; i++) { rawStr = rawStr + String(N64_raw_dump[i], DEC); } // Buttons (A,B,Z,S,DU,DD,DL,DR,0,0,L,R,CU,CD,CL,CR) if (rawStr.substring(0, 16) == "0000000000000000") { lastbutton = button; button = F("Press a button"); } else { for (int i = 0; i < 16; i++) { // seems to be 16, 8 or 4 depending on what pin is used if (N64_raw_dump[i] == 16) { switch (i) { case 7: button = F("D-Right"); break; case 6: button = F("D-Left"); break; case 5: button = F("D-Down"); break; case 4: button = F("D-Up"); break; case 3: button = F("START"); break; case 2: button = F("Z"); break; case 1: button = F("B"); break; case 0: button = F("A"); break; case 15: button = F("C-Right"); break; case 14: button = F("C-Left"); break; case 13: button = F("C-Down"); break; case 12: button = F("C-Up"); break; case 11: button = F("R"); break; case 10: button = F("L"); break; } } } } } /****************************************** N64 Controller Test *****************************************/ #ifdef enable_serial void controllerTest_Serial() { while (quit) { // Get Button and analog stick get_button(); // Print Button String buttonc = String("Button: " + String(button) + " "); Serial.print(buttonc); // Print Stick X Value String stickx = String("X: " + String(N64_status.stick_x, DEC) + " "); Serial.print(stickx); // Print Stick Y Value String sticky = String(" Y: " + String(N64_status.stick_y, DEC) + " "); Serial.println(sticky); if (button == "Press a button" && lastbutton == "Z") { // Quit Serial.println(""); quit = 0; } } } #endif #ifdef enable_LCD #define CENTER 64 // on which screens do we start int startscreen = 1; int test = 1; void printSTR(String st, int x, int y) { char buf[st.length() + 1]; if (x == CENTER) { x = 64 - (((st.length() - 5) / 2) * 4); } st.toCharArray(buf, st.length() + 1); display.drawStr(x, y, buf); } void nextscreen() { if (button == "Press a button" && lastbutton == "START") { // reset button lastbutton = "N/A"; display.clearDisplay(); if (startscreen != 4) startscreen = startscreen + 1; else { startscreen = 1; test = 1; } } else if (button == "Press a button" && lastbutton == "Z" && startscreen == 4) { // Quit quit = 0; } } void controllerTest_LCD() { int mode = 0; //name of the current displayed result String anastick = ""; // Graph int xax = 24; // midpoint x int yax = 24; // midpoint y int zax = 24; // size // variables to display test data of different sticks int upx = 0; int upy = 0; int uprightx = 0; int uprighty = 0; int rightx = 0; int righty = 0; int downrightx = 0; int downrighty = 0; int downx = 0; int downy = 0; int downleftx = 0; int downlefty = 0; int leftx = 0; int lefty = 0; int upleftx = 0; int uplefty = 0; // variables to save test data int bupx = 0; int bupy = 0; int buprightx = 0; int buprighty = 0; int brightx = 0; int brighty = 0; int bdownrightx = 0; int bdownrighty = 0; int bdownx = 0; int bdowny = 0; int bdownleftx = 0; int bdownlefty = 0; int bleftx = 0; int blefty = 0; int bupleftx = 0; int buplefty = 0; int results = 0; int prevStickX = 0; while (quit) { // Get Button and analog stick get_button(); switch (startscreen) { case 1: { delay(20); display.clearDisplay(); display.drawStr(32, 8, "Controller Test"); display.drawLine(0, 10, 128, 10); // Print Button printSTR(" " + button + " ", CENTER, 20); // Print Stick X Value String stickx = String("X: " + String(N64_status.stick_x, DEC) + " "); printSTR(stickx, 36, 38); // Print Stick Y Value String sticky = String("Y: " + String(N64_status.stick_y, DEC) + " "); printSTR(sticky, 74, 38); printSTR("(Continue with START)", 16, 55); //Update LCD display.updateDisplay(); // go to next screen nextscreen(); break; } case 2: { display.drawStr(36, 8, "Range Test"); display.drawLine(0, 9, 128, 9); if (mode == 0) { // Print Stick X Value String stickx = String("X:" + String(N64_status.stick_x, DEC) + " "); printSTR(stickx, 22 + 54, 26); // Print Stick Y Value String sticky = String("Y:" + String(N64_status.stick_y, DEC) + " "); printSTR(sticky, 22 + 54, 36); } // Draw Axis display.drawPixel(10 + xax, 12 + yax); display.drawPixel(10 + xax, 12 + yax - 80 / 4); display.drawPixel(10 + xax, 12 + yax + 80 / 4); display.drawPixel(10 + xax + 80 / 4, 12 + yax); display.drawPixel(10 + xax - 80 / 4, 12 + yax); // Draw corners display.drawPixel(10 + xax - 68 / 4, 12 + yax - 68 / 4); display.drawPixel(10 + xax + 68 / 4, 12 + yax + 68 / 4); display.drawPixel(10 + xax + 68 / 4, 12 + yax - 68 / 4); display.drawPixel(10 + xax - 68 / 4, 12 + yax + 68 / 4); //Draw Analog Stick if (mode == 1) { display.drawPixel(10 + xax + N64_status.stick_x / 4, 12 + yax - N64_status.stick_y / 4); //Update LCD display.updateDisplay(); } else { display.drawCircle(10 + xax + N64_status.stick_x / 4, 12 + yax - N64_status.stick_y / 4, 2); //Update LCD display.updateDisplay(); delay(20); display.clearDisplay(); } // switch mode if (button == "Press a button" && lastbutton == "Z") { if (mode == 0) { mode = 1; display.clearDisplay(); } else { mode = 0; display.clearDisplay(); } } // go to next screen nextscreen(); break; } case 3: { display.setDrawColor(0); display.drawPixel(22 + prevStickX, 40); display.setDrawColor(1); printSTR("Skipping Test", 34, 8); display.drawLine(0, 9, 128, 9); display.drawFrame(22 + 0, 15, 22 + 59, 21); if (N64_status.stick_x > 0) { display.drawLine(22 + N64_status.stick_x, 15, 22 + N64_status.stick_x, 35); display.drawPixel(22 + N64_status.stick_x, 40); prevStickX = N64_status.stick_x; } printSTR("Try to fill the box by", 22, 45); printSTR("slowly moving right", 22, 55); //Update LCD display.updateDisplay(); if (button == "Press a button" && lastbutton == "Z") { // reset button lastbutton = "N/A"; display.clearDisplay(); } // go to next screen nextscreen(); break; } case 4: { switch ( test ) { case 0: // Display results { switch (results) { case 0: { anastick = "YOURS"; upx = bupx; upy = bupy; uprightx = buprightx; uprighty = buprighty; rightx = brightx; righty = brighty; downrightx = bdownrightx; downrighty = bdownrighty; downx = bdownx; downy = bdowny; downleftx = bdownleftx; downlefty = bdownlefty; leftx = bleftx; lefty = blefty; upleftx = bupleftx; uplefty = buplefty; if (button == "Press a button" && lastbutton == "A") { // reset button lastbutton = "N/A"; results = 1; } break; } case 1: { anastick = "ORIG"; upx = 1; upy = 84; uprightx = 67; uprighty = 68; rightx = 83; righty = -2; downrightx = 67; downrighty = -69; downx = 3; downy = -85; downleftx = -69; downlefty = -70; leftx = -85; lefty = 0; upleftx = -68; uplefty = 68; if (button == "Press a button" && lastbutton == "A") { // reset button lastbutton = "N/A"; results = 0; } break; } } //results delay(20); display.clearDisplay(); printSTR(anastick, 22 + 50, 15); display.drawStr(22 + 50, 25, "U:"); printSTR(String(upy), 100, 25); display.drawStr(22 + 50, 35, "D:"); printSTR(String(downy), 100, 35); display.drawStr(22 + 50, 45, "L:"); printSTR(String(leftx), 100, 45); display.drawStr(22 + 50, 55, "R:"); printSTR(String(rightx), 100, 55); display.drawLine(xax + upx / 4, yax - upy / 4, xax + uprightx / 4, yax - uprighty / 4); display.drawLine(xax + uprightx / 4, yax - uprighty / 4, xax + rightx / 4, yax - righty / 4); display.drawLine(xax + rightx / 4, yax - righty / 4, xax + downrightx / 4, yax - downrighty / 4); display.drawLine(xax + downrightx / 4, yax - downrighty / 4, xax + downx / 4, yax - downy / 4); display.drawLine(xax + downx / 4, yax - downy / 4, xax + downleftx / 4, yax - downlefty / 4); display.drawLine(xax + downleftx / 4, yax - downlefty / 4, xax + leftx / 4, yax - lefty / 4); display.drawLine(xax + leftx / 4, yax - lefty / 4, xax + upleftx / 4, yax - uplefty / 4); display.drawLine(xax + upleftx / 4, yax - uplefty / 4, xax + upx / 4, yax - upy / 4); display.drawPixel(xax, yax); //Update LCD display.updateDisplay(); break; } //display results case 1:// +y Up { display.drawStr(34, 26, "Hold Stick Up"); display.drawStr(34, 34, "then press A"); //display.drawBitmap(110, 60, ana1); if (button == "Press a button" && lastbutton == "A") { bupx = N64_status.stick_x; bupy = N64_status.stick_y; // reset button lastbutton = "N/A"; display.clearDisplay(); test = 2; } break; } case 2:// +y+x Up-Right { display.drawStr(42, 26, "Up-Right" ); //display.drawBitmap(110, 60, ana2); if (button == "Press a button" && lastbutton == "A") { buprightx = N64_status.stick_x; buprighty = N64_status.stick_y; test = 3; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 3:// +x Right { display.drawStr(50, 26, "Right" ); //display.drawBitmap(110, 60, ana3); if (button == "Press a button" && lastbutton == "A") { brightx = N64_status.stick_x; brighty = N64_status.stick_y; test = 4; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 4:// -y+x Down-Right { display.drawStr(38, 26, "Down-Right"); //display.drawBitmap(110, 60, ana4); if (button == "Press a button" && lastbutton == "A") { bdownrightx = N64_status.stick_x; bdownrighty = N64_status.stick_y; test = 5; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 5:// -y Down { display.drawStr(49, 26, "Down"); //display.drawBitmap(110, 60, ana5); if (button == "Press a button" && lastbutton == "A") { bdownx = N64_status.stick_x; bdowny = N64_status.stick_y; test = 6; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 6:// -y-x Down-Left { display.drawStr(39, 26, "Down-Left"); //display.drawBitmap(110, 60, ana6); if (button == "Press a button" && lastbutton == "A") { bdownleftx = N64_status.stick_x; bdownlefty = N64_status.stick_y; test = 7; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 7:// -x Left { display.drawStr(51, 26, "Left" ); //display.drawBitmap(110, 60, ana7); if (button == "Press a button" && lastbutton == "A") { bleftx = N64_status.stick_x; blefty = N64_status.stick_y; test = 8; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 8:// +y+x Up-Left { display.drawStr(43, 26, "Up-Left"); //display.drawBitmap(110, 60, ana8); if (button == "Press a button" && lastbutton == "A") { bupleftx = N64_status.stick_x; buplefty = N64_status.stick_y; test = 0; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } } if (test != 0) { display.drawStr(38, 8, "Benchmark"); display.drawLine(0, 9, 128, 9); } display.updateDisplay(); // go to next screen nextscreen(); break; } } } } #endif #ifdef enable_OLED #define CENTER 64 void oledPrint(const char string[], int x, int y) { if (x == CENTER) x = 64 - (strlen(string) / 2) * 6; display.setCursor(x, y); display.print(string); } void oledPrint(int number, int x, int y) { display.setCursor(x, y); display.print(number); } void printSTR(String st, int x, int y) { char buf[st.length() + 1]; st.toCharArray(buf, st.length() + 1); oledPrint(buf, x, y); } void controllerTest_OLED() { // on which screens do we start int startscreen = 1; int mode = 0; int test = 1; //name of the current displayed result String anastick = ""; int prevStickX = 0; // Graph int xax = 22 + 24; // midpoint x int yax = 24; // midpoint y int zax = 24; // size // variables to display test data of different sticks int upx = 0; int upy = 0; int uprightx = 0; int uprighty = 0; int rightx = 0; int righty = 0; int downrightx = 0; int downrighty = 0; int downx = 0; int downy = 0; int downleftx = 0; int downlefty = 0; int leftx = 0; int lefty = 0; int upleftx = 0; int uplefty = 0; // variables to save test data int bupx = 0; int bupy = 0; int buprightx = 0; int buprighty = 0; int brightx = 0; int brighty = 0; int bdownrightx = 0; int bdownrighty = 0; int bdownx = 0; int bdowny = 0; int bdownleftx = 0; int bdownlefty = 0; int bleftx = 0; int blefty = 0; int bupleftx = 0; int buplefty = 0; int results = 0; while (quit) { // Get Button and analog stick get_button(); switch (startscreen) { case 1: { display.clearDisplay(); oledPrint("Button Test", CENTER, 0); display.drawLine(22 + 0, 10, 22 + 84, 10, WHITE); // Print Button printSTR(" " + button + " ", CENTER, 20); // Print Stick X Value String stickx = String("X: " + String(N64_status.stick_x, DEC) + " "); printSTR(stickx, 22 + 0, 38); // Print Stick Y Value String sticky = String("Y: " + String(N64_status.stick_y, DEC) + " "); printSTR(sticky, 22 + 60, 38); printSTR("(Continue with START)", 0, 55); //Update LCD display.display(); // go to next screen if (button == "Press a button" && lastbutton == "START") { // reset button lastbutton = "N/A"; display.clearDisplay(); if (startscreen != 4) startscreen = startscreen + 1; else { startscreen = 1; test = 1; } } else if (button == "Press a button" && lastbutton == "Z" && startscreen == 4) { // Quit quit = 0; } break; } case 2: { oledPrint("Range Test", CENTER, 55); display.drawLine(22 + 0, 50, 22 + 84, 50, WHITE); // Print Stick X Value String stickx = String("X:" + String(N64_status.stick_x, DEC) + " "); printSTR(stickx, 22 + 54, 8); // Print Stick Y Value String sticky = String("Y:" + String(N64_status.stick_y, DEC) + " "); printSTR(sticky, 22 + 54, 18); // Draw Axis //display.drawLine(xax - zax, yax, xax + zax, yax, WHITE); //display.drawLine(xax, yax - zax, xax, yax + zax, WHITE); display.drawPixel(xax, yax, WHITE); display.drawPixel(xax, yax - 80 / 4, WHITE); display.drawPixel(xax, yax + 80 / 4, WHITE); display.drawPixel(xax + 80 / 4, yax, WHITE); display.drawPixel(xax - 80 / 4, yax, WHITE); // Draw corners display.drawPixel(xax - 68 / 4, yax - 68 / 4, WHITE); display.drawPixel(xax + 68 / 4, yax + 68 / 4, WHITE); display.drawPixel(xax + 68 / 4, yax - 68 / 4, WHITE); display.drawPixel(xax - 68 / 4, yax + 68 / 4, WHITE); //Draw Analog Stick if (mode == 1) { display.drawPixel(xax + N64_status.stick_x / 4, yax - N64_status.stick_y / 4, WHITE); //Update LCD display.display(); } else { display.drawCircle(xax + N64_status.stick_x / 4, yax - N64_status.stick_y / 4, 2, WHITE); //Update LCD display.display(); display.clearDisplay(); } // switch mode if (button == "Press a button" && lastbutton == "Z") { if (mode == 0) { mode = 1; display.clearDisplay(); } else { mode = 0; display.clearDisplay(); } } // go to next screen if (button == "Press a button" && lastbutton == "START") { // reset button lastbutton = "N/A"; display.clearDisplay(); if (startscreen != 4) startscreen = startscreen + 1; else { startscreen = 1; test = 1; } } else if (button == "Press a button" && lastbutton == "Z" && startscreen == 4) { // Quit quit = 0; } break; } case 3: { display.drawPixel(22 + prevStickX, 40, BLACK); oledPrint("Skipping Test", CENTER, 0); display.drawLine(22 + 0, 10, 22 + 83, 10, WHITE); display.drawRect(22 + 0, 15, 22 + 59, 21, WHITE); if (N64_status.stick_x > 0) { display.drawLine(22 + N64_status.stick_x, 15, 22 + N64_status.stick_x, 35, WHITE); display.drawPixel(22 + N64_status.stick_x, 40, WHITE); prevStickX = N64_status.stick_x; } printSTR("Try to fill box by", 0, 45); printSTR("slowly moving right", 0, 55); //Update LCD display.display(); if (button == "Press a button" && lastbutton == "Z") { // reset button lastbutton = "N/A"; display.clearDisplay(); } // go to next screen if (button == "Press a button" && lastbutton == "START") { // reset button lastbutton = "N/A"; display.clearDisplay(); if (startscreen != 4) startscreen = startscreen + 1; else { startscreen = 1; test = 1; } } else if (button == "Press a button" && lastbutton == "Z" && startscreen == 4) { // Quit quit = 0; } break; } case 4: { switch ( test ) { case 0: // Display results { switch (results) { case 0: { anastick = "YOURS"; upx = bupx; upy = bupy; uprightx = buprightx; uprighty = buprighty; rightx = brightx; righty = brighty; downrightx = bdownrightx; downrighty = bdownrighty; downx = bdownx; downy = bdowny; downleftx = bdownleftx; downlefty = bdownlefty; leftx = bleftx; lefty = blefty; upleftx = bupleftx; uplefty = buplefty; if (button == "Press a button" && lastbutton == "A") { // reset button lastbutton = "N/A"; results = 1; } break; } case 1: { anastick = "ORIG"; upx = 1; upy = 84; uprightx = 67; uprighty = 68; rightx = 83; righty = -2; downrightx = 67; downrighty = -69; downx = 3; downy = -85; downleftx = -69; downlefty = -70; leftx = -85; lefty = 0; upleftx = -68; uplefty = 68; if (button == "Press a button" && lastbutton == "A") { // reset button lastbutton = "N/A"; results = 0; } break; } } //results display.clearDisplay(); printSTR(anastick, 22 + 50, 0); oledPrint("U:", 22 + 50, 10); oledPrint(upy, 100, 10); oledPrint("D:", 22 + 50, 20); oledPrint(downy, 100, 20); oledPrint("L:", 22 + 50, 30); oledPrint(leftx, 100, 30); oledPrint("R:", 22 + 50, 40); oledPrint(rightx, 100, 40); display.drawLine(xax + upx / 4, yax - upy / 4, xax + uprightx / 4, yax - uprighty / 4, WHITE); display.drawLine(xax + uprightx / 4, yax - uprighty / 4, xax + rightx / 4, yax - righty / 4, WHITE); display.drawLine(xax + rightx / 4, yax - righty / 4, xax + downrightx / 4, yax - downrighty / 4, WHITE); display.drawLine(xax + downrightx / 4, yax - downrighty / 4, xax + downx / 4, yax - downy / 4, WHITE); display.drawLine(xax + downx / 4, yax - downy / 4, xax + downleftx / 4, yax - downlefty / 4, WHITE); display.drawLine(xax + downleftx / 4, yax - downlefty / 4, xax + leftx / 4, yax - lefty / 4, WHITE); display.drawLine(xax + leftx / 4, yax - lefty / 4, xax + upleftx / 4, yax - uplefty / 4, WHITE); display.drawLine(xax + upleftx / 4, yax - uplefty / 4, xax + upx / 4, yax - upy / 4, WHITE); display.drawPixel(xax, yax, WHITE); printSTR("(Quit with Z)", 25, 55); //Update LCD display.display(); break; } //display results case 1:// +y Up { oledPrint("Hold Stick Up", CENTER, 18); oledPrint("then press A", CENTER, 28); //myOLED.drawBitmap(110, 60, ana1); if (button == "Press a button" && lastbutton == "A") { bupx = N64_status.stick_x; bupy = N64_status.stick_y; // reset button lastbutton = "N/A"; display.clearDisplay(); test = 2; } break; } case 2:// +y+x Up-Right { oledPrint("Up-Right", CENTER, 22 ); //myOLED.drawBitmap(110, 60, ana2); if (button == "Press a button" && lastbutton == "A") { buprightx = N64_status.stick_x; buprighty = N64_status.stick_y; test = 3; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 3:// +x Right { oledPrint("Right", CENTER, 22 ); //myOLED.drawBitmap(110, 60, ana3); if (button == "Press a button" && lastbutton == "A") { brightx = N64_status.stick_x; brighty = N64_status.stick_y; test = 4; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 4:// -y+x Down-Right { oledPrint("Down-Right", CENTER, 22 ); //myOLED.drawBitmap(110, 60, ana4); if (button == "Press a button" && lastbutton == "A") { bdownrightx = N64_status.stick_x; bdownrighty = N64_status.stick_y; test = 5; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 5:// -y Down { oledPrint("Down", CENTER, 22 ); //myOLED.drawBitmap(110, 60, ana5); if (button == "Press a button" && lastbutton == "A") { bdownx = N64_status.stick_x; bdowny = N64_status.stick_y; test = 6; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 6:// -y-x Down-Left { oledPrint("Down-Left", CENTER, 22 ); //myOLED.drawBitmap(110, 60, ana6); if (button == "Press a button" && lastbutton == "A") { bdownleftx = N64_status.stick_x; bdownlefty = N64_status.stick_y; test = 7; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 7:// -x Left { oledPrint("Left", CENTER, 22 ); //myOLED.drawBitmap(110, 60, ana7); if (button == "Press a button" && lastbutton == "A") { bleftx = N64_status.stick_x; blefty = N64_status.stick_y; test = 8; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 8:// +y+x Up-Left { oledPrint("Up-Left", CENTER, 22); //myOLED.drawBitmap(110, 60, ana8); if (button == "Press a button" && lastbutton == "A") { bupleftx = N64_status.stick_x; buplefty = N64_status.stick_y; test = 0; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } } if (test != 0) { oledPrint("Benchmark", CENTER, 0); display.drawLine(22 + 0, 9, 22 + 83, 9, WHITE); printSTR("(Quit with Z)", 25, 55); } display.display(); // go to next screen if (button == "Press a button" && lastbutton == "START") { // reset button lastbutton = "N/A"; display.clearDisplay(); if (startscreen != 4) startscreen = startscreen + 1; else { startscreen = 1; test = 1; } } else if (button == "Press a button" && lastbutton == "Z" && startscreen == 4) { // Quit quit = 0; } break; } } } } #endif /****************************************** N64 Controller Pak Functions (connected via Controller) *****************************************/ // Reset the controller void resetController() { // Reset controller unsigned char command[] = {0xFF}; // don't want interrupts getting in the way noInterrupts(); // Send command N64_send(command, 1); // Send stop N64_stop(); // Enable interrupts interrupts(); delay(100); } // read 3 bytes from controller void checkController() { display_Clear(); // Check if line is HIGH if (!N64_QUERY) print_Error(F("Data line LOW"), true); // Send status command unsigned char command[] = {0x0}; // Empty buffer for (word i = 0; i < 265; i++) { N64_raw_dump[i] = 0xFF; } // don't want interrupts getting in the way noInterrupts(); N64_send(command, 1); N64_stop(); // read in data N64_get(32); // end of time sensitive code interrupts(); // Empty N64_raw_dump into myBlock for (word i = 0; i < 32; i += 8) { boolean byteFlipped[9]; // Flip byte order byteFlipped[0] = N64_raw_dump[i + 7]; byteFlipped[1] = N64_raw_dump[i + 6]; byteFlipped[2] = N64_raw_dump[i + 5]; byteFlipped[3] = N64_raw_dump[i + 4]; byteFlipped[4] = N64_raw_dump[i + 3]; byteFlipped[5] = N64_raw_dump[i + 2]; byteFlipped[6] = N64_raw_dump[i + 1]; byteFlipped[7] = N64_raw_dump[i + 0]; // Join bits into one byte unsigned char myByte = 0; for (byte j = 0; j < 8; ++j) { if (byteFlipped[j]) { myByte |= 1 << j; } } if ((i == 0) && (myByte != 0x05)) print_Error(F("Controller not found"), true); if ((i == 16) && (myByte != 0x01)) print_Error(F("Controller Pak not found"), true); if ((i == 16) && (myByte == 0x04)) print_Error(F("CRC Error"), true); } } // read 32bytes from controller pak and calculate CRC byte readBlock(word myAddress) { // Calculate the address CRC word myAddressCRC = addrCRC(myAddress); // Read Controller Pak command unsigned char command[] = {0x02}; // Address Command unsigned char addressHigh[] = {(unsigned char)(myAddressCRC >> 8)}; unsigned char addressLow[] = {(unsigned char)(myAddressCRC & 0xff)}; // Empty buffer for (word i = 0; i < 265; i++) { N64_raw_dump[i] = 0xFF; } // don't want interrupts getting in the way noInterrupts(); // send those 3 bytes N64_send(command, 1); N64_send(addressHigh, 1); N64_send(addressLow, 1); N64_stop(); // read in 32 byte data + 1 byte crc N64_get(264); // end of time sensitive code interrupts(); // Empty N64_raw_dump into myBlock for (word i = 0; i < 256; i += 8) { boolean byteFlipped[9]; // Flip byte order byteFlipped[0] = N64_raw_dump[i + 7]; byteFlipped[1] = N64_raw_dump[i + 6]; byteFlipped[2] = N64_raw_dump[i + 5]; byteFlipped[3] = N64_raw_dump[i + 4]; byteFlipped[4] = N64_raw_dump[i + 3]; byteFlipped[5] = N64_raw_dump[i + 2]; byteFlipped[6] = N64_raw_dump[i + 1]; byteFlipped[7] = N64_raw_dump[i + 0]; // Join bits into one byte unsigned char myByte = 0; for (byte j = 0; j < 8; ++j) { if (byteFlipped[j]) { myByte |= 1 << j; } } // Save byte into block array myBlock[i / 8] = myByte; } // Get CRC of block send boolean byteFlipped[9]; // Flip byte order byteFlipped[0] = N64_raw_dump[256 + 7]; byteFlipped[1] = N64_raw_dump[256 + 6]; byteFlipped[2] = N64_raw_dump[256 + 5]; byteFlipped[3] = N64_raw_dump[256 + 4]; byteFlipped[4] = N64_raw_dump[256 + 3]; byteFlipped[5] = N64_raw_dump[256 + 2]; byteFlipped[6] = N64_raw_dump[256 + 1]; byteFlipped[7] = N64_raw_dump[256 + 0]; unsigned char blockCRC = 0; for (byte k = 0; k < 8; ++k) { if (byteFlipped[k]) { blockCRC |= 1 << k; } } // Calculate CRC of block received unsigned char myCRC = dataCRC(&myBlock[0]); // Compare if (blockCRC != myCRC) { display_Clear(); // Close the file: myFile.close(); println_Msg(F("Controller Pak was")); println_Msg(F("not dumped due to a")); print_Error(F("protocol CRC error"), true); } return blockCRC; } // reads the MPK file to the sd card void readMPK() { // Change to root sd.chdir("/"); // Make MPK directory sd.mkdir("N64/MPK", true); // Change to MPK directory sd.chdir("N64/MPK"); // Get name, add extension and convert to char array for sd lib EEPROM_readAnything(0, foldern); sprintf(fileName, "%d", foldern); strcat(fileName, ".mpk"); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); //open crc file on sd card sprintf(filePath, "%d", foldern - 1); strcat(filePath, ".crc"); FsFile crcFile; if (!crcFile.open(filePath, O_RDWR | O_CREAT)) { print_Error(F("Can't open file on SD"), true); } //open mpk file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_Error(F("Can't open file on SD"), true); } print_Msg(F("Saving N64/MPK/")); println_Msg(fileName); display_Update(); // Dummy write because first write to file takes 1 second and messes up timing blinkLED(); myFile.write(0xFF); myFile.rewind(); blinkLED(); //Initialize progress bar uint32_t processedProgressBar = 0; uint32_t totalProgressBar = (uint32_t)(0x7FFF); draw_progressbar(0, totalProgressBar); // Controller paks, which all have 32kB of space, are mapped between 0x0000 – 0x7FFF // Read 512 byte into sdBuffer for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += 512) { // Read 32 byte block for (word currBlock = 0; currBlock < 512; currBlock += 32) { // Read one block of the Controller Pak into array myBlock and write CRC of that block to crc file crcFile.write(readBlock(currSdBuffer + currBlock)); // Copy block to SdBuffer for (byte currByte = 0; currByte < 32; currByte++) { sdBuffer[currBlock + currByte] = myBlock[currByte]; } // Real N64 has about 627us pause between banks, add a bit extra delay if (currBlock < 479) delayMicroseconds(800); } // This will take 1300us blinkLED(); myFile.write(sdBuffer, 512); // Blink led blinkLED(); // Update progress bar processedProgressBar += 512; draw_progressbar(processedProgressBar, totalProgressBar); } // Close the file: myFile.close(); crcFile.close(); } // verifies if read was successful void verifyCRC() { writeErrors = 0; println_Msg(F("Verifying...")); display_Update(); //open CRC file on sd card FsFile crcFile; if (!crcFile.open(filePath, O_READ)) { print_Error(F("Can't open file on SD"), true); } //open MPK file on sd card if (!myFile.open(fileName, O_READ)) { print_Error(F("Can't open file on SD"), true); } //Initialize progress bar uint32_t processedProgressBar = 0; uint32_t totalProgressBar = (uint32_t)(0x7FFF); draw_progressbar(0, totalProgressBar); // Controller paks, which all have 32kB of space, are mapped between 0x0000 – 0x7FFF for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += 512) { // Read 32 bytes into SD buffer myFile.read(sdBuffer, 512); // Compare 32 byte block CRC to CRC from file for (word currBlock = 0; currBlock < 512; currBlock += 32) { // Calculate CRC of block and compare against crc file if (dataCRC(&sdBuffer[currBlock]) != crcFile.read()) writeErrors++; } // Blink led blinkLED(); // Update progress bar processedProgressBar += 512; draw_progressbar(processedProgressBar, totalProgressBar); } // Close the file: myFile.close(); crcFile.close(); if (writeErrors == 0) { println_Msg(F("Read successfully")); display_Update(); } else { print_Msg(F("Error: ")); print_Msg(writeErrors); println_Msg(F(" blocks ")); print_Error(F("did not verify."), false); } } // Calculates the checksum of the header boolean checkHeader(byte startAddress) { word sum = 0; // first 28 bytes are the header, then comes the checksum(word) followed by the reverse checksum(0xFFF2 - checksum) for (int i = 0; i < 28; i += 2) { word tempword = (((sdBuffer[startAddress + i] & 0xFF) << 8) | (sdBuffer[startAddress + i + 1] & 0xFF)); sum += tempword; } if ((((sdBuffer[startAddress + 28] & 0xFF) << 8) | (sdBuffer[startAddress + 29] & 0xFF)) != (sum & 0xFFFF)) { return 0; } else { return 1; } } // verifies if Controller Pak holds valid header data void validateMPK() { //open file on sd card if (!myFile.open(fileName, O_READ)) { print_Error(F("Can't open file"), true); } // Read first 256 byte which contains the header including checksum and reverse checksum and three copies of it myFile.read(sdBuffer, 256); //Check all four header copies writeErrors = 0; if (!checkHeader(0x20)) writeErrors++; if (!checkHeader(0x60)) writeErrors++; if (!checkHeader(0x80)) writeErrors++; if (!checkHeader(0xC0)) writeErrors++; print_Msg(F("HDR: ")); print_Msg(4 - writeErrors); print_Msg(F("/4 - ")); display_Update(); // Check both TOC copies writeErrors = 0; word sum = 0; // Read 2nd and 3rd 256 byte page with TOC info for (word currSdBuffer = 0x100; currSdBuffer < 0x300; currSdBuffer += 256) { sum = 0; // Read 256 bytes into SD buffer myFile.read(sdBuffer, 256); // Calculate TOC checksum for (int i = 5; i < 128; i++ ) { sum += sdBuffer[(i << 1) + 1]; } if (sdBuffer[1] != (sum & 0xFF)) writeErrors++; } print_Msg(F("ToC: ")); print_Msg(2 - writeErrors); println_Msg(F("/2")); display_Update(); // Close the file: myFile.close(); } void writeMPK() { // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); print_Msg(F("Writing ")); print_Msg(filePath); println_Msg(F("...")); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { //Initialize progress bar uint32_t processedProgressBar = 0; uint32_t totalProgressBar = (uint32_t)(0x7FFF); draw_progressbar(0, totalProgressBar); for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += 512) { // Read 512 bytes into SD buffer, takes 1500us myFile.read(sdBuffer, 512); // Write 32 byte block for (word currBlock = 0; currBlock < 512; currBlock += 32) { // Calculate the address CRC word myAddressCRC = addrCRC(currSdBuffer + currBlock); // Copy 32 byte block from SdBuffer for (byte currByte = 0; currByte < 32; currByte++) { myBlock[currByte] = sdBuffer[currBlock + currByte] ; } // Write Controller Pak command unsigned char command[] = {0x03}; // Address Command unsigned char addressHigh[] = {(unsigned char)(myAddressCRC >> 8)}; unsigned char addressLow[] = {(unsigned char)(myAddressCRC & 0xff)}; // don't want interrupts getting in the way noInterrupts(); // Send write command N64_send(command, 1); // Send block number N64_send(addressHigh, 1); N64_send(addressLow, 1); // Send data to write N64_send(myBlock, 32); // Send stop N64_stop(); // Enable interrupts interrupts(); // Real N64 has about 627us pause between banks, add a bit extra delay if (currBlock < 479) delayMicroseconds(1500); } // Blink led blinkLED(); // Update progress bar processedProgressBar += 512; draw_progressbar(processedProgressBar, totalProgressBar); } // Close the file: myFile.close(); } else { print_Error(F("Can't open file on SD"), true); } } // verifies if write was successful void verifyMPK() { writeErrors = 0; println_Msg(F("Verifying...")); display_Update(); //open file on sd card if (!myFile.open(filePath, O_READ)) { print_Error(F("Can't open file on SD"), true); } //Initialize progress bar uint32_t processedProgressBar = 0; uint32_t totalProgressBar = (uint32_t)(0x7FFF); draw_progressbar(0, totalProgressBar); // Controller paks, which all have 32kB of space, are mapped between 0x0000 – 0x7FFF for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += 512) { // Read 512 bytes into SD buffer myFile.read(sdBuffer, 512); // Compare 32 byte block for (word currBlock = 0; currBlock < 512; currBlock += 32) { // Read one block of the Controller Pak into array myBlock readBlock(currSdBuffer + currBlock); // Check against file on SD card for (byte currByte = 0; currByte < 32; currByte++) { if (sdBuffer[currBlock + currByte] != myBlock[currByte]) { writeErrors++; } } // Real N64 has about 627us pause between banks, add a bit extra delay if (currBlock < 479) delayMicroseconds(1500); } // Blink led blinkLED(); // Update progress bar processedProgressBar += 512; draw_progressbar(processedProgressBar, totalProgressBar); } // Close the file: myFile.close(); if (writeErrors == 0) { println_Msg(F("Written successfully")); display_Update(); } else { print_Msg(F("Error: ")); print_Msg(writeErrors); println_Msg(F(" bytes ")); print_Error(F("did not verify."), false); } } /****************************************** N64 Cartridge functions *****************************************/ void printCartInfo_N64() { // Check cart getCartInfo_N64(); // Print start page if (cartSize != 0) { display_Clear(); print_Msg(F("Title: ")); println_Msg(romName); print_Msg(F("Serial: ")); println_Msg(cartID); print_Msg(F("Revision: ")); println_Msg(romVersion); print_Msg(F("ROM Size: ")); print_Msg(cartSize); println_Msg(F(" MB")); print_Msg(F("Save Type: ")); switch (saveType) { case 1: println_Msg(F("SRAM")); break; case 4: println_Msg(F("FLASH")); break; case 5: println_Msg(F("4K EEPROM")); eepPages = 64; break; case 6: println_Msg(F("16K EEPROM")); eepPages = 256; break; default: println_Msg(F("None/Unknown")); break; } print_Msg(F("CRC1: ")); println_Msg(checksumStr); // Wait for user input println_Msg(F(" ")); println_Msg(F("Press Button...")); display_Update(); wait(); } else { // Display error display_Clear(); println_Msg(F("GAMEPAK ERROR")); println_Msg(""); print_Msg(F("Title: ")); println_Msg(romName); print_Msg(F("Serial: ")); println_Msg(cartID); print_Msg(F("CRC1: ")); println_Msg(checksumStr); display_Update(); strcpy(romName, "GPERROR"); print_Error(F("Cartridge unknown"), false); println_Msg(""); println_Msg(F("Press Button...")); display_Update(); wait(); // Set cartsize manually unsigned char N64RomMenu; // Copy menuOptions out of progmem convertPgm(romOptionsN64, 6); N64RomMenu = question_box(F("Select ROM size"), menuOptions, 6, 0); // wait for user choice to come back from the question box menu switch (N64RomMenu) { case 0: // 4MB cartSize = 4; break; case 1: // 8MB cartSize = 8; break; case 2: // 12MB cartSize = 12; break; case 3: // 16MB cartSize = 16; break; case 4: // 32MB cartSize = 32; break; case 5: // 64MB cartSize = 64; break; } } } // improved strcmp function that ignores case to prevent checksum comparison issues int strcicmp(char const * a, char const * b) { for (;; a++, b++) { int d = tolower((unsigned char) * a) - tolower((unsigned char) * b); if (d != 0 || !*a) return d; } } /* look-up the calculated crc in the file n64.txt on sd card boolean searchCRC(char crcStr[9]) { boolean result = 0; char tempStr2[2]; char tempStr1[9]; char tempStr[5]; // Change to root dir sd.chdir("/"); if (myFile.open("n64.txt", O_READ)) { // Loop through file while (myFile.available()) { // Read 8 bytes into String, do it one at a time so byte order doesn't get mixed up sprintf(tempStr1, "%c", myFile.read()); for (byte i = 0; i < 7; i++) { sprintf(tempStr2, "%c", myFile.read()); strcat(tempStr1, tempStr2); } // Check if string is a match if (strcicmp(tempStr1, crcStr) == 0) { // Skip the , in the file myFile.seekSet(myFile.curPosition() + 1); // Read 4 bytes into String, do it one at a time so byte order doesn't get mixed up sprintf(tempStr, "%c", myFile.read()); for (byte i = 0; i < 3; i++) { sprintf(tempStr2, "%c", myFile.read()); strcat(tempStr, tempStr2); } if (strcmp(tempStr, cartID) == 0) { result = 1; break; } else { result = 0; break; } } // If no match, empty string, advance by 12 and try again else { myFile.seekSet(myFile.curPosition() + 12); } } // Close the file: myFile.close(); return result; } else { print_Error(F("n64.txt missing"), true); } }*/ // look-up cart id in file n64.txt on sd card void getCartInfo_N64() { char tempStr2[2]; char tempStr[9]; // cart not in list cartSize = 0; saveType = 0; // Read cart id idCart(); display_Clear(); println_Msg(F("Searching database...")); display_Update(); if (myFile.open("n64.txt", O_READ)) { // Loop through file while (myFile.available()) { // Skip first line with name skip_line(&myFile); // Skip over the CRC32 checksum myFile.seekSet(myFile.curPosition() + 9); // Read 8 bytes into String, do it one at a time so byte order doesn't get mixed up sprintf(tempStr, "%c", myFile.read()); for (byte i = 0; i < 7; i++) { sprintf(tempStr2, "%c", myFile.read()); strcat(tempStr, tempStr2); } // Check if string is a match if (strcmp(tempStr, checksumStr) == 0) { // Skip the , in the file myFile.seekSet(myFile.curPosition() + 1); // Read the next ascii character and subtract 48 to convert to decimal cartSize = myFile.read() - 48; // Remove leading 0 for single digit cart sizes if (cartSize != 0) { cartSize = cartSize * 10 + myFile.read() - 48; } else { cartSize = myFile.read() - 48; } // Skip the , in the file myFile.seekSet(myFile.curPosition() + 1); // Read the next ascii character and subtract 48 to convert to decimal saveType = myFile.read() - 48; // End loop break; } // If no match skip to next entry else { // skip rest of line myFile.seekSet(myFile.curPosition() + 7); // skip third empty line skip_line(&myFile); } } // Close the file: myFile.close(); } else { print_Error(F("n64.txt missing"), true); } } // Read rom ID void idCart() { // Set the address setAddress_N64(romBase); // Read first 64 bytes of rom for (int c = 0; c < 64; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } // CRC1 sprintf(checksumStr, "%02X%02X%02X%02X", sdBuffer[0x10], sdBuffer[0x11], sdBuffer[0x12], sdBuffer[0x13]); // Get cart id cartID[0] = sdBuffer[0x3B]; cartID[1] = sdBuffer[0x3C]; cartID[2] = sdBuffer[0x3D]; cartID[3] = sdBuffer[0x3E]; // Get rom version romVersion = sdBuffer[0x3F]; // Get name byte myByte = 0; byte myLength = 0; for (unsigned int i = 0; i < 20; i++) { myByte = sdBuffer[0x20 + i]; if (isprint(myByte) && myByte != '<' && myByte != '>' && myByte != ':' && myByte != '"' && myByte != '/' && myByte != '\\' && myByte != '|' && myByte != '?' && myByte != '*') { romName[myLength] = char(myByte); } else { if (romName[myLength - 1] == 0x5F) myLength--; romName[myLength] = 0x5F; } myLength++; } // Strip trailing white space for (unsigned int i = myLength - 1; i > 0; i--) { if ((romName[i] != 0x5F) && (romName[i] != 0x20)) break; romName[i] = 0x00; myLength--; } // If name consists out of all japanese characters use cart id if (myLength == 0) { romName[0] = sdBuffer[0x3B]; romName[1] = sdBuffer[0x3C]; romName[2] = sdBuffer[0x3D]; romName[3] = sdBuffer[0x3E]; } #ifdef savesummarytotxt // Get CRC1 for (int i = 0; i < 4; i++) { if (sdBuffer[0x10 + i] < 0x10) { CRC1 += '0'; } CRC1 += String(sdBuffer[0x10 + i], HEX); } // Get CRC2 for (int i = 0; i < 4; i++) { if (sdBuffer[0x14 + i] < 0x10) { CRC2 += '0'; } CRC2 += String(sdBuffer[0x14 + i], HEX); } #endif } /****************************************** Eeprom functions (without Adafruit clockgen) *****************************************/ // Send a clock pulse of 2us length, 50% duty, 500kHz void pulseClock_N64(unsigned int times) { for (unsigned int i = 0; i < (times * 2); i++) { // Switch the clock pin to 0 if it's 1 and 0 if it's 1 PORTH ^= (1 << 1); // without the delay the clock pulse would be 1.5us and 666kHz //__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t")); } } // Send one byte of data to eeprom void sendData_CLK(byte data) { for (byte i = 0; i < 8; i++) { // pull data line low N64_LOW; // if current bit is 1, pull high after ~1us, 2 cycles if (data >> 7) { pulseClock_N64(2); N64_HIGH; pulseClock_N64(6); } // if current bit is 0 pull high after ~3us, 6 cycles else { pulseClock_N64(6); N64_HIGH; pulseClock_N64(2); } // rotate to the next bit data <<= 1; } } // Send stop bit to eeprom void sendStop_CLK() { N64_LOW; pulseClock_N64(2); N64_HIGH; pulseClock_N64(4); } // Capture 8 bytes in 64 bits into bit array tempBits void readData_CLK() { for (byte i = 0; i < 64; i++) { // pulse clock until we get response from eeprom while (N64_QUERY) { pulseClock_N64(1); } // Skip over the 1us low part of a high bit pulseClock_N64(3); // Read bit tempBits[i] = N64_QUERY; // wait for line to go high again while (!N64_QUERY) { pulseClock_N64(1); } } } // Write Eeprom to cartridge void writeEeprom_CLK() { if ((saveType == 5) || (saveType == 6)) { // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); println_Msg(F("Writing...")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { for (byte i = 0; i < (eepPages / 64); i++) { myFile.read(sdBuffer, 512); // Disable interrupts for more uniform clock pulses noInterrupts(); for (byte pageNumber = 0; pageNumber < 64; pageNumber++) { // Blink led blinkLED(); // Wait ~50ms between page writes or eeprom will have write errors pulseClock_N64(26000); // Send write command sendData_CLK(0x05); // Send page number sendData_CLK(pageNumber + (i * 64)); // Send data to write for (byte j = 0; j < 8; j++) { sendData_CLK(sdBuffer[(pageNumber * 8) + j]); } sendStop_CLK(); } interrupts(); } // Close the file: myFile.close(); println_Msg(F("Done")); display_Update(); delay(600); } else { print_Error(F("SD Error"), true); } } else { print_Error(F("Savetype Error"), true); } } // Dump Eeprom to SD void readEeprom_CLK() { if ((saveType == 5) || (saveType == 6)) { // Wait 50ms or eeprom might lock up pulseClock_N64(26000); // Get name, add extension and convert to char array for sd lib strcpy(fileName, romName); strcat(fileName, ".eep"); // create a new folder for the save file EEPROM_readAnything(0, foldern); sprintf(folder, "N64/SAVE/%s/%d", romName, foldern); sd.mkdir(folder, true); sd.chdir(folder); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); // Open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_Error(F("Can't create file on SD"), true); } for (byte i = 0; i < (eepPages / 64); i++) { // Disable interrupts for more uniform clock pulses noInterrupts(); for (byte pageNumber = 0; pageNumber < 64; pageNumber++) { // Blink led blinkLED(); // Send read command sendData_CLK(0x04); // Send Page number sendData_CLK(pageNumber + (i * 64)); // Send stop bit sendStop_CLK(); // read data readData_CLK(); sendStop_CLK(); // OR 8 bits into one byte for a total of 8 bytes for (byte j = 0; j < 64; j += 8) { sdBuffer[(pageNumber * 8) + (j / 8)] = tempBits[0 + j] << 7 | tempBits[1 + j] << 6 | tempBits[2 + j] << 5 | tempBits[3 + j] << 4 | tempBits[4 + j] << 3 | tempBits[5 + j] << 2 | tempBits[6 + j] << 1 | tempBits[7 + j]; } // Wait 50ms between pages or eeprom might lock up pulseClock_N64(26000); } interrupts(); // Write 64 pages at once to the SD card myFile.write(sdBuffer, 512); } // Close the file: myFile.close(); //clear the screen display_Clear(); print_Msg(F("Saved to ")); print_Msg(folder); println_Msg(F("/")); display_Update(); } else { print_Error(F("Savetype Error"), true); } } // Check if a write succeeded, returns 0 if all is ok and number of errors if not unsigned long verifyEeprom_CLK() { if ((saveType == 5) || (saveType == 6)) { writeErrors = 0; // Wait 50ms or eeprom might lock up pulseClock_N64(26000); display_Clear(); print_Msg(F("Verifying against ")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { for (byte i = 0; i < (eepPages / 64); i++) { // Disable interrupts for more uniform clock pulses noInterrupts(); for (byte pageNumber = 0; pageNumber < 64; pageNumber++) { // Blink led blinkLED(); // Send read command sendData_CLK(0x04); // Send Page number sendData_CLK(pageNumber + (i * 64)); // Send stop bit sendStop_CLK(); // read data readData_CLK(); sendStop_CLK(); // OR 8 bits into one byte for a total of 8 bytes for (byte j = 0; j < 64; j += 8) { sdBuffer[(pageNumber * 8) + (j / 8)] = tempBits[0 + j] << 7 | tempBits[1 + j] << 6 | tempBits[2 + j] << 5 | tempBits[3 + j] << 4 | tempBits[4 + j] << 3 | tempBits[5 + j] << 2 | tempBits[6 + j] << 1 | tempBits[7 + j]; } // Wait 50ms between pages or eeprom might lock up pulseClock_N64(26000); } interrupts(); // Check sdBuffer content against file on sd card for (int c = 0; c < 512; c++) { if (myFile.read() != sdBuffer[c]) { writeErrors++; } } } // Close the file: myFile.close(); } else { // SD Error writeErrors = 999999; print_Error(F("SD Error"), true); } // Return 0 if verified ok, or number of errors return writeErrors; } else { print_Error(F("Savetype Error"), true); } } /****************************************** Eeprom functions (with Adafruit clockgen) *****************************************/ // Send one byte of data to eeprom void sendData(byte data) { for (byte i = 0; i < 8; i++) { // pull data line low N64_LOW; // if current bit is 1, pull high after ~1us if (data >> 7) { __asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t"); N64_HIGH; __asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t"); } // if current bit is 0 pull high after ~3us else { __asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t"); N64_HIGH; __asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t"); } // rotate to the next bit data <<= 1; } } // Send stop bit to eeprom void sendStop() { N64_LOW; __asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t"); N64_HIGH; __asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t"); } // Capture 8 bytes in 64 bits into bit array tempBits void readData() { for (byte i = 0; i < 64; i++) { // wait until we get response from eeprom while (N64_QUERY) { } // Skip over the 1us low part of a high bit, Arduino running at 16Mhz -> one nop = 62.5ns __asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t"); // Read bit tempBits[i] = N64_QUERY; // wait for line to go high again while (!N64_QUERY) { __asm__("nop\n\t"); } } } // Write Eeprom to cartridge void writeEeprom() { if ((saveType == 5) || (saveType == 6)) { // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); println_Msg(F("Writing...")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { for (byte i = 0; i < (eepPages / 64); i++) { myFile.read(sdBuffer, 512); // Disable interrupts for more uniform clock pulses noInterrupts(); for (byte pageNumber = 0; pageNumber < 64; pageNumber++) { // Blink led blinkLED(); // Wait ~50ms between page writes or eeprom will have write errors, Arduino running at 16Mhz -> one nop = 62.5ns for (long i = 0; i < 115000; i++) { __asm__("nop\n\t"); } // Send write command sendData(0x05); // Send page number sendData(pageNumber + (i * 64)); // Send data to write for (byte j = 0; j < 8; j++) { sendData(sdBuffer[(pageNumber * 8) + j]); } sendStop(); } interrupts(); } // Close the file: myFile.close(); println_Msg(F("Done")); display_Update(); delay(600); } else { print_Error(F("SD Error"), true); } } else { print_Error(F("Savetype Error"), true); } } // Dump Eeprom to SD void readEeprom() { if ((saveType == 5) || (saveType == 6)) { // Get name, add extension and convert to char array for sd lib strcpy(fileName, romName); strcat(fileName, ".eep"); // create a new folder for the save file EEPROM_readAnything(0, foldern); sprintf(folder, "N64/SAVE/%s/%d", romName, foldern); sd.mkdir(folder, true); sd.chdir(folder); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); // Open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_Error(F("Can't create file on SD"), true); } for (byte i = 0; i < (eepPages / 64); i++) { // Disable interrupts for more uniform clock pulses noInterrupts(); for (byte pageNumber = 0; pageNumber < 64; pageNumber++) { // Blink led blinkLED(); // Send read command sendData(0x04); // Send Page number sendData(pageNumber + (i * 64)); // Send stop bit sendStop(); // read data readData(); sendStop(); // OR 8 bits into one byte for a total of 8 bytes for (byte j = 0; j < 64; j += 8) { sdBuffer[(pageNumber * 8) + (j / 8)] = tempBits[0 + j] << 7 | tempBits[1 + j] << 6 | tempBits[2 + j] << 5 | tempBits[3 + j] << 4 | tempBits[4 + j] << 3 | tempBits[5 + j] << 2 | tempBits[6 + j] << 1 | tempBits[7 + j]; } // Wait ~600us between pages for (int i = 0; i < 2000; i++) { __asm__("nop\n\t"); } } interrupts(); // Write 64 pages at once to the SD card myFile.write(sdBuffer, 512); } // Close the file: myFile.close(); //clear the screen display_Clear(); print_Msg(F("Saved to ")); print_Msg(folder); println_Msg(F("/")); display_Update(); } else { print_Error(F("Savetype Error"), true); } } // Check if a write succeeded, returns 0 if all is ok and number of errors if not unsigned long verifyEeprom() { if ((saveType == 5) || (saveType == 6)) { writeErrors = 0; display_Clear(); print_Msg(F("Verifying against ")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { for (byte i = 0; i < (eepPages / 64); i++) { // Disable interrupts for more uniform clock pulses noInterrupts(); for (byte pageNumber = 0; pageNumber < 64; pageNumber++) { // Blink led blinkLED(); // Send read command sendData(0x04); // Send Page number sendData(pageNumber + (i * 64)); // Send stop bit sendStop(); // read data readData(); sendStop(); // OR 8 bits into one byte for a total of 8 bytes for (byte j = 0; j < 64; j += 8) { sdBuffer[(pageNumber * 8) + (j / 8)] = tempBits[0 + j] << 7 | tempBits[1 + j] << 6 | tempBits[2 + j] << 5 | tempBits[3 + j] << 4 | tempBits[4 + j] << 3 | tempBits[5 + j] << 2 | tempBits[6 + j] << 1 | tempBits[7 + j]; } // Wait ~600us between pages for (int i = 0; i < 2000; i++) { __asm__("nop\n\t"); } } interrupts(); // Check sdBuffer content against file on sd card for (int c = 0; c < 512; c++) { if (myFile.read() != sdBuffer[c]) { writeErrors++; } } } // Close the file: myFile.close(); } else { // SD Error writeErrors = 999999; print_Error(F("SD Error"), true); } // Return 0 if verified ok, or number of errors return writeErrors; } else { print_Error(F("Savetype Error"), true); } } /****************************************** SRAM functions *****************************************/ // Write sram to cartridge void writeSram(unsigned long sramSize) { if (saveType == 1) { // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); println_Msg(F("Writing...")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { for (unsigned long currByte = sramBase; currByte < (sramBase + sramSize); currByte += 512) { // Read save from SD into buffer myFile.read(sdBuffer, 512); // Set the address for the next 512 bytes setAddress_N64(currByte); for (int c = 0; c < 512; c += 2) { // Join bytes to word word myWord = ( ( sdBuffer[c] & 0xFF ) << 8 ) | ( sdBuffer[c + 1] & 0xFF ); // Write word writeWord_N64(myWord); } } // Close the file: myFile.close(); println_Msg(F("Done")); display_Update(); } else { print_Error(F("SD Error"), true); } } else { print_Error(F("Savetype Error"), true); } } // Read sram and save to the SD card void readSram(unsigned long sramSize, byte flashramType) { int offset = 512; int bufferSize = 512; if (flashramType == 2) { offset = 64; bufferSize = 128; } // Get name, add extension and convert to char array for sd lib strcpy(fileName, romName); if (saveType == 4) { strcat(fileName, ".fla"); } else if (saveType == 1) { strcat(fileName, ".sra"); } else { print_Error(F("Savetype Error"), true); } // create a new folder for the save file EEPROM_readAnything(0, foldern); sprintf(folder, "N64/SAVE/%s/%d", romName, foldern); sd.mkdir(folder, true); sd.chdir(folder); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); // Open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_Error(F("SD Error"), true); } for (unsigned long currByte = sramBase; currByte < (sramBase + (sramSize / flashramType)); currByte += offset) { // Set the address setAddress_N64(currByte); for (int c = 0; c < bufferSize; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } myFile.write(sdBuffer, bufferSize); } // Close the file: myFile.close(); print_Msg(F("Saved to ")); print_Msg(folder); println_Msg(F("/")); display_Update(); } unsigned long verifySram(unsigned long sramSize, byte flashramType) { writeErrors = 0; int offset = 512; int bufferSize = 512; if (flashramType == 2) { offset = 64; bufferSize = 128; } // Open file on sd card if (myFile.open(filePath, O_READ)) { for (unsigned long currByte = sramBase; currByte < (sramBase + (sramSize / flashramType)); currByte += offset) { // Set the address setAddress_N64(currByte); for (int c = 0; c < bufferSize; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } // Check sdBuffer content against file on sd card for (int i = 0; i < bufferSize; i++) { if (myFile.read() != sdBuffer[i]) { writeErrors++; } } } // Close the file: myFile.close(); } else { print_Error(F("SD Error"), true); } // Return 0 if verified ok, or number of errors return writeErrors; } /****************************************** Flashram functions *****************************************/ // Send a command to the flashram command register void sendFramCmd (unsigned long myCommand) { // Split command into two words word myComLowOut = myCommand & 0xFFFF; word myComHighOut = myCommand >> 16; // Set address to command register setAddress_N64(0x08010000); // Send command writeWord_N64(myComHighOut); writeWord_N64(myComLowOut); } // Init fram void initFram() { // FRAM_EXECUTE_CMD sendFramCmd(0xD2000000); delay(10); // FRAM_EXECUTE_CMD sendFramCmd(0xD2000000); delay(10); //FRAM_STATUS_MODE_CMD sendFramCmd(0xE1000000); delay(10); } void writeFram(byte flashramType) { if (saveType == 4) { // Erase fram eraseFram(); // Check if empty if (blankcheck_N64(flashramType) == 0) { println_Msg(F("OK")); display_Update(); } else { println_Msg(F("FAIL")); display_Update(); } // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); print_Msg(F("Writing ")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { // Init fram initFram(); // Write all 8 fram banks print_Msg(F("Bank ")); for (byte bank = 0; bank < 8; bank++) { print_Msg(bank); print_Msg(F(" ")); display_Update(); // Write one bank of 128*128 bytes for (byte offset = 0; offset < 128; offset++) { // Read save from SD into buffer myFile.read(sdBuffer, 128); // FRAM_WRITE_MODE_CMD sendFramCmd(0xB4000000); delay(1); // Set the address for the next 128 bytes setAddress_N64(0x08000000); // Send 128 bytes, 64 words for (byte c = 0; c < 128; c += 2) { // Join two bytes into one word word myWord = ( ( sdBuffer[c] & 0xFF ) << 8 ) | ( sdBuffer[c + 1] & 0xFF ); // Write word writeWord_N64(myWord); } // Delay between each "DMA" delay(1); //FRAM_WRITE_OFFSET_CMD + offset sendFramCmd((0xA5000000 | (((bank * 128) + offset) & 0xFFFF))); delay(1); // FRAM_EXECUTE_CMD sendFramCmd(0xD2000000); while (waitForFram(flashramType)) { delay(1); } } // Delay between banks delay(20); } println_Msg(""); // Close the file: myFile.close(); } else { print_Error(F("SD Error"), true); } } else { print_Error(F("Savetype Error"), true); } } // Delete all 8 flashram banks void eraseFram() { if (saveType == 4) { print_Msg(F("Erasing...")); display_Update(); // Init fram initFram(); // Erase fram // 0x4B00007F 0x4B0000FF 0x4B00017F 0x4B0001FF 0x4B00027F 0x4B0002FF 0x4B00037F 0x4B0003FF for (unsigned long bank = 0x4B00007F; bank < 0x4B00047F; bank += 0x80) { sendFramCmd(bank); delay(10); // FRAM_ERASE_MODE_CMD sendFramCmd(0x78000000); delay(10); // FRAM_EXECUTE_CMD sendFramCmd(0xD2000000); while (waitForFram(flashramType)) { delay(1); } } } else { print_Error(F("Savetype Error"), true); } } // Read flashram void readFram(byte flashramType) { if (saveType == 4) { // Put flashram into read mode // FRAM_READ_MODE_CMD sendFramCmd(0xF0000000); // Read Flashram readSram(131072, flashramType); } else { print_Error(F("Savetype Error"), true); } } // Verify flashram unsigned long verifyFram(byte flashramType) { // Put flashram into read mode // FRAM_READ_MODE_CMD sendFramCmd(0xF0000000); writeErrors = verifySram(131072, flashramType); return writeErrors; } // Blankcheck flashram unsigned long blankcheck_N64(byte flashramType) { writeErrors = 0; int offset = 512; int bufferSize = 512; if (flashramType == 2) { offset = 64; bufferSize = 128; } // Put flashram into read mode // FRAM_READ_MODE_CMD sendFramCmd(0xF0000000); // Read Flashram for (unsigned long currByte = sramBase; currByte < (sramBase + (131072 / flashramType)); currByte += offset) { // Set the address for the next 512 bytes setAddress_N64(currByte); for (int c = 0; c < bufferSize; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } // Check sdBuffer content against file on sd card for (int i = 0; i < bufferSize; i++) { if (0xFF != sdBuffer[i]) { writeErrors++; } } } // Return 0 if verified ok, or number of errors return writeErrors; } // Wait until current operation is done byte waitForFram(byte flashramType) { byte framStatus = 0; byte statusMXL1100[] = {0x11, 0x11, 0x80, 0x01, 0x00, 0xC2, 0x00, 0x1E}; byte statusMXL1101[] = {0x11, 0x11, 0x80, 0x01, 0x00, 0xC2, 0x00, 0x1D}; byte statusMN63F81[] = {0x11, 0x11, 0x80, 0x01, 0x00, 0x32, 0x00, 0xF1}; // FRAM_STATUS_MODE_CMD sendFramCmd(0xE1000000); delay(1); // Set address to Fram status register setAddress_N64(0x08000000); // Read Status for (byte c = 0; c < 8; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } if (flashramType == 2) { for (byte c = 0; c < 8; c++) { if (statusMXL1100[c] != sdBuffer[c]) { framStatus = 1; } } } else if (flashramType == 1) { //MX29L1101 if (MN63F81MPN == false) { for (byte c = 0; c < 8; c++) { if (statusMXL1101[c] != sdBuffer[c]) { framStatus = 1; } } } //MN63F81MPN else if (MN63F81MPN == true) { for (byte c = 0; c < 8; c++) { if (statusMN63F81[c] != sdBuffer[c]) { framStatus = 1; } } } } return framStatus; } // Get flashram type void getFramType() { // FRAM_STATUS_MODE_CMD sendFramCmd(0xE1000000); delay(10); // Set address to Fram status register setAddress_N64(0x08000000); // Read Status for (byte c = 0; c < 8; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } //MX29L1100 if (sdBuffer[7] == 0x1e ) { flashramType = 2; println_Msg(F("Type: MX29L1100")); display_Update(); } //MX29L1101 else if (sdBuffer[7] == 0x1d ) { flashramType = 1; MN63F81MPN = false; println_Msg(F("Type: MX29L1101")); display_Update(); } //MN63F81MPN else if (sdBuffer[7] == 0xf1 ) { flashramType = 1; MN63F81MPN = true; println_Msg(F("Type: MN63F81MPN")); display_Update(); } // 29L1100KC-15B0 compat MX29L1101 else if ((sdBuffer[7] == 0x8e ) || (sdBuffer[7] == 0x84 )) { flashramType = 1; MN63F81MPN = false; println_Msg(F("Type: 29L1100KC-15B0")); println_Msg(F("(compat. MX29L1101)")); display_Update(); } // Type unknown else { for (byte c = 0; c < 8; c++) { print_Msg(sdBuffer[c], HEX); print_Msg(F(", ")); } print_Error(F("Flashram unknown"), true); } } /****************************************** Rom functions *****************************************/ // Read rom and save to the SD card void readRom_N64() { // Get name, add extension and convert to char array for sd lib strcpy(fileName, romName); strcat(fileName, ".Z64"); redumpnewfolder: // create a new folder EEPROM_readAnything(0, foldern); sprintf(folder, "N64/ROM/%s/%d", romName, foldern); sd.mkdir(folder, true); sd.chdir(folder); display_Clear(); print_Msg(F("Saving to ")); print_Msg(folder); println_Msg(F("/...")); display_Update(); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); redumpsamefolder: // Open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_Error(F("SD Error"), true); } // dumping rom slow #ifndef fastcrc // get current time unsigned long startTime = millis(); for (unsigned long currByte = romBase; currByte < (romBase + (cartSize * 1024 * 1024)); currByte += 512) { // Blink led if (currByte % 16384 == 0) blinkLED(); // Set the address for the next 512 bytes setAddress_N64(currByte); for (int c = 0; c < 512; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } myFile.write(sdBuffer, 512); } // Close the file: myFile.close(); if (compareCRC("n64.txt", 0, 1, 0)) { #else // dumping rom fast byte buffer[1024] = { 0 }; // get current time unsigned long startTime = millis(); //Initialize progress bar uint32_t processedProgressBar = 0; uint32_t totalProgressBar = (uint32_t)(cartSize) * 1024 * 1024; draw_progressbar(0, totalProgressBar); // prepare crc32 uint32_t oldcrc32 = 0xFFFFFFFF; uint32_t tab_value = 0; uint8_t idx = 0; // run combined dumper + crc32 routine for better performance, as N64 ROMs are quite large for an 8bit micro // currently dumps + checksums a 32MB cart in 170 seconds (down from 347 seconds) for (unsigned long currByte = romBase; currByte < (romBase + (cartSize * 1024 * 1024)); currByte += 1024) { // Blink led if (currByte % 16384 == 0) blinkLED(); // Set the address for the first 512 bytes to dump setAddress_N64(currByte); // Wait 62.5ns (safety) NOP; for (int c = 0; c < 512; c += 2) { // Pull read(PH6) low PORTH &= ~(1 << 6); // Wait ~310ns NOP; NOP; NOP; NOP; NOP; // data on PINK and PINF is valid now, read into sd card buffer buffer[c] = PINK; // hiByte buffer[c + 1] = PINF; // loByte // Pull read(PH6) high PORTH |= (1 << 6); // crc32 update idx = ((oldcrc32) ^ (buffer[c])); tab_value = pgm_read_dword(crc_32_tab + idx); oldcrc32 = tab_value ^ ((oldcrc32) >> 8); idx = ((oldcrc32) ^ (buffer[c + 1])); tab_value = pgm_read_dword(crc_32_tab + idx); oldcrc32 = tab_value ^ ((oldcrc32) >> 8); } // Set the address for the next 512 bytes to dump setAddress_N64(currByte + 512); // Wait 62.5ns (safety) NOP; for (int c = 512; c < 1024; c += 2) { // Pull read(PH6) low PORTH &= ~(1 << 6); // Wait ~310ns NOP; NOP; NOP; NOP; NOP; // data on PINK and PINF is valid now, read into sd card buffer buffer[c] = PINK; // hiByte buffer[c + 1] = PINF; // loByte // Pull read(PH6) high PORTH |= (1 << 6); // crc32 update idx = ((oldcrc32) ^ (buffer[c])) & 0xff; tab_value = pgm_read_dword(crc_32_tab + idx); oldcrc32 = tab_value ^ ((oldcrc32) >> 8); idx = ((oldcrc32) ^ (buffer[c + 1])) & 0xff; tab_value = pgm_read_dword(crc_32_tab + idx); oldcrc32 = tab_value ^ ((oldcrc32) >> 8); } processedProgressBar += 1024; draw_progressbar(processedProgressBar, totalProgressBar); // write out 1024 bytes to file myFile.write(buffer, 1024); } // Close the file: myFile.close(); // convert checksum to string char crcStr[9]; sprintf(crcStr, "%08lX", ~oldcrc32); // Search n64.txt for crc if (compareCRC("n64.txt", crcStr, 1, 0)) { #endif unsigned long timeElapsed = (millis() - startTime) / 1000; // seconds print_Msg(F("Done (")); print_Msg(timeElapsed); // include elapsed time println_Msg(F("s)")); println_Msg(F("")); println_Msg(F("Press Button...")); display_Update(); // This saves a tt file with rom info next to the dumped rom #ifdef savesummarytotxt savesummary_N64(1, crcStr, timeElapsed); #endif #ifdef global_log save_log(); #endif wait(); } else { // Dump was bad or unknown errorLvl = 1; setColor_RGB(255, 0, 0); println_Msg(F("")); println_Msg(F("Press Button...")); display_Update(); // This saves a tt file with rom info next to the dumped rom #ifdef savesummarytotxt savesummary_N64(0, crcStr, timeElapsed); #endif wait(); // N64 CRC32 error Menu unsigned char CRCMenu; // Copy menuOptions out of progmem convertPgm(menuOptionsN64CRC, 4); CRCMenu = question_box(F("Redump cartridge?"), menuOptions, 4, 0); // wait for user choice to come back from the question box menu switch (CRCMenu) { case 0: // Return to N64 menu display_Clear(); break; case 1: // Dump again into new folder display_Clear(); setColor_RGB(0, 0, 0); goto redumpnewfolder; break; case 2: // Dump again into same folder // Change to last directory sd.chdir(folder); // Delete old file if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_Error(F("SD Error"), true); } if (!myFile.remove()) { print_Error(F("Delete Error"), true); } // Dump again display_Clear(); println_Msg(F("Reading Rom...")); display_Update(); setColor_RGB(0, 0, 0); goto redumpsamefolder; break; case 3: // Reset resetArduino(); break; } } } #ifdef savesummarytotxt // Save an info.txt with information on the dumped rom to the SD card void savesummary_N64(boolean checkfound, char crcStr[9], unsigned long timeElapsed) { // Open file on sd card if (!myFile.open("N64/ROM/n64log.txt", O_RDWR | O_CREAT | O_APPEND)) { print_Error(F("SD Error"), true); } //Write the info myFile.print(F("Name\t: ")); myFile.println(romName); myFile.print(F("ID\t: ")); myFile.println(cartID); myFile.print(F("ROM CRC1: ")); myFile.println(CRC1); myFile.print(F("ROM CRC2: ")); myFile.println(CRC2); myFile.print(F("Size\t: ")); myFile.print(cartSize); myFile.println(F(" MB")); myFile.print(F("Save\t: ")); switch (saveType) { case 1: myFile.println(F("SRAM")); break; case 4: myFile.println(F("FLASH")); break; case 5: myFile.println(F("4K EEPROM")); break; case 6: myFile.println(F("16K EEPROM")); break; default: myFile.println(F("None/Unknown")); break; } myFile.print(F("Version\t: 1.")); myFile.println(romVersion); myFile.print(F("Saved To: ")); myFile.println(folder); #ifdef RTC_installed myFile.print(F("Dumped\t: ")); myFile.println(RTCStamp()); #endif myFile.print(F("CRC\t: ")); myFile.print(crcStr); if (checkfound) { // Dump was a known good rom // myFile.println(F("Checksum matches")); myFile.println(" [Match]"); } else { // myFile.println(F("Checksum not found")); myFile.println(" [No Match]"); } myFile.print(F("Time\t: ")); myFile.println(timeElapsed); myFile.println(F(" ")); // Close the file: myFile.close(); } #endif /****************************************** N64 Repro Flashrom Functions *****************************************/ void flashRepro_N64() { unsigned long sectorSize; byte bufferSize; // Check flashrom ID's idFlashrom_N64(); // If the ID is known continue if (cartSize != 0) { // Print flashrom name if ((strcmp(flashid, "227E") == 0) && (strcmp(cartID, "2201") == 0)) { print_Msg(F("Spansion S29GL256N")); if (cartSize == 64) println_Msg(F(" x2")); else println_Msg(""); } else if ((strcmp(flashid, "227E") == 0) && (strcmp(cartID, "2101") == 0)) { print_Msg(F("Spansion S29GL128N")); } else if ((strcmp(flashid, "227E") == 0) && (strcmp(cartID, "2100") == 0)) { print_Msg(F("ST M29W128GL")); } else if ((strcmp(flashid, "22C9") == 0) || (strcmp(flashid, "22CB") == 0)) { print_Msg(F("Macronix MX29LV640")); if (cartSize == 16) println_Msg(F(" x2")); else println_Msg(""); } else if (strcmp(flashid, "8816") == 0) println_Msg(F("Intel 4400L0ZDQ0")); else if (strcmp(flashid, "7E7E") == 0) println_Msg(F("Fujitsu MSP55LV100S")); else if ((strcmp(flashid, "227E") == 0) && (strcmp(cartID, "2301") == 0)) println_Msg(F("Fujitsu MSP55LV512")); else if ((strcmp(flashid, "227E") == 0) && (strcmp(cartID, "3901") == 0)) println_Msg(F("Intel 512M29EW")); // Print info print_Msg(F("ID: ")); print_Msg(flashid); print_Msg(F(" Size: ")); print_Msg(cartSize); println_Msg(F("MB")); println_Msg(""); println_Msg(F("This will erase your")); println_Msg(F("Repro Cartridge.")); println_Msg(F("Attention: Use 3.3V!")); println_Msg(""); println_Msg(F("Press Button...")); display_Update(); wait(); } else { println_Msg(F("Unknown flashrom")); print_Msg(F("ID: ")); print_Msg(vendorID); print_Msg(F(" ")); print_Msg(flashid); print_Msg(F(" ")); println_Msg(cartID); println_Msg(F(" ")); println_Msg(F("Press button for")); println_Msg(F("manual config")); println_Msg(F("This will erase your")); println_Msg(F("Repro Cartridge.")); println_Msg(F("Attention: Use 3.3V!")); display_Update(); wait(); // clear IDs sprintf(vendorID, "%s", "CONF"); sprintf(flashid, "%s", "CONF"); sprintf(cartID, "%s", "CONF"); // Set cartsize manually unsigned char N64RomMenu; // Copy menuOptions out of progmem convertPgm(romOptionsN64, 6); N64RomMenu = question_box(F("Select flash size"), menuOptions, 6, 0); // wait for user choice to come back from the question box menu switch (N64RomMenu) { case 0: // 4MB cartSize = 4; break; case 1: // 8MB cartSize = 8; break; case 2: // 12MB cartSize = 12; break; case 3: // 16MB cartSize = 16; break; case 4: // 32MB cartSize = 32; break; case 5: // 64MB cartSize = 64; break; } // Set flash buffer manually unsigned char N64BufferMenu; // Copy menuOptions out of progmem convertPgm(bufferOptionsN64, 4); N64BufferMenu = question_box(F("Select buffer size"), menuOptions, 4, 0); // wait for user choice to come back from the question box menu switch (N64BufferMenu) { case 0: // no buffer bufferSize = 0; break; case 1: // 32 byte buffer bufferSize = 32; break; case 2: // 64 byte buffer bufferSize = 64; break; case 3: // 128 byte buffer bufferSize = 128; break; } // Set sector size manually unsigned char N64SectorMenu; // Copy menuOptions out of progmem convertPgm(sectorOptionsN64, 4); N64SectorMenu = question_box(F("Select sector size"), menuOptions, 4, 0); // wait for user choice to come back from the question box menu switch (N64SectorMenu) { case 0: // 8KB sectors sectorSize = 0x2000; break; case 1: // 32KB sectors sectorSize = 0x8000; break; case 2: // 64KB sectors sectorSize = 0x10000; break; case 3: // 128KB sectors sectorSize = 0x20000; break; } } // Launch file browser filePath[0] = '\0'; sd.chdir("/"); fileBrowser(F("Select z64 file")); display_Clear(); display_Update(); // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); // Open file on sd card if (myFile.open(filePath, O_READ)) { // Get rom size from file fileSize = myFile.fileSize(); print_Msg(F("File size: ")); print_Msg(fileSize / 1048576); println_Msg(F("MB")); display_Update(); // Compare file size to flashrom size if ((fileSize / 1048576) > cartSize) { print_Error(F("File too big"), true); } // Erase needed sectors if (strcmp(flashid, "227E") == 0) { // Spansion S29GL256N or Fujitsu MSP55LV512 with 0x20000 sector size and 32 byte buffer eraseSector_N64(0x20000); } else if (strcmp(flashid, "7E7E") == 0) { // Fujitsu MSP55LV100S eraseMSP55LV100_N64(); } else if ((strcmp(flashid, "8813") == 0) || (strcmp(flashid, "8816") == 0)) { // Intel 4400L0ZDQ0 eraseIntel4400_N64(); resetIntel4400_N64(); } else if ((strcmp(flashid, "22C9") == 0) || (strcmp(flashid, "22CB") == 0)) { // Macronix MX29LV640, C9 is top boot and CB is bottom boot block eraseSector_N64(0x8000); } else { eraseFlashrom_N64(); } // Check if erase was successful if (blankcheckFlashrom_N64()) { // Write flashrom println_Msg(F("OK")); print_Msg(F("Writing ")); println_Msg(filePath); display_Update(); if ((strcmp(cartID, "3901") == 0) && (strcmp(flashid, "227E") == 0)) { // Intel 512M29EW(64MB) with 0x20000 sector size and 128 byte buffer writeFlashBuffer_N64(0x20000, 128); } else if ((strcmp(cartID, "2100") == 0) && (strcmp(flashid, "227E") == 0)) { // ST M29W128GH(16MB) with 0x20000 sector size and 64 byte buffer writeFlashBuffer_N64(0x20000, 64); } else if (strcmp(flashid, "227E") == 0) { // Spansion S29GL128N/S29GL256N or Fujitsu MSP55LV512 with 0x20000 sector size and 32 byte buffer writeFlashBuffer_N64(0x20000, 32); } else if (strcmp(flashid, "7E7E") == 0) { //Fujitsu MSP55LV100S writeMSP55LV100_N64(0x20000); } else if ((strcmp(flashid, "22C9") == 0) || (strcmp(flashid, "22CB") == 0)) { // Macronix MX29LV640 without buffer and 0x8000 sector size writeFlashrom_N64(0x8000); } else if ((strcmp(flashid, "8813") == 0) || (strcmp(flashid, "8816") == 0)) { // Intel 4400L0ZDQ0 writeIntel4400_N64(); resetIntel4400_N64(); } else if (bufferSize == 0) { writeFlashrom_N64(sectorSize); } else { writeFlashBuffer_N64(sectorSize, bufferSize); } // Close the file: myFile.close(); // Verify print_Msg(F("Verifying...")); display_Update(); writeErrors = verifyFlashrom_N64(); if (writeErrors == 0) { println_Msg(F("OK")); display_Update(); } else { print_Msg(writeErrors); print_Msg(F(" bytes ")); print_Error(F("did not verify."), false); } } else { // Close the file myFile.close(); print_Error(F("failed"), false); } } else { print_Error(F("Can't open file"), false); } println_Msg(F("Press Button...")); display_Update(); wait(); display_Clear(); display_Update(); } // Reset to read mode void resetIntel4400_N64() { for (unsigned long currPartition = 0; currPartition < (cartSize * 0x100000); currPartition += 0x20000) { setAddress_N64(romBase + currPartition); writeWord_N64(0xFF); } } // Reset Fujitsu MSP55LV100S void resetMSP55LV100_N64(unsigned long flashBase) { // Send reset Command setAddress_N64(flashBase); writeWord_N64(0xF0F0); delay(100); } // Common reset command void resetFlashrom_N64(unsigned long flashBase) { // Send reset Command setAddress_N64(flashBase); writeWord_N64(0xF0); delay(100); } void idFlashrom_N64() { // Set size to 0 if no ID is found cartSize = 0; // Send flashrom ID command setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(romBase + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0x90); // Read 1 byte vendor ID setAddress_N64(romBase); sprintf(vendorID, "%02X", readWord_N64()); // Read 2 bytes flashrom ID sprintf(flashid, "%04X", readWord_N64()); // Read 2 bytes secondary flashrom ID setAddress_N64(romBase + 0x1C); sprintf(cartID, "%04X", ((readWord_N64() << 8) | (readWord_N64() & 0xFF))); // Spansion S29GL256N(32MB/64MB) with either one or two flashrom chips if ((strcmp(cartID, "2201") == 0) && (strcmp(flashid, "227E") == 0)) { cartSize = 32; // Reset flashrom resetFlashrom_N64(romBase); // Test for second flashrom chip at 0x2000000 (32MB) setAddress_N64(romBase + 0x2000000 + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(romBase + 0x2000000 + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + 0x2000000 + (0x555 << 1)); writeWord_N64(0x90); char tempID[5]; setAddress_N64(romBase + 0x2000000); // Read manufacturer ID readWord_N64(); // Read flashrom ID sprintf(tempID, "%04X", readWord_N64()); // Check if second flashrom chip is present if (strcmp(tempID, "227E") == 0) { cartSize = 64; } resetFlashrom_N64(romBase + 0x2000000); } // Macronix MX29LV640(8MB/16MB) with either one or two flashrom chips else if ((strcmp(flashid, "22C9") == 0) || (strcmp(flashid, "22CB") == 0)) { cartSize = 8; resetFlashrom_N64(romBase + 0x800000); // Test for second flashrom chip at 0x800000 (8MB) setAddress_N64(romBase + 0x800000 + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(romBase + 0x800000 + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + 0x800000 + (0x555 << 1)); writeWord_N64(0x90); char tempID[5]; setAddress_N64(romBase + 0x800000); // Read manufacturer ID readWord_N64(); // Read flashrom ID sprintf(tempID, "%04X", readWord_N64()); // Check if second flashrom chip is present if ((strcmp(tempID, "22C9") == 0) || (strcmp(tempID, "22CB") == 0)) { cartSize = 16; } resetFlashrom_N64(romBase + 0x800000); } // Intel 4400L0ZDQ0 (64MB) else if (strcmp(flashid, "8816") == 0) { // Found first flashrom chip, set to 32MB cartSize = 32; resetIntel4400_N64(); // Test if second half of the flashrom might be hidden setAddress_N64(romBase + 0x2000000 + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(romBase + 0x2000000 + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + 0x2000000 + (0x555 << 1)); writeWord_N64(0x90); // Read manufacturer ID setAddress_N64(romBase + 0x2000000); readWord_N64(); // Read flashrom ID sprintf(cartID, "%04X", readWord_N64()); if (strcmp(cartID, "8813") == 0) { cartSize = 64; strncpy(flashid , cartID, 5); } resetIntel4400_N64(); // Empty cartID string cartID[0] = '\0'; } //Fujitsu MSP55LV512/Spansion S29GL512N (64MB) else if ((strcmp(cartID, "2301") == 0) && (strcmp(flashid, "227E") == 0)) { cartSize = 64; // Reset flashrom resetFlashrom_N64(romBase); } // Spansion S29GL128N(16MB) with one flashrom chip else if ((strcmp(cartID, "2101") == 0) && (strcmp(flashid, "227E") == 0)) { cartSize = 16; // Reset flashrom resetFlashrom_N64(romBase); } // ST M29W128GL(16MB) with one flashrom chip else if ((strcmp(cartID, "2100") == 0) && (strcmp(flashid, "227E") == 0)) { cartSize = 16; // Reset flashrom resetFlashrom_N64(romBase); } // Intel 512M29EW(64MB) with one flashrom chip else if ((strcmp(cartID, "3901") == 0) && (strcmp(flashid, "227E") == 0)) { cartSize = 64; // Reset flashrom resetFlashrom_N64(romBase); } // Unknown 227E type else if (strcmp(flashid, "227E") == 0) { cartSize = 0; // Reset flashrom resetFlashrom_N64(romBase); } //Test for Fujitsu MSP55LV100S (64MB) else { // Send flashrom ID command setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0xAAAA); setAddress_N64(romBase + (0x2AA << 1)); writeWord_N64(0x5555); setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0x9090); setAddress_N64(romBase); // Read 1 byte vendor ID readWord_N64(); // Read 2 bytes flashrom ID sprintf(cartID, "%04X", readWord_N64()); if (strcmp(cartID, "7E7E") == 0) { resetMSP55LV100_N64(romBase); cartSize = 64; strncpy(flashid , cartID, 5); } } if ((strcmp(flashid, "1240") == 0) && (strcmp(cartID, "1240") == 0)) { print_Error(F("Please reseat cartridge"), true); } } // Erase Intel flashrom void eraseIntel4400_N64() { unsigned long flashBase = romBase; print_Msg(F("Erasing...")); display_Update(); // If the game is smaller than 32Mbit only erase the needed blocks unsigned long lastBlock = 0x1FFFFFF; if (fileSize < 0x1FFFFFF) lastBlock = fileSize; // Erase 4 blocks with 16kwords each for (unsigned long currBlock = 0x0; currBlock < 0x1FFFF; currBlock += 0x8000) { // Unlock block command setAddress_N64(flashBase + currBlock); writeWord_N64(0x60); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Erase command setAddress_N64(flashBase + currBlock); writeWord_N64(0x20); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Read the status register setAddress_N64(flashBase + currBlock); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(flashBase + currBlock); statusReg = readWord_N64(); } } // Erase up to 255 blocks with 64kwords each for (unsigned long currBlock = 0x20000; currBlock < lastBlock; currBlock += 0x1FFFF) { // Unlock block command setAddress_N64(flashBase + currBlock); writeWord_N64(0x60); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Erase command setAddress_N64(flashBase + currBlock); writeWord_N64(0x20); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Read the status register setAddress_N64(flashBase + currBlock); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(flashBase + currBlock); statusReg = readWord_N64(); } // Blink led blinkLED(); } // Check if we should erase the second chip too if ((cartSize = 64) && (fileSize > 0x2000000)) { // Switch base address to second chip flashBase = romBase + 0x2000000; // 255 blocks with 64kwords each for (unsigned long currBlock = 0x0; currBlock < 0x1FDFFFF; currBlock += 0x1FFFF) { // Unlock block command setAddress_N64(flashBase + currBlock); writeWord_N64(0x60); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Erase command setAddress_N64(flashBase + currBlock); writeWord_N64(0x20); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Read the status register setAddress_N64(flashBase + currBlock); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(flashBase + currBlock); statusReg = readWord_N64(); } // Blink led blinkLED(); } // 4 blocks with 16kword each for (unsigned long currBlock = 0x1FE0000; currBlock < 0x1FFFFFF; currBlock += 0x8000) { // Unlock block command setAddress_N64(flashBase + currBlock); writeWord_N64(0x60); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Erase command setAddress_N64(flashBase + currBlock); writeWord_N64(0x20); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Read the status register setAddress_N64(flashBase + currBlock); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(flashBase + currBlock); statusReg = readWord_N64(); } } } } // Erase Fujutsu MSP55LV100S void eraseMSP55LV100_N64() { unsigned long flashBase = romBase; unsigned long sectorSize = 0x20000; print_Msg(F("Erasing...")); display_Update(); for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) { // Blink led blinkLED(); // Send Erase Command to first chip setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAAAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x5555); setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0x8080); setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAAAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x5555); setAddress_N64(romBase + currSector); writeWord_N64(0x3030); // Read the status register setAddress_N64(romBase + currSector); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(romBase + currSector); statusReg = readWord_N64(); } // Read the status register setAddress_N64(romBase + currSector); statusReg = readWord_N64(); while ((statusReg | 0x7FFF) != 0xFFFF) { setAddress_N64(romBase + currSector); statusReg = readWord_N64(); } } } // Common chip erase command void eraseFlashrom_N64() { print_Msg(F("Chip erase...")); display_Update(); // Send Erase Command setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(romBase + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0x80); setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(romBase + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0x10); // Read the status register setAddress_N64(romBase); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(romBase); statusReg = readWord_N64(); // Blink led blinkLED(); delay(500); } } // Common sector erase command void eraseSector_N64(unsigned long sectorSize) { unsigned long flashBase = romBase; print_Msg(F("Sector erase...")); display_Update(); for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) { // Blink led blinkLED(); // Spansion S29GL256N(32MB/64MB) with two flashrom chips if ((currSector == 0x2000000) && (strcmp(cartID, "2201") == 0) && (strcmp(flashid, "227E") == 0)) { // Change to second chip flashBase = romBase + 0x2000000; } // Macronix MX29LV640(8MB/16MB) with two flashrom chips else if ((currSector == 0x800000) && ((strcmp(flashid, "22C9") == 0) || (strcmp(flashid, "22CB") == 0))) { flashBase = romBase + 0x800000; } // Send Erase Command setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0x80); setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + currSector); writeWord_N64(0x30); // Read the status register setAddress_N64(romBase + currSector); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(romBase + currSector); statusReg = readWord_N64(); } } } boolean blankcheckFlashrom_N64() { for (unsigned long currByte = romBase; currByte < romBase + fileSize; currByte += 512) { // Blink led if (currByte % 131072 == 0) blinkLED(); // Set the address setAddress_N64(currByte); for (int c = 0; c < 512; c += 2) { if (readWord_N64() != 0xFFFF) { return 0; } } } return 1; } // Write Intel flashrom void writeIntel4400_N64() { for (unsigned long currSector = 0; currSector < fileSize; currSector += 131072) { // Blink led blinkLED(); // Write to flashrom for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) { // Fill SD buffer myFile.read(sdBuffer, 512); // Write 32 words at a time for (int currWriteBuffer = 0; currWriteBuffer < 512; currWriteBuffer += 64) { // Buffered program command setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); writeWord_N64(0xE8); // Check Status register setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); statusReg = readWord_N64(); } // Write word count (minus 1) setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); writeWord_N64(0x1F); // Write buffer for (byte currByte = 0; currByte < 64; currByte += 2) { // Join two bytes into one word word currWord = ( ( sdBuffer[currWriteBuffer + currByte] & 0xFF ) << 8 ) | ( sdBuffer[currWriteBuffer + currByte + 1] & 0xFF ); setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + currByte); writeWord_N64(currWord); } // Write Buffer to Flash setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 62); writeWord_N64(0xD0); // Read the status register at last written address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 62); statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 62); statusReg = readWord_N64(); } } } } } // Write Fujitsu MSP55LV100S flashrom consisting out of two MSP55LV512 flashroms one used for the high byte the other for the low byte void writeMSP55LV100_N64(unsigned long sectorSize) { unsigned long flashBase = romBase; for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) { // Blink led blinkLED(); // Write to flashrom for (unsigned long currSdBuffer = 0; currSdBuffer < sectorSize; currSdBuffer += 512) { // Fill SD buffer myFile.read(sdBuffer, 512); // Write 32 bytes at a time for (int currWriteBuffer = 0; currWriteBuffer < 512; currWriteBuffer += 32) { // 2 unlock commands setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAAAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x5555); // Write buffer load command at sector address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); writeWord_N64(0x2525); // Write word count (minus 1) at sector address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); writeWord_N64(0x0F0F); // Define variable before loop so we can use it later when reading the status register word currWord; for (byte currByte = 0; currByte < 32; currByte += 2) { // Join two bytes into one word currWord = ( ( sdBuffer[currWriteBuffer + currByte] & 0xFF ) << 8 ) | ( sdBuffer[currWriteBuffer + currByte + 1] & 0xFF ); // Load Buffer Words setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + currByte); writeWord_N64(currWord); } // Write Buffer to Flash setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 30); writeWord_N64(0x2929); // Read the status register at last written address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 30); word statusReg = readWord_N64(); while ((statusReg | 0x7F7F) != (currWord | 0x7F7F)) { setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 30); statusReg = readWord_N64(); } } } } } // Write Spansion S29GL256N flashrom using the 32 byte write buffer void writeFlashBuffer_N64(unsigned long sectorSize, byte bufferSize) { unsigned long flashBase = romBase; for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) { // Blink led blinkLED(); // Spansion S29GL256N(32MB/64MB) with two flashrom chips if ((currSector == 0x2000000) && (strcmp(cartID, "2201") == 0)) { flashBase = romBase + 0x2000000; } // Write to flashrom for (unsigned long currSdBuffer = 0; currSdBuffer < sectorSize; currSdBuffer += 512) { // Fill SD buffer myFile.read(sdBuffer, 512); // Write 32 bytes at a time for (int currWriteBuffer = 0; currWriteBuffer < 512; currWriteBuffer += bufferSize) { // 2 unlock commands setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x55); // Write buffer load command at sector address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); writeWord_N64(0x25); // Write word count (minus 1) at sector address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); writeWord_N64((bufferSize / 2) - 1); // Define variable before loop so we can use it later when reading the status register word currWord; for (byte currByte = 0; currByte < bufferSize; currByte += 2) { // Join two bytes into one word currWord = ( ( sdBuffer[currWriteBuffer + currByte] & 0xFF ) << 8 ) | ( sdBuffer[currWriteBuffer + currByte + 1] & 0xFF ); // Load Buffer Words setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + currByte); writeWord_N64(currWord); } // Write Buffer to Flash setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + bufferSize - 2); writeWord_N64(0x29); // Read the status register at last written address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + bufferSize - 2); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != (currWord | 0xFF7F)) { setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + bufferSize - 2); statusReg = readWord_N64(); } } } } } // Write MX29LV640 flashrom without write buffer void writeFlashrom_N64(unsigned long sectorSize) { unsigned long flashBase = romBase; for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) { // Blink led blinkLED(); // Macronix MX29LV640(8MB/16MB) with two flashrom chips if (currSector == 0x800000) { flashBase = romBase + 0x800000; } // Write to flashrom for (unsigned long currSdBuffer = 0; currSdBuffer < sectorSize; currSdBuffer += 512) { // Fill SD buffer myFile.read(sdBuffer, 512); for (int currByte = 0; currByte < 512; currByte += 2) { // Join two bytes into one word word currWord = ( ( sdBuffer[currByte] & 0xFF ) << 8 ) | ( sdBuffer[currByte + 1] & 0xFF ); // 2 unlock commands setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x55); // Program command setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xA0); // Write word setAddress_N64(romBase + currSector + currSdBuffer + currByte); writeWord_N64(currWord); // Read the status register setAddress_N64(romBase + currSector + currSdBuffer + currByte); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != (currWord | 0xFF7F)) { setAddress_N64(romBase + currSector + currSdBuffer + currByte); statusReg = readWord_N64(); } } } } } unsigned long verifyFlashrom_N64() { // Open file on sd card if (myFile.open(filePath, O_READ)) { writeErrors = 0; for (unsigned long currSector = 0; currSector < fileSize; currSector += 131072) { // Blink led blinkLED(); for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) { // Fill SD buffer myFile.read(sdBuffer, 512); for (int currByte = 0; currByte < 512; currByte += 2) { // Join two bytes into one word word currWord = ( ( sdBuffer[currByte] & 0xFF ) << 8 ) | ( sdBuffer[currByte + 1] & 0xFF ); // Read flash setAddress_N64(romBase + currSector + currSdBuffer + currByte); // Compare both if (readWord_N64() != currWord) { writeErrors++; // Abord if too many errors if (writeErrors > 20) { print_Msg(F("More than ")); // Close the file: myFile.close(); return writeErrors; } } } } } // Close the file: myFile.close(); return writeErrors; } else { println_Msg(F("Can't open file")); display_Update(); return 9999; } } /****************************************** N64 Gameshark Flash Functions *****************************************/ void flashGameshark_N64() { // Check flashrom ID's idGameshark_N64(); // Check for SST 29LE010 (0808)/SST 28LF040 (0404)/AMTEL AT29LV010A (3535)/SST 29EE010 (0707) // !!!! This has been confirmed to allow reading of v1.07, v1.09, v2.0-2.21, v3.2-3.3 !!!! // !!!! 29LE010/29EE010/AT29LV010A are very similar and can possibly be written to with this process. !!!! // !!!! !!!! // !!!! PROCEED AT YOUR OWN RISK !!!! // !!!! !!!! // !!!! SST 29EE010 may have a 5V requirement for writing however dumping works at 3V. As such it is not !!!! // !!!! advised to write to a cart with this chip until further testing can be completed. !!!! if (strcmp(flashid, "0808") == 0 || strcmp(flashid, "0404") == 0 || strcmp(flashid, "3535") == 0 || strcmp(flashid, "0707") == 0) { backupGameshark_N64(); println_Msg(""); println_Msg(F("This will erase your")); println_Msg(F("Gameshark cartridge")); println_Msg(F("Attention: Use 3.3V!")); println_Msg(F("Power OFF if Unsure!")); println_Msg(F("Press Button...")); display_Update(); wait(); // Launch file browser filePath[0] = '\0'; sd.chdir("/"); fileBrowser(F("Select z64 file")); display_Clear(); display_Update(); // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); // Open file on sd card if (myFile.open(filePath, O_READ)) { // Get rom size from file fileSize = myFile.fileSize(); print_Msg(F("File size: ")); print_Msg(fileSize / 1024); println_Msg(F("KB")); display_Update(); // Compare file size to flashrom size if (fileSize > 262144) { print_Error(F("File too big"), true); } // SST 29LE010, chip erase not needed as this eeprom automaticly erases during the write cycle eraseGameshark_N64(); // Write flashrom print_Msg(F("Writing ")); println_Msg(filePath); display_Update(); writeGameshark_N64(); // Close the file: myFile.close(); // Verify print_Msg(F("Verifying...")); display_Update(); writeErrors = verifyGameshark_N64(); if (writeErrors == 0) { println_Msg(F("OK")); println_Msg(F("")); println_Msg(F("Turn Cart Reader off now")); display_Update(); while (1); } else { print_Msg(writeErrors); print_Msg(F(" bytes ")); print_Error(F("did not verify."), false); } } else { print_Error(F("Can't open file"), false); } } // If the ID is unknown show error message else { print_Msg(F("ID: ")); println_Msg(flashid); print_Error(F("Unknown flashrom"), false); } println_Msg(F("Press Button...")); display_Update(); wait(); display_Clear(); display_Update(); } //Test for SST 29LE010 or SST 28LF040 (0404) or AMTEL AT29LV010A (3535) or SST 29EE010 (0707) void idGameshark_N64() { //Send flashrom ID command setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xAAAA); setAddress_N64(romBase + 0x5554); writeWord_N64(0x5555); setAddress_N64(romBase + 0xAAAA); writeWord_N64(0x9090); setAddress_N64(romBase); // Read 1 byte vendor ID readWord_N64(); // Read 2 bytes flashrom ID sprintf(flashid, "%04X", readWord_N64()); // Reset flashrom resetGameshark_N64(); } //Reset ST29LE010 void resetGameshark_N64() { // Send reset Command setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xAAAA); setAddress_N64(romBase + 0x5554); writeWord_N64(0x5555); setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xF0F0); delay(100); } // Read rom and save to the SD card void backupGameshark_N64() { // create a new folder EEPROM_readAnything(0, foldern); sprintf(fileName, "GS%d", foldern); strcat(fileName, ".z64"); sd.mkdir("N64/ROM/Gameshark", true); sd.chdir("N64/ROM/Gameshark"); display_Clear(); print_Msg(F("Saving ")); print_Msg(fileName); println_Msg(F("...")); display_Update(); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); // Open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_Error(F("SD Error"), true); } for (unsigned long currByte = romBase + 0xC00000; currByte < (romBase + 0xC00000 + 262144); currByte += 512) { // Blink led if (currByte % 16384 == 0) blinkLED(); // Set the address for the next 512 bytes setAddress_N64(currByte); for (int c = 0; c < 512; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } myFile.write(sdBuffer, 512); } // Close the file: myFile.close(); } // Send chip erase to the two SST29LE010 inside the Gameshark void eraseGameshark_N64() { println_Msg(F("Erasing...")); display_Update(); //Sending erase command according to datasheet setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xAAAA); setAddress_N64(romBase + 0x5554); writeWord_N64(0x5555); setAddress_N64(romBase + 0xAAAA); writeWord_N64(0x8080); setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xAAAA); setAddress_N64(romBase + 0x5554); writeWord_N64(0x5555); setAddress_N64(romBase + 0xAAAA); writeWord_N64(0x1010); delay(20); } // Write Gameshark with 2x SST29LE010 Eeproms void writeGameshark_N64() { // Each 29LE010 has 1024 pages, each 128 bytes in size for (unsigned long currPage = 0; currPage < fileSize / 2; currPage += 128) { // Fill SD buffer with twice the amount since we flash 2 chips myFile.read(sdBuffer, 256); // Blink led blinkLED(); //Send page write command to both flashroms setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xAAAA); setAddress_N64(romBase + 0x5554); writeWord_N64(0x5555); setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xA0A0); // Write 1 page each, one flashrom gets the low byte, the other the high byte. for (unsigned long currByte = 0; currByte < 256; currByte += 2) { // Set address setAddress_N64(romBase + 0xC00000 + (currPage * 2) + currByte); // Join two bytes into one word word currWord = ((sdBuffer[currByte] & 0xFF) << 8) | (sdBuffer[currByte + 1] & 0xFF); // Send byte data writeWord_N64(currWord); } delay(30); } } unsigned long verifyGameshark_N64() { // Open file on sd card if (myFile.open(filePath, O_READ)) { writeErrors = 0; for (unsigned long currSector = 0; currSector < fileSize; currSector += 131072) { // Blink led blinkLED(); for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) { // Fill SD buffer myFile.read(sdBuffer, 512); for (int currByte = 0; currByte < 512; currByte += 2) { // Join two bytes into one word word currWord = ( ( sdBuffer[currByte] & 0xFF ) << 8 ) | ( sdBuffer[currByte + 1] & 0xFF ); // Read flash setAddress_N64(romBase + 0xC00000 + currSector + currSdBuffer + currByte); // Compare both if (readWord_N64() != currWord) { if ( (strcmp(flashid, "0808") == 0) && (currSector + currSdBuffer + currByte > 0x3F) && (currSector + currSdBuffer + currByte < 0x1080)) { // Gameshark maps this area to the bootcode of the plugged in cartridge } else { writeErrors++; } } } } } // Close the file: myFile.close(); return writeErrors; } else { println_Msg(F("Can't open file")); display_Update(); return 9999; } } #endif //****************************************** // End of File //******************************************