/********************************************************************************** Cartridge Reader for Arduino Mega2560 This project represents a community-driven effort to provide an easy to build and easy to modify cartridge dumper. Date: 2023-07-19 Version: 12.8 SD lib: https://github.com/greiman/SdFat LCD lib: https://github.com/olikraus/u8g2 Neopixel lib: https://github.com/adafruit/Adafruit_NeoPixel Rotary Enc lib: https://github.com/mathertel/RotaryEncoder SI5351 lib: https://github.com/etherkit/Si5351Arduino RTC lib: https://github.com/adafruit/RTClib Frequency lib: https://github.com/PaulStoffregen/FreqCount Compiled with Arduino IDE 2.1.1 Thanks to: MichlK - ROM Reader for Super Nintendo Jeff Saltzman - 4-Way Button Wayne and Layne - Video Game Shield menu skaman - Cart ROM READER SNES ENHANCED, Famicom Cart Dumper, Coleco-, Intellivision, Virtual Boy, WSV, PCW, ARC, Atari, ODY2, Fairchild, MSX, Pokemon Mini modules Tamanegi_taro - PCE and Satellaview modules splash5 - GBSmart, Wonderswan, NGP and Super A'can modules partlyhuman - Casio Loopy module hkz & themanbehindthecurtain - N64 flashram commands Andrew Brown & Peter Den Hartog - N64 controller protocol libdragon - N64 controller checksum functions Angus Gratton - CRC32 Snes9x - SuperFX sram fix insidegadgets - GBCartRead RobinTheHood - GameboyAdvanceRomDumper Gens-gs - Megadrive checksum fceux - iNes header And a special Thank You to all coders and contributors on Github and the Arduino forum: jiyunomegami, splash5, Kreeblah, ramapcsx2, PsyK0p4T, Dakkaron, majorpbx, Pickle, sdhizumi, Uzlopak, sakman55, Tombo89, scrap-a, borti4938, vogelfreiheit, CaitSith2, Modman, philenotfound, karimhadjsalem, nsx0r, ducky92, niklasweber, Lesserkuma, BacteriaMage, vpelletier, Ancyker, mattiacci, RWeick, joshman196, partlyhuman And to nocash for figuring out the secrets of the SFC Nintendo Power cartridge. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . **********************************************************************************/ #include "OSCR.h" /****************************************** Libraries *****************************************/ // SD Card #include "SdFat.h" SdFs sd; FsFile myFile; #ifdef global_log FsFile myLog; boolean dont_log = false; #endif // AVR Eeprom #include // forward declarations for "T" (for non Arduino IDE) template int EEPROM_writeAnything(int ee, const T& value); template int EEPROM_readAnything(int ee, T& value); // Graphic SPI LCD #ifdef enable_LCD #include U8G2_ST7567_OS12864_F_4W_HW_SPI display(U8G2_R2, /* cs=*/12, /* dc=*/11, /* reset=*/10); #endif // Rotary Encoder #ifdef enable_rotary #include #define PIN_IN1 18 #define PIN_IN2 19 #ifdef rotate_counter_clockwise RotaryEncoder encoder(PIN_IN2, PIN_IN1, RotaryEncoder::LatchMode::FOUR3); #else RotaryEncoder encoder(PIN_IN1, PIN_IN2, RotaryEncoder::LatchMode::FOUR3); #endif int rotaryPos = 0; #endif // Choose RGB LED type #ifdef enable_neopixel // Neopixel #include Adafruit_NeoPixel pixels(3, 13, NEO_GRB + NEO_KHZ800); #endif typedef enum COLOR_T { blue_color, red_color, purple_color, green_color, turquoise_color, yellow_color, white_color, } color_t; // Graphic I2C OLED #ifdef enable_OLED #include U8G2_SSD1306_128X64_NONAME_F_HW_I2C display(U8G2_R0, /* reset=*/U8X8_PIN_NONE); #endif // Adafruit Clock Generator #include Si5351 clockgen; bool i2c_found; // RTC Library #ifdef RTC_installed #define _RTC_H #include "RTClib.h" #endif // Clockgen Calibration #ifdef clockgen_calibration #include "FreqCount.h" #endif void _print_FatalError(void) __attribute__((noreturn)); void print_FatalError(const __FlashStringHelper* errorMessage) __attribute__((noreturn)); void print_FatalError(byte errorMessage) __attribute__((noreturn)); /****************************************** End of inclusions and forward declarations *****************************************/ template int EEPROM_writeAnything(int ee, const T& value) { const byte* p = (const byte*)(const void*)&value; unsigned int i; for (i = 0; i < sizeof(value); i++) EEPROM.write(ee++, *p++); return i; } template int EEPROM_readAnything(int ee, T& value) { byte* p = (byte*)(void*)&value; unsigned int i; for (i = 0; i < sizeof(value); i++) *p++ = EEPROM.read(ee++); return i; } /****************************************** Common Strings *****************************************/ #define press_button_STR 0 #define sd_error_STR 1 #define reset_STR 2 #define did_not_verify_STR 3 #define _bytes_STR 4 #define error_STR 5 #define create_file_STR 6 #define open_file_STR 7 #define file_too_big_STR 8 #define done_STR 9 #define saving_to_STR 10 #define verifying_STR 11 #define flashing_file_STR 12 #define press_to_change_STR 13 #define right_to_select_STR 14 #define rotate_to_change_STR 15 #define press_to_select_STR 16 // This arrays holds the most often uses strings static const char string_press_button0[] PROGMEM = "Press Button..."; static const char string_sd_error1[] PROGMEM = "SD Error"; static const char string_reset2[] PROGMEM = "Reset"; static const char string_did_not_verify3[] PROGMEM = "did not verify"; static const char string_bytes4[] PROGMEM = " bytes "; static const char string_error5[] PROGMEM = "Error: "; static const char string_create_file6[] PROGMEM = "Can't create file"; static const char string_open_file7[] PROGMEM = "Can't open file"; static const char string_file_too_big8[] PROGMEM = "File too big"; static const char string_done9[] PROGMEM = "Done"; static const char string_saving_to10[] PROGMEM = "Saving to "; static const char string_verifying11[] PROGMEM = "Verifying..."; static const char string_flashing_file12[] PROGMEM = "Flashing file "; static const char string_press_to_change13[] PROGMEM = "Press left to Change"; static const char string_right_to_select14[] PROGMEM = "and right to Select"; static const char string_rotate_to_change15[] PROGMEM = "Rotate to Change"; static const char string_press_to_select16[] PROGMEM = "Press to Select"; static const char* const string_table[] PROGMEM = { string_press_button0, string_sd_error1, string_reset2, string_did_not_verify3, string_bytes4, string_error5, string_create_file6, string_open_file7, string_file_too_big8, string_done9, string_saving_to10, string_verifying11, string_flashing_file12, string_press_to_change13, string_right_to_select14, string_rotate_to_change15, string_press_to_select16 }; void print_STR(byte string_number, boolean newline) { char string_buffer[22]; strcpy_P(string_buffer, (char*)pgm_read_word(&(string_table[string_number]))); if (newline) println_Msg(string_buffer); else print_Msg(string_buffer); } /****************************************** Defines *****************************************/ // Mode menu #define mode_N64_Cart 0 #define mode_N64_Controller 1 #define mode_SNES 2 #define mode_SFM 3 #define mode_SFM_Flash 4 #define mode_SFM_Game 5 #define mode_GB 6 #define mode_FLASH8 7 #define mode_FLASH16 8 #define mode_GBA 9 #define mode_GBM 10 #define mode_MD_Cart 11 #define mode_EPROM 12 #define mode_PCE 13 #define mode_SV 14 #define mode_NES 15 #define mode_SMS 16 #define mode_SEGA_CD 17 #define mode_GB_GBSmart 18 #define mode_GB_GBSmart_Flash 19 #define mode_GB_GBSmart_Game 20 #define mode_WS 21 #define mode_NGP 22 #define mode_INTV 23 #define mode_COL 24 #define mode_VBOY 25 #define mode_WSV 26 #define mode_PCW 27 #define mode_ATARI 28 #define mode_ODY2 29 #define mode_ARC 30 #define mode_FAIRCHILD 31 #define mode_SUPRACAN 32 #define mode_MSX 33 #define mode_POKE 34 #define mode_LOOPY 35 // optimization-safe nop delay #define NOP __asm__ __volatile__("nop\n\t") // Button timing #define debounce 20 // ms debounce period to prevent flickering when pressing or releasing the button #define DCgap 250 // max ms between clicks for a double click event #define holdTime 2000 // ms hold period: how long to wait for press+hold event #define longHoldTime 5000 // ms long hold period: how long to wait for press+hold event /****************************************** Variables *****************************************/ #ifdef enable_rotary // Button debounce boolean buttonState = HIGH; // the current reading from the input pin boolean lastButtonState = HIGH; // the previous reading from the input pin unsigned long lastDebounceTime = 0; // the last time the output pin was toggled unsigned long debounceDelay = 50; // the debounce time; increase if the output flickers #endif #ifdef enable_OLED // Button 1 boolean buttonVal1 = HIGH; // value read from button boolean buttonLast1 = HIGH; // buffered value of the button's previous state boolean DCwaiting1 = false; // whether we're waiting for a double click (down) boolean DConUp1 = false; // whether to register a double click on next release, or whether to wait and click boolean singleOK1 = true; // whether it's OK to do a single click long downTime1 = -1; // time the button was pressed down long upTime1 = -1; // time the button was released boolean ignoreUp1 = false; // whether to ignore the button release because the click+hold was triggered boolean waitForUp1 = false; // when held, whether to wait for the up event boolean holdEventPast1 = false; // whether or not the hold event happened already boolean longholdEventPast1 = false; // whether or not the long hold event happened already // Button 2 boolean buttonVal2 = HIGH; // value read from button boolean buttonLast2 = HIGH; // buffered value of the button's previous state boolean DCwaiting2 = false; // whether we're waiting for a double click (down) boolean DConUp2 = false; // whether to register a double click on next release, or whether to wait and click boolean singleOK2 = true; // whether it's OK to do a single click long downTime2 = -1; // time the button was pressed down long upTime2 = -1; // time the button was released boolean ignoreUp2 = false; // whether to ignore the button release because the click+hold was triggered boolean waitForUp2 = false; // when held, whether to wait for the up event boolean holdEventPast2 = false; // whether or not the hold event happened already boolean longholdEventPast2 = false; // whether or not the long hold event happened already #endif #ifdef enable_serial // For incoming serial data int incomingByte; #endif // Variables for the menu int choice = 0; // Temporary array that holds the menu option read out of progmem char menuOptions[7][20]; boolean ignoreError = 0; // File browser #define FILENAME_LENGTH 100 #define FILEPATH_LENGTH 132 #define FILEOPTS_LENGTH 20 char fileName[FILENAME_LENGTH]; char filePath[FILEPATH_LENGTH]; byte currPage; byte lastPage; byte numPages; boolean root = 0; boolean filebrowse = 0; // Common // 21 chars for SNES ROM name, one char for termination char romName[22]; unsigned long sramSize = 0; int romType = 0; byte saveType; word romSize = 0; word numBanks = 128; char checksumStr[9]; bool errorLvl = 0; byte romVersion = 0; char cartID[5]; unsigned long cartSize; unsigned int flashid; char flashid_str[5]; char vendorID[5]; unsigned long fileSize; unsigned long sramBase; unsigned long flashBanks; bool flashX16Mode; bool flashSwitchLastBits; // Variable to count errors unsigned long writeErrors; // Operation mode byte mode = 0xFF; //remember folder number to create a new folder for every game int foldern; // 4 chars for console type, 4 chars for SAVE/ROM, 21 chars for ROM name, 4 chars for folder number, 3 chars for slashes, one char for termination, one char savety char folder[38]; // Array that holds the data byte sdBuffer[512]; // soft reset Arduino: jumps to 0 // using the watchdog timer would be more elegant but some Mega2560 bootloaders are buggy with it void (*resetArduino)(void) __attribute__((noreturn)) = 0; // Progressbar void draw_progressbar(uint32_t processedsize, uint32_t totalsize); // used by MD and NES modules byte eepbit[8]; byte eeptemp; // Array to hold iNES header byte iNES_HEADER[16]; //ID 0-3 //ROM_size 4 //VROM_size 5 //ROM_type 6 //ROM_type2 7 //ROM_type3 8 //Upper_ROM_VROM_size 9 //RAM_size 10 //VRAM_size 11 //TV_system 12 //VS_hardware 13 //reserved 14, 15 //****************************************** // CRC32 //****************************************** // CRC32 lookup table // 256 entries static const uint32_t crc_32_tab[] PROGMEM = { /* CRC polynomial 0xedb88320 */ 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d }; // Defined as a macros, as compiler disregards inlining requests and these are // performance-critical functions. #define UPDATE_CRC(crc, ch) \ do { \ uint8_t idx = ((crc) ^ (ch)) & 0xff; \ uint32_t tab_value = pgm_read_dword(crc_32_tab + idx); \ (crc) = tab_value ^ ((crc) >> 8); \ } while (0) uint32_t updateCRC(const byte* buffer, size_t length, uint32_t crc) { for (size_t c = 0; c < length; c++) { UPDATE_CRC(crc, buffer[c]); } return crc; } uint32_t calculateCRC(const byte* buffer, size_t length) { uint32_t crc = 0xFFFFFFFF; crc = updateCRC(buffer, length, crc); return ~crc; } uint32_t calculateCRC(FsFile& infile) { uint32_t byte_count; uint32_t crc = 0xFFFFFFFF; while ((byte_count = infile.read(sdBuffer, sizeof(sdBuffer))) != 0) { crc = updateCRC(sdBuffer, byte_count, crc); } return ~crc; } // Calculate rom's CRC32 from SD uint32_t calculateCRC(char* fileName, char* folder, int offset) { FsFile infile; uint32_t result; sd.chdir(folder); if (infile.open(fileName, O_READ)) { infile.seek(offset); result = calculateCRC(infile); infile.close(); return result; } else { display_Clear(); print_Msg(F("File ")); //print_Msg(folder); //print_Msg(F("/")); //print_Msg(fileName); print_FatalError(F(" not found")); return 0; } } /****************************************** CRC Functions for Atari, Fairchild, Ody2, Arc modules *****************************************/ #if (defined(enable_ATARI) || defined(enable_ODY2) || defined(enable_ARC) || defined(enable_FAIRCHILD) || defined(enable_MSX) || defined(enable_POKE)) inline uint32_t updateCRC(uint8_t ch, uint32_t crc) { uint32_t idx = ((crc) ^ (ch)) & 0xff; uint32_t tab_value = pgm_read_dword(crc_32_tab + idx); return tab_value ^ ((crc) >> 8); } FsFile crcFile; char tempCRC[9]; uint32_t crc32(FsFile& file, uint32_t& charcnt) { uint32_t oldcrc32 = 0xFFFFFFFF; charcnt = 0; while (file.available()) { crcFile.read(sdBuffer, 512); for (int x = 0; x < 512; x++) { uint8_t c = sdBuffer[x]; charcnt++; oldcrc32 = updateCRC(c, oldcrc32); } } return ~oldcrc32; } void calcCRC(char* checkFile, unsigned long filesize, uint32_t* crcCopy, unsigned long offset) { uint32_t crc; crcFile = sd.open(checkFile); crcFile.seek(offset); crc = crc32(crcFile, filesize); crcFile.close(); sprintf(tempCRC, "%08lX", crc); if (crcCopy != NULL) { *crcCopy = crc; } print_Msg(F("CRC: ")); println_Msg(tempCRC); display_Update(); } #endif //****************************************** // Functions for CRC32 database //****************************************** //Skip line void skip_line(FsFile* readfile) { int i = 0; char str_buf; while (readfile->available()) { //Read 1 byte from file str_buf = readfile->read(); //if end of file or newline found, execute command if (str_buf == '\r') { readfile->read(); //dispose \n because \r\n break; } i++; } //End while } //Get line from file void get_line(char* str_buf, FsFile* readfile, uint8_t maxi) { int read_len; // Status LED on statusLED(true); read_len = readfile->read(str_buf, maxi - 1); for (int i = 0; i < read_len; i++) { //if end of file or newline found, execute command if (str_buf[i] == '\r') { str_buf[i] = 0; readfile->seekCur(i - read_len + 2); // +2 to skip over \n because \r\n return; } } str_buf[maxi - 1] = 0; // EOL was not found, keep looking (slower) while (readfile->available()) { if (readfile->read() == '\r') { readfile->read(); // read \n because \r\n break; } } } void rewind_line(FsFile& readfile, byte count = 1) { uint32_t position = readfile.curPosition(); // To seek one line back, this code must step over the first newline it finds // in order to exit the current line and enter the end of the previous one. // Convert from how-many-lines-back into how-many-newlines-to-look-for // by incrementing it by 1. count++; for (byte count_newline = 0; count_newline < count; count_newline++) { // Go to the strictly previous '\n', or file start. while (position) { // Seek back first (keeping position updated)... position--; readfile.seekCur(-1); // ...and check current byte second. // Note: this code assumed all files use ASCII with DOS-style newlines // so \n is encountered first when seeking backwards. if (readfile.peek() == '\n') break; } } // If not at file start, the current character is the '\n' just before the // desired line, so advance by one. if (position) readfile.seekCur(1); } // Calculate CRC32 if needed and compare it to CRC read from database boolean compareCRC(const char* database, uint32_t crc32sum, boolean renamerom, int offset) { char crcStr[9]; print_Msg(F("CRC32... ")); display_Update(); if (crc32sum == 0) { //go to root sd.chdir(); // Calculate CRC32 sprintf(crcStr, "%08lX", calculateCRC(fileName, folder, offset)); } else { // Convert precalculated crc to string sprintf(crcStr, "%08lX", ~crc32sum); } // Print checksum print_Msg(crcStr); display_Update(); //Search for CRC32 in file char gamename[96]; char crc_search[9]; //go to root sd.chdir(); if (myFile.open(database, O_READ)) { //Search for same CRC in list while (myFile.available()) { //Read 2 lines (game name and CRC) get_line(gamename, &myFile, sizeof(gamename)); get_line(crc_search, &myFile, sizeof(crc_search)); skip_line(&myFile); //Skip every 3rd line //if checksum search successful, rename the file and end search if (strcmp(crc_search, crcStr) == 0) { #ifdef enable_NES if ((mode == mode_NES) && (offset != 0)) { // Rewind to iNES Header myFile.seekCur(-36); char iNES_STR[33]; // Read iNES header get_line(iNES_STR, &myFile, 33); // Convert "4E4553" to (0x4E, 0x45, 0x53) unsigned int iNES_BUF; for (byte j = 0; j < 16; j++) { sscanf(iNES_STR + j * 2, "%2X", &iNES_BUF); iNES_HEADER[j] = iNES_BUF; } //Skip CRLF myFile.seekCur(4); } #endif // enable_NES // Close the file: myFile.close(); //Write iNES header #ifdef enable_NES if ((mode == mode_NES) && (offset != 0)) { // Write iNES header sd.chdir(folder); if (!myFile.open(fileName, O_RDWR)) { print_FatalError(sd_error_STR); } for (byte z = 0; z < 16; z++) { myFile.write(iNES_HEADER[z]); } myFile.close(); } #endif // enable_NES print_Msg(F(" -> ")); display_Update(); if (renamerom) { println_Msg(gamename); // Rename file to database name sd.chdir(folder); delay(100); if (myFile.open(fileName, O_READ)) { myFile.rename(gamename); // Close the file: myFile.close(); } } else { println_Msg("OK"); } return 1; break; } } if (strcmp(crc_search, crcStr) != 0) { print_Error(F(" -> Not found")); return 0; } } else { println_Msg(F(" -> Error")); print_Error(F("Database missing")); return 0; } return 0; } byte starting_letter() { #ifdef global_log // Disable log to prevent unnecessary logging dont_log = true; #endif #if (defined(enable_LCD) || defined(enable_OLED)) byte selection = 0; byte line = 0; display_Clear(); println_Msg(F("[#] [A] [B] [C] [D] [E] [F]")); println_Msg(F("")); println_Msg(F("[G] [H] [ I ] [J] [K] [L] [M]")); println_Msg(F("")); println_Msg(F("[N] [O] [P] [Q] [R] [S] [T]")); println_Msg(F("")); println_Msg(F("[U] [V] [W] [X] [Y] [Z] [?]")); // Draw selection line display.setDrawColor(1); display.drawLine(4 + selection * 16, 10 + line * 16, 9 + selection * 16, 10 + line * 16); display_Update(); while (1) { int b = checkButton(); if (b == 2) { // Previous if ((selection == 0) && (line > 0)) { line--; selection = 6; } else if ((selection == 0) && (line == 0)) { line = 3; selection = 6; } else if (selection > 0) { selection--; } display.setDrawColor(0); display.drawLine(0, 10 + 0 * 16, 128, 10 + 0 * 16); display.drawLine(0, 10 + 1 * 16, 128, 10 + 1 * 16); display.drawLine(0, 10 + 2 * 16, 128, 10 + 2 * 16); display.drawLine(0, 10 + 3 * 16, 128, 10 + 3 * 16); display.setDrawColor(1); display.drawLine(4 + selection * 16, 10 + line * 16, 9 + selection * 16, 10 + line * 16); display_Update(); } else if (b == 1) { // Next if ((selection == 6) && (line < 3)) { line++; selection = 0; } else if ((selection == 6) && (line == 3)) { line = 0; selection = 0; } else if (selection < 6) { selection++; } display.setDrawColor(0); display.drawLine(0, 10 + 0 * 16, 128, 10 + 0 * 16); display.drawLine(0, 10 + 1 * 16, 128, 10 + 1 * 16); display.drawLine(0, 10 + 2 * 16, 128, 10 + 2 * 16); display.drawLine(0, 10 + 3 * 16, 128, 10 + 3 * 16); display.setDrawColor(1); display.drawLine(4 + selection * 16, 10 + line * 16, 9 + selection * 16, 10 + line * 16); display_Update(); } else if (b == 3) { // Long Press - Execute if ((selection + line * 7) != 27) { display_Clear(); println_Msg(F("Please wait...")); display_Update(); } break; } } return (selection + line * 7); #elif defined(SERIAL_MONITOR) Serial.println(F("Enter first letter: ")); while (Serial.available() == 0) { } // Read the incoming byte: byte incomingByte = Serial.read(); return incomingByte; #endif #ifdef global_log // Enable log again dont_log = false; #endif } void print_MissingModule(void) { display_Clear(); println_Msg(F("Please enable module")); print_FatalError(F("in Cart_Reader.ino.")); } /****************************************** Main menu *****************************************/ #ifdef enable_GBX static const char modeItem1[] PROGMEM = "Game Boy"; #endif #ifdef enable_NES static const char modeItem2[] PROGMEM = "NES/Famicom"; #endif #ifdef enable_SNES static const char modeItem3[] PROGMEM = "Super Nintendo/SFC"; #endif #ifdef enable_N64 static const char modeItem4[] PROGMEM = "Nintendo 64 (3V)"; #endif #ifdef enable_MD static const char modeItem5[] PROGMEM = "Mega Drive/Genesis"; #endif #ifdef enable_SMS static const char modeItem6[] PROGMEM = "SMS/GG/MIII/SG-1000"; #endif #ifdef enable_PCE static const char modeItem7[] PROGMEM = "PC Engine/TG16"; #endif #ifdef enable_WS static const char modeItem8[] PROGMEM = "WonderSwan (3V)"; #endif #ifdef enable_NGP static const char modeItem9[] PROGMEM = "NeoGeo Pocket (3V)"; #endif #ifdef enable_INTV static const char modeItem10[] PROGMEM = "Intellivision"; #endif #ifdef enable_COLV static const char modeItem11[] PROGMEM = "Colecovision"; #endif #ifdef enable_VBOY static const char modeItem12[] PROGMEM = "Virtual Boy"; #endif #ifdef enable_WSV static const char modeItem13[] PROGMEM = "Watara Supervision (3V)"; #endif #ifdef enable_PCW static const char modeItem14[] PROGMEM = "Pocket Challenge W"; #endif #ifdef enable_ATARI static const char modeItem15[] PROGMEM = "Atari 2600"; #endif #ifdef enable_ODY2 static const char modeItem16[] PROGMEM = "Magnavox Odyssey 2"; #endif #ifdef enable_ARC static const char modeItem17[] PROGMEM = "Arcadia 2001"; #endif #ifdef enable_FAIRCHILD static const char modeItem18[] PROGMEM = "Fairchild Channel F"; #endif #ifdef enable_SUPRACAN static const char modeItem19[] PROGMEM = "Super A'can"; #endif #ifdef enable_MSX static const char modeItem20[] PROGMEM = "MSX"; #endif #ifdef enable_POKE static const char modeItem21[] PROGMEM = "Pokemon Mini (3V)"; #endif #ifdef enable_LOOPY static const char modeItem22[] PROGMEM = "Casio Loopy"; #endif #ifdef enable_FLASH static const char modeItem23[] PROGMEM = "Flashrom Programmer"; #endif static const char modeItem24[] PROGMEM = "Self Test (3V)"; static const char modeItem25[] PROGMEM = "About"; //static const char modeItem25[] PROGMEM = "Reset"; (stored in common strings array) static const char* const modeOptions[] PROGMEM = { #ifdef enable_GBX modeItem1, #endif #ifdef enable_NES modeItem2, #endif #ifdef enable_SNES modeItem3, #endif #ifdef enable_N64 modeItem4, #endif #ifdef enable_MD modeItem5, #endif #ifdef enable_SMS modeItem6, #endif #ifdef enable_PCE modeItem7, #endif #ifdef enable_WS modeItem8, #endif #ifdef enable_NGP modeItem9, #endif #ifdef enable_INTV modeItem10, #endif #ifdef enable_COLV modeItem11, #endif #ifdef enable_VBOY modeItem12, #endif #ifdef enable_WSV modeItem13, #endif #ifdef enable_PCW modeItem14, #endif #ifdef enable_ATARI modeItem15, #endif #ifdef enable_ODY2 modeItem16, #endif #ifdef enable_ARC modeItem17, #endif #ifdef enable_FAIRCHILD modeItem18, #endif #ifdef enable_SUPRACAN modeItem19, #endif #ifdef enable_MSX modeItem20, #endif #ifdef enable_POKE modeItem21, #endif #ifdef enable_LOOPY modeItem22, #endif #ifdef enable_FLASH modeItem23, #endif modeItem24, modeItem25, string_reset2 }; // Count menu entries byte countMenuEntries() { byte count = 3; #ifdef enable_GBX count++; #endif #ifdef enable_NES count++; #endif #ifdef enable_SNES count++; #endif #ifdef enable_N64 count++; #endif #ifdef enable_MD count++; #endif #ifdef enable_SMS count++; #endif #ifdef enable_PCE count++; #endif #ifdef enable_WS count++; #endif #ifdef enable_NGP count++; #endif #ifdef enable_INTV count++; #endif #ifdef enable_COLV count++; #endif #ifdef enable_VBOY count++; #endif #ifdef enable_WSV count++; #endif #ifdef enable_PCW count++; #endif #ifdef enable_ATARI count++; #endif #ifdef enable_ODY2 count++; #endif #ifdef enable_ARC count++; #endif #ifdef enable_FAIRCHILD count++; #endif #ifdef enable_SUPRACAN count++; #endif #ifdef enable_MSX count++; #endif #ifdef enable_POKE count++; #endif #ifdef enable_LOOPY count++; #endif #ifdef enable_FLASH count++; #endif return count; } // Account for disabled menue entries unsigned char fixMenuOrder(unsigned char modeMenu) { byte translationMatrix[26]; byte currentEntry = 0; #if defined(enable_GBX) translationMatrix[currentEntry] = 0; currentEntry++; #endif #if defined(enable_NES) translationMatrix[currentEntry] = 1; currentEntry++; #endif #if defined(enable_SNES) translationMatrix[currentEntry] = 2; currentEntry++; #endif #if defined(enable_N64) translationMatrix[currentEntry] = 3; currentEntry++; #endif #if defined(enable_MD) translationMatrix[currentEntry] = 4; currentEntry++; #endif #if defined(enable_SMS) translationMatrix[currentEntry] = 5; currentEntry++; #endif #if defined(enable_PCE) translationMatrix[currentEntry] = 6; currentEntry++; #endif #if defined(enable_WS) translationMatrix[currentEntry] = 7; currentEntry++; #endif #if defined(enable_NGP) translationMatrix[currentEntry] = 8; currentEntry++; #endif #if defined(enable_INTV) translationMatrix[currentEntry] = 9; currentEntry++; #endif #if defined(enable_COLV) translationMatrix[currentEntry] = 10; currentEntry++; #endif #if defined(enable_VBOY) translationMatrix[currentEntry] = 11; currentEntry++; #endif #if defined(enable_WSV) translationMatrix[currentEntry] = 12; currentEntry++; #endif #if defined(enable_PCW) translationMatrix[currentEntry] = 13; currentEntry++; #endif #if defined(enable_ATARI) translationMatrix[currentEntry] = 14; currentEntry++; #endif #if defined(enable_ODY2) translationMatrix[currentEntry] = 15; currentEntry++; #endif #if defined(enable_ARC) translationMatrix[currentEntry] = 16; currentEntry++; #endif #if defined(enable_FAIRCHILD) translationMatrix[currentEntry] = 17; currentEntry++; #endif #if defined(enable_SUPRACAN) translationMatrix[currentEntry] = 18; currentEntry++; #endif #if defined(enable_MSX) translationMatrix[currentEntry] = 19; currentEntry++; #endif #if defined(enable_POKE) translationMatrix[currentEntry] = 20; currentEntry++; #endif #if defined(enable_LOOPY) translationMatrix[currentEntry] = 21; currentEntry++; #endif #if defined(enable_FLASH) translationMatrix[currentEntry] = 22; currentEntry++; #endif // Self Test translationMatrix[currentEntry] = 23; currentEntry++; // About translationMatrix[currentEntry] = 24; currentEntry++; // Reset translationMatrix[currentEntry] = 25; currentEntry++; return translationMatrix[modeMenu]; } // All included slots void mainMenu() { // create menu with title and 20 options to choose from unsigned char modeMenu; byte num_answers; byte option_offset; // Count menu entries byte menuCount = countMenuEntries(); // Main menu spans across three pages currPage = 1; lastPage = 1; if ((menuCount % 7) == 0) numPages = menuCount / 7; else numPages = (byte)(menuCount / 7) + 1; while (1) { if (currPage == 1) { option_offset = 0; if (menuCount < 7) num_answers = menuCount; else num_answers = 7; } else if (currPage == 2) { option_offset = 7; if (menuCount < 14) num_answers = menuCount - 7; else num_answers = 7; } else if (currPage == 3) { option_offset = 14; if (menuCount < 21) num_answers = menuCount - 14; else num_answers = 7; } else { // currPage == 4 option_offset = 21; num_answers = menuCount - 21; } // Copy menuOptions out of progmem convertPgm(modeOptions + option_offset, num_answers); modeMenu = question_box(F("OPEN SOURCE CART READER"), menuOptions, num_answers, 0); if (numPages == 0) { // Execute choice modeMenu += option_offset; break; } } // Reset page number currPage = 1; modeMenu = fixMenuOrder(modeMenu); // wait for user choice to come back from the question box menu switch (modeMenu) { #ifdef enable_GBX case 0: gbxMenu(); break; #endif #ifdef enable_NES case 1: mode = mode_NES; display_Clear(); display_Update(); setup_NES(); getMapping(); checkStatus_NES(); nesMenu(); break; #endif #ifdef enable_SNES case 2: snsMenu(); break; #endif #ifdef enable_N64 case 3: n64Menu(); break; #endif #ifdef enable_MD case 4: mdMenu(); break; #endif #ifdef enable_SMS case 5: smsMenu(); break; #endif #ifdef enable_PCE case 6: pcsMenu(); break; #endif #ifdef enable_WS case 7: display_Clear(); display_Update(); setup_WS(); mode = mode_WS; break; #endif #ifdef enable_NGP case 8: display_Clear(); display_Update(); setup_NGP(); mode = mode_NGP; break; #endif #ifdef enable_INTV case 9: setup_INTV(); intvMenu(); break; #endif #ifdef enable_COLV case 10: setup_COL(); colMenu(); break; #endif #ifdef enable_VBOY case 11: setup_VBOY(); vboyMenu(); break; #endif #ifdef enable_WSV case 12: setup_WSV(); wsvMenu(); break; #endif #ifdef enable_PCW case 13: setup_PCW(); pcwMenu(); break; #endif #ifdef enable_ATARI case 14: setup_ATARI(); atariMenu(); break; #endif #ifdef enable_ODY2 case 15: setup_ODY2(); ody2Menu(); break; #endif #ifdef enable_ARC case 16: setup_ARC(); arcMenu(); break; #endif #ifdef enable_FAIRCHILD case 17: setup_FAIRCHILD(); fairchildMenu(); break; #endif #ifdef enable_SUPRACAN case 18: setup_SuprAcan(); break; #endif #ifdef enable_MSX case 19: setup_MSX(); msxMenu(); break; #endif #ifdef enable_POKE case 20: setup_POKE(); pokeMenu(); break; #endif #ifdef enable_LOOPY case 21: setup_LOOPY(); loopyMenu(); break; #endif #ifdef enable_FLASH case 22: #ifdef ENABLE_VSELECT setup_FlashVoltage(); #endif flashMenu(); break; #endif #ifdef enable_selftest case 23: selfTest(); break; #endif case 24: aboutScreen(); break; case 25: resetArduino(); break; default: print_MissingModule(); // does not return } } /****************************************** Self Test *****************************************/ #ifdef enable_selftest void selfTest() { #ifdef ENABLE_VSELECT // Set Automatic Voltage Selection to 3V setVoltage(VOLTS_SET_3V3); #endif display_Clear(); println_Msg(F("Self Test")); println_Msg(F("")); println_Msg(F("Remove all Cartridges")); println_Msg(F("before continuing!!!")); println_Msg(F("")); print_STR(press_button_STR, 1); display_Update(); wait(); display_Clear(); // Test if pin 7 is held high by 1K resistor pinMode(7, INPUT); println_Msg(F("Testing 1K resistor ")); display_Update(); if (!digitalRead(7)) { setColor_RGB(255, 0, 0); errorLvl = 1; println_Msg(F("Error")); println_Msg(F("")); print_STR(press_button_STR, 1); display_Update(); //wait(); //resetArduino(); } println_Msg(F("Testing short to GND")); display_Update(); // Set pins 2-9, 14-17, 22-37, 42-49, 54-69 to input and activate internal pull-up resistors for (byte pinNumber = 2; pinNumber <= 69; pinNumber++) { if (((2 <= pinNumber) && (pinNumber <= 9)) || ((14 <= pinNumber) && (pinNumber <= 17)) || ((22 <= pinNumber) && (pinNumber <= 37)) || ((42 <= pinNumber) && (pinNumber <= 49)) || ((54 <= pinNumber) && (pinNumber <= 69))) { pinMode(pinNumber, INPUT_PULLUP); } } // Tests pins 2-9, 14-17, 22-37, 42-49, 54-69 for short to GND for (byte pinNumber = 2; pinNumber <= 69; pinNumber++) { if (((2 <= pinNumber) && (pinNumber <= 9)) || ((14 <= pinNumber) && (pinNumber <= 17)) || ((22 <= pinNumber) && (pinNumber <= 37)) || ((42 <= pinNumber) && (pinNumber <= 49)) || ((54 <= pinNumber) && (pinNumber <= 69))) { if (!digitalRead(pinNumber)) { setColor_RGB(255, 0, 0); errorLvl = 1; print_Msg(F("Error: Pin ")); if ((54 <= pinNumber) && (pinNumber <= 69)) { print_Msg(F("A")); println_Msg(pinNumber - 54); } else { print_Msg(F("D")); println_Msg(pinNumber); } println_Msg(F("")); print_STR(press_button_STR, 1); display_Update(); wait(); resetArduino(); } } } println_Msg(F("Testing short between pins")); display_Update(); // Test for short between pins 2-9, 14-17, 22-37, 42-49, 54-69 for (byte pinNumber = 2; pinNumber <= 69; pinNumber++) { if (((2 <= pinNumber) && (pinNumber <= 9)) || ((14 <= pinNumber) && (pinNumber <= 17)) || ((22 <= pinNumber) && (pinNumber <= 37)) || ((42 <= pinNumber) && (pinNumber <= 49)) || ((54 <= pinNumber) && (pinNumber <= 69))) { pinMode(pinNumber, OUTPUT); digitalWrite(pinNumber, LOW); for (byte pinNumber2 = 2; pinNumber2 <= 69; pinNumber2++) { if ((((2 <= pinNumber2) && (pinNumber2 <= 9)) || ((14 <= pinNumber2) && (pinNumber2 <= 17)) || ((22 <= pinNumber2) && (pinNumber2 <= 37)) || ((42 <= pinNumber2) && (pinNumber2 <= 49)) || ((54 <= pinNumber2) && (pinNumber2 <= 69))) && (pinNumber != pinNumber2)) { pinMode(pinNumber2, INPUT_PULLUP); if (!digitalRead(pinNumber2)) { setColor_RGB(255, 0, 0); errorLvl = 1; print_Msg(F("Error: Pin ")); if ((54 <= pinNumber) && (pinNumber <= 69)) { print_Msg(F("A")); print_Msg(pinNumber - 54); } else { print_Msg(F("D")); print_Msg(pinNumber); } print_Msg(F(" + ")); if ((54 <= pinNumber2) && (pinNumber2 <= 69)) { print_Msg(F("A")); println_Msg(pinNumber2 - 54); } else { print_Msg(F("D")); println_Msg(pinNumber2); } println_Msg(F("")); print_STR(press_button_STR, 1); display_Update(); wait(); resetArduino(); } } } pinMode(pinNumber, INPUT_PULLUP); } } println_Msg(F("Testing Clock Generator")); initializeClockOffset(); if (!i2c_found) { setColor_RGB(255, 0, 0); errorLvl = 1; println_Msg(F("Error: Clock Generator")); println_Msg(F("not found")); println_Msg(F("")); print_STR(press_button_STR, 1); display_Update(); wait(); resetArduino(); } println_Msg(F("")); print_STR(press_button_STR, 1); display_Update(); wait(); resetArduino(); } #endif /****************************************** About Screen *****************************************/ // Info Screen void aboutScreen() { display_Clear(); println_Msg(F("Cartridge Reader")); println_Msg(F("github.com/sanni")); print_Msg(F("2023 Version ")); println_Msg(ver); println_Msg(F("")); println_Msg(F("")); println_Msg(F("")); println_Msg(F("")); // Prints string out of the common strings array either with or without newline print_STR(press_button_STR, 1); display_Update(); while (1) { #if (defined(enable_LCD) || defined(enable_OLED)) // get input button int b = checkButton(); // if the cart readers input button is pressed shortly if (b == 1) { resetArduino(); } // if the cart readers input button is pressed long if (b == 3) { resetArduino(); } // if the button is pressed super long if (b == 4) { display_Clear(); println_Msg(F("Resetting folder...")); display_Update(); delay(2000); foldern = 0; EEPROM_writeAnything(0, foldern); resetArduino(); } #elif defined(enable_serial) wait_serial(); resetArduino(); #endif } } /****************************************** Progressbar *****************************************/ void draw_progressbar(uint32_t processed, uint32_t total) { uint8_t current, i; static uint8_t previous; uint8_t steps = 20; //Find progressbar length and draw if processed size is not 0 if (processed == 0) { previous = 0; print_Msg(F("[")); display_Update(); return; } // Progress bar current = (processed >= total) ? steps : processed / (total / steps); //Draw "*" if needed if (current > previous) { for (i = previous; i < current; i++) { // steps are 20, so 20 - 1 = 19. if (i == (19)) { //If end of progress bar, finish progress bar by drawing "]" println_Msg(F("]")); } else { print_Msg(F("*")); } } //update previous "*" status previous = current; //Update display display_Update(); } } /****************************************** RTC Module *****************************************/ #ifdef RTC_installed #if defined(DS3231) RTC_DS3231 rtc; #elif defined(DS1307) RTC_DS1307 rtc; #endif // Start Time void RTCStart() { // Start RTC if (!rtc.begin()) { abort(); } // RTC_DS1307 does not have lostPower() #if defined(DS3231) // Set RTC Date/Time of Sketch Build if it lost battery power // After initial setup it would have lost battery power ;) if (rtc.lostPower()) { rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); } #endif } // Set Date/Time Callback Funtion // Callback for file timestamps void dateTime(uint16_t* date, uint16_t* time) { DateTime now = rtc.now(); // Return date using FAT_DATE macro to format fields *date = FAT_DATE(now.year(), now.month(), now.day()); // Return time using FAT_TIME macro to format fields *time = FAT_TIME(now.hour(), now.minute(), now.second()); } /****************************************** RTC Time Stamp Setup Call in any other script *****************************************/ // Format a Date/Time stamp String RTCStamp() { // Set a format char dtstamp[] = "DDMMMYYYY hh:mm:ssAP"; // Get current Date/Time DateTime now = rtc.now(); // Convert it to a string and caps lock it String dts = now.toString(dtstamp); dts.toUpperCase(); // Print results return dts; } #endif /****************************************** Clockgen Calibration *****************************************/ #ifdef clockgen_calibration int32_t cal_factor = 0; int32_t old_cal = 0; int32_t cal_offset = 100; void clkcal() { // Adafruit Clock Generator // last number is the clock correction factor which is custom for each clock generator cal_factor = readClockOffset(); display.clearDisplay(); display.setCursor(0, 0); display.print("Read correction: "); display.println(cal_factor); display.updateDisplay(); delay(500); if (cal_factor > INT32_MIN) { i2c_found = clockgen.init(SI5351_CRYSTAL_LOAD_8PF, 0, cal_factor); } else { i2c_found = clockgen.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0); cal_factor = 0; } if (!i2c_found) { display_Clear(); print_FatalError(F("Clock Generator not found")); } //clockgen.set_correction(cal_factor, SI5351_PLL_INPUT_XO); clockgen.set_pll(SI5351_PLL_FIXED, SI5351_PLLA); clockgen.set_pll(SI5351_PLL_FIXED, SI5351_PLLB); //clockgen.pll_reset(SI5351_PLLA); //clockgen.pll_reset(SI5351_PLLB); clockgen.set_freq(400000000ULL, SI5351_CLK0); clockgen.set_freq(100000000ULL, SI5351_CLK1); clockgen.set_freq(307200000ULL, SI5351_CLK2); clockgen.output_enable(SI5351_CLK1, 1); clockgen.output_enable(SI5351_CLK2, 1); clockgen.output_enable(SI5351_CLK0, 1); // Frequency Counter delay(500); FreqCount.begin(1000); while (1) { if (old_cal != cal_factor) { display_Clear(); println_Msg(F("")); println_Msg(F("")); println_Msg(F("")); println_Msg(F("")); println_Msg(F(" Adjusting")); display_Update(); clockgen.set_correction(cal_factor, SI5351_PLL_INPUT_XO); clockgen.set_pll(SI5351_PLL_FIXED, SI5351_PLLA); clockgen.set_pll(SI5351_PLL_FIXED, SI5351_PLLB); clockgen.pll_reset(SI5351_PLLA); clockgen.pll_reset(SI5351_PLLB); clockgen.set_freq(400000000ULL, SI5351_CLK0); clockgen.set_freq(100000000ULL, SI5351_CLK1); clockgen.set_freq(307200000ULL, SI5351_CLK2); old_cal = cal_factor; delay(500); } else { clockgen.update_status(); while (clockgen.dev_status.SYS_INIT == 1) { } if (FreqCount.available()) { float count = FreqCount.read(); display_Clear(); println_Msg(F("Clock Calibration")); println_Msg(F("")); print_Msg(F("Freq: ")); print_Msg(count); println_Msg(F("Hz")); print_Msg(F("Correction:")); print_right(cal_factor); print_Msg(F("Adjustment:")); print_right(cal_offset); #ifdef enable_Button2 println_Msg(F("(Hold button to save)")); println_Msg(F("")); println_Msg(F("Decrease Increase")); #else #ifdef enable_rotary println_Msg(F("Rotate to adjust")); #else println_Msg(F("Click/dbl to adjust")); #endif #endif display_Update(); } #ifdef enable_Button2 // get input button int a = checkButton1(); int b = checkButton2(); // if the cart readers input button is pressed shortly if (a == 1) { old_cal = cal_factor; cal_factor -= cal_offset; } if (b == 1) { old_cal = cal_factor; cal_factor += cal_offset; } // if the cart readers input buttons is double clicked if (a == 2) { cal_offset /= 10ULL; if (cal_offset < 1) { cal_offset = 100000000ULL; } } if (b == 2) { cal_offset *= 10ULL; if (cal_offset > 100000000ULL) { cal_offset = 1; } } // if the cart readers input button is pressed long if (a == 3) { savetofile(); } if (b == 3) { savetofile(); } #else //Handle inputs for either rotary encoder or single button interface. int a = checkButton(); if (a == 1) { //clockwise rotation or single click old_cal = cal_factor; cal_factor += cal_offset; } if (a == 2) { //counterclockwise rotation or double click old_cal = cal_factor; cal_factor -= cal_offset; } if (a == 3) { //button short hold cal_offset *= 10ULL; if (cal_offset > 100000000ULL) { cal_offset = 1; } } if (a == 4) { //button long hold savetofile(); } #endif } } } void print_right(int32_t number) { int32_t abs_number = number; if (abs_number < 0) abs_number *= -1; else print_Msg(F(" ")); if (abs_number == 0) abs_number = 1; while (abs_number < 100000000ULL) { print_Msg(F(" ")); abs_number *= 10ULL; } println_Msg(number); } void savetofile() { display_Clear(); println_Msg(F("Saving...")); println_Msg(cal_factor); display_Update(); delay(2000); if (!myFile.open("/snes_clk.txt", O_WRITE | O_CREAT | O_TRUNC)) { print_FatalError(sd_error_STR); } // Write calibration factor to file myFile.print(cal_factor); // Close the file: myFile.close(); print_STR(done_STR, 1); display_Update(); delay(1000); resetArduino(); } #endif #ifdef clockgen_calibration int32_t atoi32_signed(const char* input_string) { if (input_string == NULL) { return 0; } int int_sign = 1; int i = 0; if (input_string[0] == '-') { int_sign = -1; i = 1; } int32_t return_val = 0; while (input_string[i] != '\0') { if (input_string[i] >= '0' && input_string[i] <= '9') { return_val = (return_val * 10) + (input_string[i] - '0'); } else if (input_string[i] != '\0') { return 0; } i++; } return_val = return_val * int_sign; return return_val; } int32_t readClockOffset() { FsFile clock_file; char* clock_buf; int16_t i; int32_t clock_offset; if (!clock_file.open("/snes_clk.txt", O_READ)) { return INT32_MIN; } clock_buf = (char*)malloc(12 * sizeof(char)); i = clock_file.read(clock_buf, 11); clock_file.close(); if (i == -1) { free(clock_buf); return INT32_MIN; } else if ((i == 11) && (clock_buf[0] != '-')) { free(clock_buf); return INT32_MIN; } else { clock_buf[i] = 0; } for (i = 0; i < 12; i++) { if (clock_buf[i] != '-' && clock_buf[i] < '0' && clock_buf[i] > '9') { if (i == 0) { free(clock_buf); return INT32_MIN; } else if ((i == 1) && (clock_buf[0] == '-')) { free(clock_buf); return INT32_MIN; } else { clock_buf[i] = 0; } } } clock_offset = atoi32_signed(clock_buf); free(clock_buf); return clock_offset; } #endif int32_t initializeClockOffset() { #ifdef clockgen_calibration FsFile clock_file; const char zero_char_arr[] = { '0' }; int32_t clock_offset = readClockOffset(); if (clock_offset > INT32_MIN) { i2c_found = clockgen.init(SI5351_CRYSTAL_LOAD_8PF, 0, clock_offset); } else { i2c_found = clockgen.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0); if (clock_file.open("/snes_clk.txt", O_WRITE | O_CREAT | O_TRUNC)) { clock_file.write(zero_char_arr, 1); clock_file.close(); } } return clock_offset; #else // last number is the clock correction factor which is custom for each clock generator i2c_found = clockgen.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0); return 0; #endif } /****************************************** Setup *****************************************/ void setup() { #if !defined(enable_serial) && defined(ENABLE_UPDATER) ClockedSerial.begin(UPD_BAUD); #endif // Set Button Pin PG2 to Input DDRG &= ~(1 << 2); #if defined(HW5) && !defined(ENABLE_VSELECT) // HW5 has status LED connected to PD7 // Set LED Pin PD7 to Output DDRD |= (1 << 7); PORTD |= (1 << 7); #elif defined(ENABLE_VSELECT) DDRD |= (1 << 7); #else // HW1/2/3 have button connected to PD7 // Set Button Pin PD7 to Input DDRD &= ~(1 << 7); #endif // Activate Internal Pullup Resistors //PORTG |= (1 << 2); //PORTD |= (1 << 7); // Read current folder number out of eeprom EEPROM_readAnything(0, foldern); if (foldern < 0) foldern = 0; #ifdef enable_LCD display.begin(); display.setContrast(40); display.setFont(u8g2_font_haxrcorp4089_tr); #endif #ifdef enable_neopixel #if defined(ENABLE_3V3FIX) // Set power high for neopixel setVoltage(VOLTS_SET_5V); delay(10); #endif pixels.begin(); pixels.clear(); pixels.setPixelColor(0, pixels.Color(background_color)); pixels.setPixelColor(1, pixels.Color(0, 0, 100)); pixels.setPixelColor(2, pixels.Color(0, 0, 100)); pixels.show(); // Set TX0 LED Pin(PE1) to Output for status indication during flashing for HW4 #if !(defined(enable_serial) || defined(HW5)) DDRE |= (1 << 1); #endif #else #ifndef enable_LCD #ifdef CA_LED // Turn LED off digitalWrite(12, 1); digitalWrite(11, 1); digitalWrite(10, 1); #endif // Configure 4 Pin RGB LED pins as output DDRB |= (1 << DDB6); // Red LED (pin 12) DDRB |= (1 << DDB5); // Green LED (pin 11) DDRB |= (1 << DDB4); // Blue LED (pin 10) #endif #endif #ifdef ENABLE_VSELECT // Set power to low to protect carts setVoltage(VOLTS_SET_3V3); #endif #ifdef enable_OLED display.begin(); //isplay.setContrast(40); display.setFont(u8g2_font_haxrcorp4089_tr); #endif #ifdef enable_serial // Serial Begin Serial.begin(9600); Serial.println(""); Serial.println(F("Cartridge Reader")); Serial.println(F("2023 github.com/sanni")); // LED Error setColor_RGB(0, 0, 255); #endif // Init SD card if (!sd.begin(SS)) { display_Clear(); print_FatalError(sd_error_STR); } #if !defined(enable_serial) && defined(ENABLE_UPDATER) printVersionToSerial(); ClockedSerial.flush(); #endif #ifdef global_log if (!myLog.open("OSCR_LOG.txt", O_RDWR | O_CREAT | O_APPEND)) { print_FatalError(sd_error_STR); } println_Msg(F("")); #if defined(HW1) print_Msg(F("OSCR HW1")); #elif defined(HW2) print_Msg(F("OSCR HW2")); #elif defined(HW3) print_Msg(F("OSCR HW3")); #elif defined(HW4) print_Msg(F("OSCR HW4")); #elif defined(HW5) print_Msg(F("OSCR HW5")); #elif defined(SERIAL_MONITOR) print_Msg(F("OSCR Serial")); #endif print_Msg(F(" V")); println_Msg(ver); #endif #ifdef RTC_installed // Start RTC RTCStart(); // Set Date/Time Callback Funtion SdFile::dateTimeCallback(dateTime); #endif // status LED ON statusLED(true); // Start menu system mainMenu(); } /****************************************** Common I/O Functions *****************************************/ // Switch data pins to write void dataOut() { DDRC = 0xFF; } // Switch data pins to read void dataIn() { // Set to Input and activate pull-up resistors DDRC = 0x00; // Pullups PORTC = 0xFF; } /****************************************** Helper Functions *****************************************/ // Set RGB color void setColor_RGB(byte r, byte g, byte b) { #if defined(enable_neopixel) #if defined(ENABLE_3V3FIX) if (clock == CS_8MHZ) return; #endif // Dim Neopixel LEDs if (r >= 100) r = 100; if (g >= 100) g = 100; if (b >= 100) b = 100; pixels.clear(); pixels.setPixelColor(0, pixels.Color(background_color)); pixels.setPixelColor(1, pixels.Color(g, r, b)); pixels.setPixelColor(2, pixels.Color(g, r, b)); pixels.show(); #elif defined(CA_LED) // Set color of analog 4 Pin common anode RGB LED analogWrite(12, 255 - r); analogWrite(11, 255 - g); analogWrite(10, 255 - b); #else // Set color of analog 4 Pin common cathode RGB LED analogWrite(12, r); analogWrite(11, g); analogWrite(10, b); #endif } // Extract ASCII printable characters from input, collapsing underscores and spaces. // Use when extracting titles from cartridges, to build a rom title. byte buildRomName(char* output, const byte* input, byte length) { byte input_char; byte output_len = 0; for (unsigned int i = 0; i < length; i++) { input_char = input[i]; if (isprint(input_char) && input_char != '<' && input_char != '>' && input_char != ':' && input_char != '"' && input_char != '/' && input_char != '\\' && input_char != '|' && input_char != '?' && input_char != '*') { output[output_len++] = input_char; } else { if (output_len == 0 || output[output_len - 1] != '_') { output[output_len++] = '_'; } } } while ( output_len && (output[output_len - 1] == '_' || output[output_len - 1] == ' ')) { output_len--; } output[output_len] = 0; return output_len; } // Converts a progmem array into a ram array void convertPgm(const char* const pgmOptions[], byte numArrays) { for (int i = 0; i < numArrays; i++) { strlcpy_P(menuOptions[i], (char*)pgm_read_word(&(pgmOptions[i])), 20); } } void _print_Error(void) { errorLvl = 1; setColor_RGB(255, 0, 0); display_Update(); } void print_Error(const __FlashStringHelper* errorMessage) { println_Msg(errorMessage); _print_Error(); } void print_Error(byte errorMessage) { print_STR(errorMessage, 1); _print_Error(); } void _print_FatalError(void) { println_Msg(F("")); print_STR(press_button_STR, 1); display_Update(); wait(); resetArduino(); } void print_FatalError(const __FlashStringHelper* errorMessage) { print_Error(errorMessage); _print_FatalError(); } void print_FatalError(byte errorMessage) { print_Error(errorMessage); _print_FatalError(); } void wait() { // Switch status LED off statusLED(false); #if defined(enable_LCD) wait_btn(); #elif defined(enable_OLED) wait_btn(); #elif defined(enable_serial) wait_serial(); #endif } #ifdef global_log // Copies the last part of the current log file to the dump folder void save_log() { // Last found position uint64_t lastPosition = 0; // Go to first line of log myLog.rewind(); // Find location of OSCR string to determine start of current log char tempStr[5]; while (myLog.available()) { // Read first 4 chars of line tempStr[0] = myLog.read(); // Check if it's an empty line if (tempStr[0] == '\r') { // skip \n myLog.read(); } else { // Read more lines tempStr[1] = myLog.read(); tempStr[2] = myLog.read(); tempStr[3] = myLog.read(); tempStr[4] = '\0'; char str_buf; // Skip rest of line while (myLog.available()) { str_buf = myLog.read(); //break out of loop if CRLF is found if (str_buf == '\r') { myLog.read(); //dispose \n because \r\n break; } } // If string is OSCR remember position in file and test if it's the lastest log entry if (strncmp(tempStr, "OSCR", 4) == 0) { // Check if current position is newer as old position if (myLog.position() > lastPosition) { lastPosition = myLog.position(); } } } } // Go to position of last log entry myLog.seek(lastPosition - 16); // Copy log from there to dump dir sd.chdir(folder); strcpy(fileName, romName); strcat(fileName, ".txt"); if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_FatalError(sd_error_STR); } while (myLog.available()) { if (myLog.available() >= 512) { for (word i = 0; i < 512; i++) { sdBuffer[i] = myLog.read(); } myFile.write(sdBuffer, 512); } else { int i = 0; for (; i < myLog.available(); i++) { sdBuffer[i] = myLog.read(); } myFile.write(sdBuffer, i); } } // Close the file: myFile.close(); } #endif #ifdef global_log void println_Log(const __FlashStringHelper* string) { myLog.println(string); } #endif void print_Msg(const __FlashStringHelper* string) { #if (defined(enable_LCD) || defined(enable_OLED)) display.print(string); #endif #ifdef enable_serial Serial.print(string); #endif #ifdef global_log if (!dont_log) myLog.print(string); #endif } void print_Msg(const char myString[]) { #if (defined(enable_LCD) || defined(enable_OLED)) // test for word wrap if ((display.tx + strlen(myString) * 6) > 128) { unsigned int strPos = 0; // Print until end of display while (display.tx < 122) { display.print(myString[strPos]); strPos++; } // Newline display.setCursor(0, display.ty + 8); // Print until end of display and ignore remaining characters while ((strPos < strlen(myString)) && (display.tx < 122)) { display.print(myString[strPos]); strPos++; } } else { display.print(myString); } #endif #ifdef enable_serial Serial.print(myString); #endif #ifdef global_log if (!dont_log) myLog.print(myString); #endif } void print_Msg(long unsigned int message) { #if (defined(enable_LCD) || defined(enable_OLED)) display.print(message); #endif #ifdef enable_serial Serial.print(message); #endif #ifdef global_log if (!dont_log) myLog.print(message); #endif } void print_Msg(byte message, int outputFormat) { #if (defined(enable_LCD) || defined(enable_OLED)) display.print(message, outputFormat); #endif #ifdef enable_serial Serial.print(message, outputFormat); #endif #ifdef global_log if (!dont_log) myLog.print(message, outputFormat); #endif } void print_Msg(word message, int outputFormat) { #if (defined(enable_LCD) || defined(enable_OLED)) display.print(message, outputFormat); #endif #ifdef enable_serial Serial.print(message, outputFormat); #endif #ifdef global_log if (!dont_log) myLog.print(message, outputFormat); #endif } void print_Msg(int message, int outputFormat) { #if (defined(enable_LCD) || defined(enable_OLED)) display.print(message, outputFormat); #endif #ifdef enable_serial Serial.print(message, outputFormat); #endif #ifdef global_log if (!dont_log) myLog.print(message, outputFormat); #endif } void print_Msg(long unsigned int message, int outputFormat) { #if (defined(enable_LCD) || defined(enable_OLED)) display.print(message, outputFormat); #endif #ifdef enable_serial Serial.print(message, outputFormat); #endif #ifdef global_log if (!dont_log) myLog.print(message, outputFormat); #endif } void print_Msg(String string) { #if (defined(enable_LCD) || defined(enable_OLED)) display.print(string); #endif #ifdef enable_serial Serial.print(string); #endif #ifdef global_log if (!dont_log) myLog.print(string); #endif } void print_Msg_PaddedHexByte(byte message) { if (message < 16) print_Msg(0, HEX); print_Msg(message, HEX); } void print_Msg_PaddedHex16(word message) { print_Msg_PaddedHexByte((message >> 8) & 0xFF); print_Msg_PaddedHexByte((message >> 0) & 0xFF); } void print_Msg_PaddedHex32(unsigned long message) { print_Msg_PaddedHexByte((message >> 24) & 0xFF); print_Msg_PaddedHexByte((message >> 16) & 0xFF); print_Msg_PaddedHexByte((message >> 8) & 0xFF); print_Msg_PaddedHexByte((message >> 0) & 0xFF); } void println_Msg(String string) { #if (defined(enable_LCD) || defined(enable_OLED)) display.print(string); display.setCursor(0, display.ty + 8); #endif #ifdef enable_serial Serial.println(string); #endif #ifdef global_log if (!dont_log) myLog.println(string); #endif } void println_Msg(byte message, int outputFormat) { #if (defined(enable_LCD) || defined(enable_OLED)) display.print(message, outputFormat); display.setCursor(0, display.ty + 8); #endif #ifdef enable_serial Serial.println(message, outputFormat); #endif #ifdef global_log if (!dont_log) myLog.println(message, outputFormat); #endif } void println_Msg(const char myString[]) { #if (defined(enable_LCD) || defined(enable_OLED)) // test for word wrap if ((display.tx + strlen(myString) * 6) > 128) { unsigned int strPos = 0; // Print until end of display while ((display.tx < 122) && (myString[strPos] != '\0')) { display.print(myString[strPos]); strPos++; } // Newline display.setCursor(0, display.ty + 8); // Print until end of display and ignore remaining characters while ((strPos < strlen(myString)) && (display.tx < 122) && (myString[strPos] != '\0')) { display.print(myString[strPos]); strPos++; } } else { display.print(myString); } display.setCursor(0, display.ty + 8); #endif #ifdef enable_serial Serial.println(myString); #endif #ifdef global_log if (!dont_log) myLog.println(myString); #endif } void println_Msg(const __FlashStringHelper* string) { #if (defined(enable_LCD) || defined(enable_OLED)) display.print(string); display.setCursor(0, display.ty + 8); #endif #ifdef enable_serial Serial.println(string); #endif #ifdef global_log char myBuffer[15]; strlcpy_P(myBuffer, (char*)string, 15); if ((strncmp(myBuffer, "Press Button...", 14) != 0) && (strncmp(myBuffer, "Select file", 10) != 0)) { if (!dont_log) myLog.println(string); } #endif } void println_Msg(long unsigned int message) { #if (defined(enable_LCD) || defined(enable_OLED)) display.print(message); display.setCursor(0, display.ty + 8); #endif #ifdef enable_serial Serial.println(message); #endif #ifdef global_log if (!dont_log) myLog.println(message); #endif } void display_Update() { #if (defined(enable_LCD) || defined(enable_OLED)) display.updateDisplay(); #endif #ifdef enable_serial delay(100); #endif #ifdef global_log if (!dont_log) myLog.flush(); #endif } void display_Clear() { #if (defined(enable_LCD) || defined(enable_OLED)) display.clearDisplay(); display.setCursor(0, 8); #endif #ifdef global_log if (!dont_log) myLog.println(""); #endif } void display_Clear_Slow() { #if (defined(enable_LCD) || defined(enable_OLED)) display.setDrawColor(0); for (byte y = 0; y < 64; y++) { display.drawLine(0, y, 128, y); } display.setDrawColor(1); display.setCursor(0, 8); #endif } /****************************************** RGB LED *****************************************/ void rgbLed(byte Color) { switch (Color) { case blue_color: setColor_RGB(0, 0, 255); break; case red_color: setColor_RGB(255, 0, 0); break; case purple_color: setColor_RGB(255, 0, 255); break; case green_color: setColor_RGB(0, 255, 0); break; case turquoise_color: setColor_RGB(0, 255, 255); break; case yellow_color: setColor_RGB(255, 255, 0); break; case white_color: setColor_RGB(255, 255, 255); break; } } void blinkLED() { #if defined(ENABLE_VSELECT) // Nothing #elif defined(HW5) PORTD ^= (1 << 7); #elif defined(enable_OLED) PORTB ^= (1 << 4); #elif defined(enable_LCD) PORTE ^= (1 << 1); #elif defined(enable_serial) PORTB ^= (1 << 4); PORTB ^= (1 << 7); #endif } #if defined(HW5) && !defined(ENABLE_VSELECT) void statusLED(boolean on) { if (!on) PORTD |= (1 << 7); else PORTD &= ~(1 << 7); } #else void statusLED(boolean on __attribute__((unused))) { } #endif /****************************************** Menu system *****************************************/ unsigned char question_box(const __FlashStringHelper* question, char answers[7][20], int num_answers, int default_choice) { #if (defined(enable_LCD) || defined(enable_OLED)) return questionBox_Display(question, answers, num_answers, default_choice); #endif #ifdef enable_serial return questionBox_Serial(question, answers, num_answers, default_choice); #endif } #if defined(enable_serial) // Serial Monitor byte questionBox_Serial(const __FlashStringHelper* question, char answers[7][20], int num_answers, int default_choice) { // Print menu to serial monitor Serial.println(""); for (byte i = 0; i < num_answers; i++) { Serial.print(i); Serial.print(F(")")); Serial.println(answers[i]); } // Wait for user input Serial.println(""); Serial.println(F("Please browse pages with 'u'(up) and 'd'(down)")); Serial.println(F("and enter a selection by typing a number(0-6): _ ")); Serial.println(""); while (Serial.available() == 0) { } // Read the incoming byte: incomingByte = Serial.read() - 48; // Page up (u) if (incomingByte == 69) { if (currPage > 1) { lastPage = currPage; currPage--; } else { root = 1; } } // Page down (d) else if (incomingByte == 52) { if (numPages > currPage) { lastPage = currPage; currPage++; } } // Execute choice else if ((incomingByte >= 0) && (incomingByte < 7)) { numPages = 0; } // Print the received byte for validation e.g. in case of a different keyboard mapping //Serial.println(incomingByte); //Serial.println(""); return incomingByte; } #endif // OLED & LCD #if (defined(enable_LCD) || defined(enable_OLED)) // Display a question box with selectable answers. Make sure default choice is in (0, num_answers] unsigned char questionBox_Display(const __FlashStringHelper* question, char answers[7][20], int num_answers, int default_choice) { //clear the screen display.clearDisplay(); display.updateDisplay(); display.setCursor(0, 8); display.setDrawColor(1); // change the rgb led to the start menu color rgbLed(default_choice); // print menu display.println(question); display.setCursor(0, display.ty + 8); for (unsigned char i = 0; i < num_answers; i++) { // Add space for the selection dot display.print(" "); // Print menu item display.println(answers[i]); display.setCursor(0, display.ty + 8); } display.updateDisplay(); // start with the default choice choice = default_choice; // draw selection box display.drawBox(1, 8 * choice + 11, 3, 3); display.updateDisplay(); unsigned long idleTime = millis(); byte currentColor = 0; // wait until user makes his choice while (1) { // Attract Mode if (millis() - idleTime > 300000) { if ((millis() - idleTime) % 4000 == 0) { if (currentColor < 7) { currentColor++; if (currentColor == 1) { currentColor = 2; // skip red as that signifies an error to the user } } else { currentColor = 0; } } rgbLed(currentColor); } /* Check Button/rotary encoder 1 click/clockwise rotation 2 doubleClick/counter clockwise rotation 3 hold/press 4 longHold */ int b = checkButton(); // if button is pressed twice or rotary encoder turned left/counter clockwise if (b == 2) { idleTime = millis(); // remove selection box display.setDrawColor(0); display.drawBox(1, 8 * choice + 11, 3, 3); display.setDrawColor(1); display.updateDisplay(); // If cursor on top list entry if (choice == 0) { // On 2nd, 3rd, ... page go back one page if (currPage > 1) { lastPage = currPage; currPage--; break; } // In file browser go to root dir else if ((filebrowse == 1) && (root != 1)) { root = 1; break; } // Else go to bottom of list as a shortcut else { choice = num_answers - 1; } } // If not top entry go up/back one entry else { choice--; } // draw selection box display.drawBox(1, 8 * choice + 11, 3, 3); display.updateDisplay(); // change RGB led to the color of the current menu option rgbLed(choice); } // go one down in the menu if the Cart Readers button is clicked shortly if (b == 1) { idleTime = millis(); // remove selection box display.setDrawColor(0); display.drawBox(1, 8 * choice + 11, 3, 3); display.setDrawColor(1); display.updateDisplay(); if ((choice == num_answers - 1) && (numPages > currPage)) { lastPage = currPage; currPage++; break; } else choice = (choice + 1) % num_answers; // draw selection box display.drawBox(1, 8 * choice + 11, 3, 3); display.updateDisplay(); // change RGB led to the color of the current menu option rgbLed(choice); } // if the Cart Readers button is hold continiously leave the menu // so the currently highlighted action can be executed if (b == 3) { idleTime = millis(); // All done numPages = 0; break; } checkUpdater(); } // pass on user choice setColor_RGB(0, 0, 0); #ifdef global_log println_Msg(""); print_Msg(F("[+] ")); println_Msg(answers[choice]); #endif return choice; } #endif #if !defined(enable_serial) && defined(ENABLE_UPDATER) void checkUpdater() { if (ClockedSerial.available() > 0) { String cmd = ClockedSerial.readStringUntil('\n'); cmd.trim(); if (cmd == "VERCHK") { delay(500); printVersionToSerial(); } else if (cmd == "GETCLOCK") { #if defined(ENABLE_3V3FIX) ClockedSerial.print(F("Clock is running at ")); ClockedSerial.print((clock == CS_16MHZ) ? 16UL : 8UL); ClockedSerial.println(F("MHz")); #else ClockedSerial.println(F("Dynamic clock speed (3V3FIX) is not enabled.")); #endif } else if (cmd == "GETVOLTS") { #if defined(ENABLE_VSELECT) ClockedSerial.print(F("Voltage is set to ")); ClockedSerial.print((voltage == VOLTS_SET_5V) ? 5 : 3.3); ClockedSerial.println(F("V")); #else ClockedSerial.println(F("Automatic voltage selection (VSELECT) is not enabled.")); #endif } else if (cmd == "GETTIME") { #if defined(RTC_installed) ClockedSerial.print(F("Current Time: ")); ClockedSerial.println(RTCStamp()); #else ClockedSerial.println(F("RTC not installed")); #endif } else if (cmd.substring(0, 7) == "SETTIME") { #if defined(RTC_installed) ClockedSerial.println(F("Setting Time...")); rtc.adjust(DateTime(cmd.substring(8).toInt())); ClockedSerial.print(F("Current Time: ")); ClockedSerial.println(RTCStamp()); #else ClockedSerial.println(F("RTC not installed")); #endif } else { ClockedSerial.println(F("OSCR: Unknown Command")); } } } #else void checkUpdater() {} #endif /****************************************** User Control *****************************************/ // Using Serial Monitor #if defined(enable_serial) int checkButton() { while (Serial.available() == 0) { } incomingByte = Serial.read() - 48; //Next if (incomingByte == 52) { return 1; } //Previous else if (incomingByte == 69) { return 2; } //Selection else if (incomingByte == 240) { return 3; } return 0; } void wait_serial() { if (errorLvl) { errorLvl = 0; } while (Serial.available() == 0) { } incomingByte = Serial.read() - 48; /* if ((incomingByte == 53) && (fileName[0] != '\0')) { // Open file on sd card sd.chdir(folder); if (myFile.open(fileName, O_READ)) { // Get rom size from file fileSize = myFile.fileSize(); // Send filesize char tempStr[16]; sprintf(tempStr, "%d", fileSize); Serial.write(tempStr); // Wait for ok while (Serial.available() == 0) { } // Send file for (unsigned long currByte = 0; currByte < fileSize; currByte++) { // Blink led if (currByte % 1024 == 0) blinkLED(); Serial.write(myFile.read()); } // Close the file: myFile.close(); } else { print_FatalError(open_file_STR); } }*/ } #endif // Using one or two push buttons (HW1/HW2/HW3) #if defined(enable_OLED) // Read button state int checkButton() { #ifdef enable_Button2 byte eventButton2 = checkButton2(); if ((eventButton2 > 0) && (eventButton2 < 2)) return 3; else if (eventButton2 > 2) return 4; #endif return (checkButton1()); } // Read button 1 int checkButton1() { int event = 0; // Read the state of the button (PD7) buttonVal1 = (PIND & (1 << 7)); // Button pressed down if (buttonVal1 == LOW && buttonLast1 == HIGH && (millis() - upTime1) > debounce) { downTime1 = millis(); ignoreUp1 = false; waitForUp1 = false; singleOK1 = true; holdEventPast1 = false; longholdEventPast1 = false; if ((millis() - upTime1) < DCgap && DConUp1 == false && DCwaiting1 == true) DConUp1 = true; else DConUp1 = false; DCwaiting1 = false; } // Button released else if (buttonVal1 == HIGH && buttonLast1 == LOW && (millis() - downTime1) > debounce) { if (!ignoreUp1) { upTime1 = millis(); if (DConUp1 == false) DCwaiting1 = true; else { event = 2; DConUp1 = false; DCwaiting1 = false; singleOK1 = false; } } } // Test for normal click event: DCgap expired if (buttonVal1 == HIGH && (millis() - upTime1) >= DCgap && DCwaiting1 == true && DConUp1 == false && singleOK1 == true) { event = 1; DCwaiting1 = false; } // Test for hold if (buttonVal1 == LOW && (millis() - downTime1) >= holdTime) { // Trigger "normal" hold if (!holdEventPast1) { event = 3; waitForUp1 = true; ignoreUp1 = true; DConUp1 = false; DCwaiting1 = false; //downTime1 = millis(); holdEventPast1 = true; } // Trigger "long" hold if ((millis() - downTime1) >= longHoldTime) { if (!longholdEventPast1) { event = 4; longholdEventPast1 = true; } } } buttonLast1 = buttonVal1; return event; } // Read button 2 int checkButton2() { int event = 0; // Read the state of the button (PG2) buttonVal2 = (PING & (1 << 2)); // Button pressed down if (buttonVal2 == LOW && buttonLast2 == HIGH && (millis() - upTime2) > debounce) { downTime2 = millis(); ignoreUp2 = false; waitForUp2 = false; singleOK2 = true; holdEventPast2 = false; longholdEventPast2 = false; if ((millis() - upTime2) < DCgap && DConUp2 == false && DCwaiting2 == true) DConUp2 = true; else DConUp2 = false; DCwaiting2 = false; } // Button released else if (buttonVal2 == HIGH && buttonLast2 == LOW && (millis() - downTime2) > debounce) { if (!ignoreUp2) { upTime2 = millis(); if (DConUp2 == false) DCwaiting2 = true; else { event = 2; DConUp2 = false; DCwaiting2 = false; singleOK2 = false; } } } // Test for normal click event: DCgap expired if (buttonVal2 == HIGH && (millis() - upTime2) >= DCgap && DCwaiting2 == true && DConUp2 == false && singleOK2 == true) { event = 1; DCwaiting2 = false; } // Test for hold if (buttonVal2 == LOW && (millis() - downTime2) >= holdTime) { // Trigger "normal" hold if (!holdEventPast2) { event = 3; waitForUp2 = true; ignoreUp2 = true; DConUp2 = false; DCwaiting2 = false; //downTime2 = millis(); holdEventPast2 = true; } // Trigger "long" hold if ((millis() - downTime2) >= longHoldTime) { if (!longholdEventPast2) { event = 4; longholdEventPast2 = true; } } } buttonLast2 = buttonVal2; return event; } // Wait for user to push button void wait_btn() { // Change led to green if (errorLvl == 0) rgbLed(green_color); while (1) { // get input button int b = checkButton(); // if the cart readers input button is pressed shortly if (b == 1) { errorLvl = 0; break; } // if the cart readers input button is pressed long if (b == 3) { if (errorLvl) { errorLvl = 0; } break; } checkUpdater(); } } #endif // Using rotary encoder (HW4/HW5) #if (defined(enable_LCD) && defined(enable_rotary)) // Read encoder state int checkButton() { // Read rotary encoder encoder.tick(); int newPos = encoder.getPosition(); // Read button boolean reading = (PING & (1 << PING2)) >> PING2; // Check if rotary encoder has changed if (rotaryPos != newPos) { int rotaryDir = (int)encoder.getDirection(); rotaryPos = newPos; if (rotaryDir == 1) { return 1; } else if (rotaryDir == -1) { return 2; } } else if (reading != buttonState) { if (reading != lastButtonState) { lastDebounceTime = millis(); lastButtonState = reading; } else if ((millis() - lastDebounceTime) > debounceDelay) { buttonState = reading; // Button was pressed down if (buttonState == 0) { setColor_RGB(0, 0, 0); unsigned long pushTime = millis(); // Wait until button was let go again while ((PING & (1 << PING2)) >> PING2 == 0) { // Signal long press delay reached if ((millis() - pushTime) > 2000) { rgbLed(green_color); } } // 2 second long press if ((millis() - pushTime) > 2000) { return 4; } // normal press else { return 3; } } } } return 0; } // Wait for user to push button void wait_btn() { // Change led to green if (errorLvl == 0) rgbLed(green_color); while (1) { // get input button int b = checkButton(); // if the cart readers input button is pressed shortly if (b == 1) { errorLvl = 0; break; } // if the cart readers input button is pressed long if (b == 3) { if (errorLvl) { errorLvl = 0; } break; } checkUpdater(); } } // Wait for user to rotate knob void wait_encoder() { // Change led to green if (errorLvl == 0) rgbLed(green_color); while (1) { // Get rotary encoder encoder.tick(); int newPos = encoder.getPosition(); if (rotaryPos != newPos) { rotaryPos = newPos; errorLvl = 0; break; } } } #endif /****************************************** Filebrowser Module *****************************************/ void fileBrowser(const __FlashStringHelper* browserTitle) { char fileNames[7][FILENAME_LENGTH]; int currFile; FsFile myDir; div_t page_layout; filebrowse = 1; // Root filePath[0] = '/'; filePath[1] = '\0'; // Temporary char array for filename char nameStr[FILENAME_LENGTH]; browserstart: // Print title println_Msg(browserTitle); // Set currFile back to 0 currFile = 0; currPage = 1; lastPage = 1; // Open filepath directory if (!myDir.open(filePath)) { display_Clear(); print_FatalError(sd_error_STR); } // Count files in directory while (myFile.openNext(&myDir, O_READ)) { if (!myFile.isHidden() && (myFile.isDir() || myFile.isFile())) { currFile++; } myFile.close(); } myDir.close(); page_layout = div(currFile, 7); numPages = page_layout.quot + 1; // Fill the array "answers" with 7 options to choose from in the file browser char answers[7][20]; page: // If there are less than 7 entries, set count to that number so no empty options appear byte count = currPage == numPages ? page_layout.rem : 7; // Open filepath directory if (!myDir.open(filePath)) { display_Clear(); print_FatalError(sd_error_STR); } int countFile = 0; byte i = 0; // Cycle through all files while ((myFile.openNext(&myDir, O_READ)) && (i < 8)) { // Get name of file myFile.getName(nameStr, FILENAME_LENGTH); // Ignore if hidden if (myFile.isHidden()) { } // Directory else if (myFile.isDir()) { if (countFile == ((currPage - 1) * 7 + i)) { snprintf(fileNames[i], FILENAME_LENGTH, "%s%s", "/", nameStr); i++; } countFile++; } // File else if (myFile.isFile()) { if (countFile == ((currPage - 1) * 7 + i)) { snprintf(fileNames[i], FILENAME_LENGTH, "%s", nameStr); i++; } countFile++; } myFile.close(); } myDir.close(); for (byte i = 0; i < 8; i++) { // Copy short string into fileOptions snprintf(answers[i], FILEOPTS_LENGTH, "%s", fileNames[i]); } // Create menu with title and 1-7 options to choose from unsigned char answer = question_box(browserTitle, answers, count, 0); // Check if the page has been switched if (currPage != lastPage) { lastPage = currPage; goto page; } // Check if we are supposed to go back to the root dir if (root) { // Change working dir to root filePath[0] = '/'; filePath[1] = '\0'; sd.chdir("/"); // Start again root = 0; goto browserstart; } // wait for user choice to come back from the question box menu switch (answer) { case 0: strncpy(fileName, fileNames[0], FILENAME_LENGTH - 1); break; case 1: strncpy(fileName, fileNames[1], FILENAME_LENGTH - 1); break; case 2: strncpy(fileName, fileNames[2], FILENAME_LENGTH - 1); break; case 3: strncpy(fileName, fileNames[3], FILENAME_LENGTH - 1); break; case 4: strncpy(fileName, fileNames[4], FILENAME_LENGTH - 1); break; case 5: strncpy(fileName, fileNames[5], FILENAME_LENGTH - 1); break; case 6: strncpy(fileName, fileNames[6], FILENAME_LENGTH - 1); break; //case 7: // File import //break; } // Add directory to our filepath if we just entered a new directory if (fileName[0] == '/') { // add dirname to path strcat(filePath, fileName); // Remove / from dir name char* dirName = fileName + 1; // Change working dir sd.chdir(dirName); // Start browser in new directory again goto browserstart; } else { // Afer everything is done change SD working directory back to root sd.chdir("/"); } filebrowse = 0; } /****************************************** Main loop *****************************************/ void loop() { #ifdef enable_N64 if (mode == mode_N64_Controller) { n64ControllerMenu(); } else if (mode == mode_N64_Cart) { n64CartMenu(); } #else if (1 == 0) { } #endif #ifdef enable_SNES else if (mode == mode_SNES) { snesMenu(); } #endif #ifdef enable_FLASH else if (mode == mode_FLASH8) { flashromMenu8(); } #ifdef enable_FLASH16 else if (mode == mode_FLASH16) { flashromMenu16(); } else if (mode == mode_EPROM) { epromMenu(); } #endif #endif #ifdef enable_SFM else if (mode == mode_SFM) { sfmMenu(); } #endif #ifdef enable_GBX else if (mode == mode_GB) { gbMenu(); } else if (mode == mode_GBA) { gbaMenu(); } #endif #ifdef enable_SFM #ifdef enable_FLASH else if (mode == mode_SFM_Flash) { sfmFlashMenu(); } #endif else if (mode == mode_SFM_Game) { sfmGameOptions(); } #endif #ifdef enable_GBX else if (mode == mode_GBM) { gbmMenu(); } #endif #ifdef enable_MD else if (mode == mode_MD_Cart) { mdCartMenu(); } #endif #ifdef enable_PCE else if (mode == mode_PCE) { pceMenu(); } #endif #ifdef enable_SV else if (mode == mode_SV) { svMenu(); } #endif #ifdef enable_NES else if (mode == mode_NES) { nesMenu(); } #endif #ifdef enable_SMS else if (mode == mode_SMS) { smsMenu(); } #endif #ifdef enable_MD else if (mode == mode_SEGA_CD) { segaCDMenu(); } #endif #ifdef enable_GBX else if (mode == mode_GB_GBSmart) { gbSmartMenu(); } else if (mode == mode_GB_GBSmart_Flash) { gbSmartFlashMenu(); } else if (mode == mode_GB_GBSmart_Game) { gbSmartGameOptions(); } #endif #ifdef enable_WS else if (mode == mode_WS) { wsMenu(); } #endif #ifdef enable_NGP else if (mode == mode_NGP) { ngpMenu(); } #endif #ifdef enable_INTV else if (mode == mode_INTV) { intvMenu(); } #endif #ifdef enable_COLV else if (mode == mode_COL) { colMenu(); } #endif #ifdef enable_VBOY else if (mode == mode_VBOY) { vboyMenu(); } #endif #ifdef enable_WSV else if (mode == mode_WSV) { wsvMenu(); } #endif #ifdef enable_PCW else if (mode == mode_PCW) { pcwMenu(); } #endif #ifdef enable_ATARI else if (mode == mode_ATARI) { atariMenu(); } #endif #ifdef enable_ODY2 else if (mode == mode_ODY2) { ody2Menu(); } #endif #ifdef enable_ARC else if (mode == mode_ARC) { arcMenu(); } #endif #ifdef enable_FAIRCHILD else if (mode == mode_FAIRCHILD) { fairchildMenu(); } #endif #ifdef enable_SUPRACAN else if (mode == mode_SUPRACAN) { suprAcanMenu(); } #endif #ifdef enable_MSX else if (mode == mode_MSX) { msxMenu(); } #endif #ifdef enable_POKE else if (mode == mode_POKE) { pokeMenu(); } #endif #ifdef enable_LOOPY else if (mode == mode_LOOPY) { loopyMenu(); } #endif else { display_Clear(); println_Msg(F("Menu Error")); println_Msg(""); println_Msg(""); print_Msg(F("Mode = ")); print_Msg(mode); println_Msg(F("")); // Prints string out of the common strings array either with or without newline print_STR(press_button_STR, 1); display_Update(); wait(); resetArduino(); } } //****************************************** // End of File //******************************************