//****************************************** // NINTENDO 64 //****************************************** /****************************************** Defines *****************************************/ // These two macros toggle the eepDataPin/ControllerDataPin between input and output // External 1K pull-up resistor from eepDataPin to VCC required // 0x10 = 00010000 -> Port H Pin 4 #define N64_HIGH DDRH &= ~0x10 #define N64_LOW DDRH |= 0x10 // Read the current state(0/1) of the eepDataPin #define N64_QUERY (PINH & 0x10) /****************************************** Variables *****************************************/ // Received N64 Eeprom data bits, 1 page bool tempBits[65]; int eepPages; // N64 Controller // 256 bits of received Controller data char N64_raw_dump[257]; // Array that holds one Controller Pak block of 32 bytes byte myBlock[33]; String rawStr = ""; // above char array read into a string struct { char stick_x; char stick_y; } N64_status; //stings that hold the buttons String button = "N/A"; String lastbutton = "N/A"; // Cartridge ID and size char cartID[5]; byte saveType; unsigned long cartSize; // Rom base address unsigned long romBase = 0x10000000; unsigned long sramBase = 0x08000000; // Flashram type byte flashramType = 1; boolean MN63F81MPN = false; /****************************************** Menu *****************************************/ // N64 controller menu items const char N64ContMenuItem1[] PROGMEM = "Test Controller"; const char N64ContMenuItem2[] PROGMEM = "Read ControllerPak"; const char N64ContMenuItem3[] PROGMEM = "Write ControllerPak"; const char N64ContMenuItem4[] PROGMEM = "Reset"; const char* const menuOptionsN64Controller[] PROGMEM = {N64ContMenuItem1, N64ContMenuItem2, N64ContMenuItem3, N64ContMenuItem4}; // N64 cart menu items const char N64CartMenuItem1[] PROGMEM = "Read Rom"; const char N64CartMenuItem2[] PROGMEM = "Read Save"; const char N64CartMenuItem3[] PROGMEM = "Write Save"; const char N64CartMenuItem4[] PROGMEM = "Reset"; const char* const menuOptionsN64Cart[] PROGMEM = {N64CartMenuItem1, N64CartMenuItem2, N64CartMenuItem3, N64CartMenuItem4}; // N64 CRC32 error menu items const char N64CRCMenuItem1[] PROGMEM = "Redump"; const char N64CRCMenuItem2[] PROGMEM = "Recalc CRC"; const char N64CRCMenuItem3[] PROGMEM = "Ignore"; const char N64CRCMenuItem4[] PROGMEM = "Reset"; const char* const menuOptionsN64CRC[] PROGMEM = {N64CRCMenuItem1, N64CRCMenuItem2, N64CRCMenuItem3, N64CRCMenuItem4}; // N64 Controller Menu void n64ControllerMenu() { // create menu with title and 4 options to choose from unsigned char mainMenu; // Copy menuOptions of of progmem convertPgm(menuOptionsN64Controller, 4); mainMenu = question_box("N64 Controller", menuOptions, 4, 0); // wait for user choice to come back from the question box menu switch (mainMenu) { case 0: display_Clear(); display_Update(); readController(); break; case 1: display_Clear(); display_Update(); readMPK(); println_Msg(F("")); println_Msg(F("Press Button.")); display_Update(); wait(); break; case 2: display_Clear(); display_Update(); // Change to root filePath[0] = '\0'; sd.chdir("/"); // Launch file browser fileBrowser("Select mpk file"); display_Clear(); display_Update(); writeMPK(); verifyMPK(); println_Msg(F("")); println_Msg(F("Press Button.")); display_Update(); wait(); break; case 3: asm volatile (" jmp 0"); break; } } // N64 Cartridge Menu void n64CartMenu() { // create menu with title and 4 options to choose from unsigned char mainMenu; // Copy menuOptions of of progmem convertPgm(menuOptionsN64Cart, 4); mainMenu = question_box("N64 Cart Reader", menuOptions, 4, 0); // wait for user choice to come back from the question box menu switch (mainMenu) { case 0: sd.chdir("/"); display_Clear(); println_Msg(F("Reading Rom...")); display_Update(); readRom_N64(); break; case 1: sd.chdir("/"); display_Clear(); if (saveType == 1) { println_Msg(F("Reading Sram...")); display_Update(); readSram(32768, 1); } else if (saveType == 4) { getFramType(); println_Msg(F("Reading Flashram...")); display_Update(); readFram(flashramType); } else if ((saveType == 5) || (saveType == 6)) { println_Msg(F("Reading Eep...")); display_Update(); readEeprom(); } else { print_Error(F("Savetype Error"), false); } println_Msg(F("")); println_Msg(F("Press Button...")); display_Update(); wait(); break; case 2: filePath[0] = '\0'; sd.chdir("/"); if (saveType == 1) { // Launch file browser fileBrowser("Select sra file"); display_Clear(); writeSram(32768); writeErrors = verifySram(32768, 1); if (writeErrors == 0) { println_Msg(F("Sram verified OK")); display_Update(); } else { print_Msg(F("Error: ")); print_Msg(writeErrors); println_Msg(F(" bytes ")); print_Error(F("did not verify."), false); } } else if (saveType == 4) { // Launch file browser fileBrowser("Select fla file"); display_Clear(); getFramType(); writeFram(flashramType); print_Msg(F("Verifying...")); display_Update(); writeErrors = verifyFram(flashramType); if (writeErrors == 0) { println_Msg(F("OK")); display_Update(); } else { println_Msg(""); print_Msg(F("Error: ")); print_Msg(writeErrors); println_Msg(F(" bytes ")); print_Error(F("did not verify."), false); } } else if ((saveType == 5) || (saveType == 6)) { // Launch file browser fileBrowser("Select eep file"); display_Clear(); writeEeprom(); writeErrors = verifyEeprom(); if (writeErrors == 0) { println_Msg(F("Eeprom verified OK")); display_Update(); } else { print_Msg(F("Error: ")); print_Msg(writeErrors); println_Msg(F(" bytes ")); print_Error(F("did not verify."), false); } } else { print_Error(F("Savetype Error"), false); } println_Msg(F("Press Button...")); display_Update(); wait(); break; case 3: asm volatile (" jmp 0"); break; } } /****************************************** Setup *****************************************/ void setup_N64_Controller() { // Output a low signal PORTH &= ~(1 << 4); // Set Controller Data Pin(PH4) to Input DDRH &= ~(1 << 4); } void setup_N64_Cart() { // Set Address Pins to Output //A0-A7 DDRF = 0xFF; //A8-A15 DDRK = 0xFF; // Set Control Pins to Output WR(PH5) RD(PH6) aleL(PC0) aleH(PC1) DDRH |= (1 << 5) | (1 << 6); DDRC |= (1 << 0) | (1 << 1); // Output a high signal on all pins, pins are active low therefore everything is disabled now PORTH |= (1 << 5) | (1 << 6); PORTC |= (1 << 0) | (1 << 1); // Set Eeprom Clock Pin(PH1) to Output DDRH |= (1 << 1); // Output a high signal PORTH |= (1 << 1); // Set Eeprom Data Pin(PH4) to Input DDRH &= ~(1 << 4); // Activate Internal Pullup Resistors //PORTH |= (1 << 4); // Print start page getCartInfo_N64(); if (cartSize != 0) { println_Msg(F("N64 Cartridge Info")); println_Msg(F("")); printName(); print_Msg(F("ID: ")); print_Msg(cartID); print_Msg(F(" Size: ")); print_Msg(cartSize); println_Msg(F("MB")); print_Msg(F("Save: ")); switch (saveType) { case 1: println_Msg(F("Sram")); break; case 4: println_Msg(F("Flashram")); break; case 5: println_Msg(F("4K Eeprom")); eepPages = 64; break; case 6: println_Msg(F("16K Eeprom")); eepPages = 256; break; default: println_Msg(F("unknown")); break; } print_Msg(F("Version: 1.")); println_Msg(romVersion); // Wait for user input println_Msg(F(" ")); println_Msg(F("Press Button...")); display_Update(); wait(); } else { println_Msg(F("GAMEPAK ERROR")); println_Msg(""); printName(); print_Msg(F("ID: ")); println_Msg(cartID); println_Msg(""); display_Update(); print_Error(F("Cartridge unknown"), true); } } /****************************************** Low level functions *****************************************/ // Switch Cartridge address/data pins to write void adOut_N64() { //A0-A7 DDRF = 0xFF; //A8-A15 DDRK = 0xFF; } // Switch Cartridge address/data pins to read void adIn_N64() { //A0-A7 DDRF = 0x00; //A8-A15 DDRK = 0x00; } // Set Cartridge address void setAddress_N64(unsigned long myAddress) { // Split address into two words word myAdrLowOut = myAddress & 0xFFFF; word myAdrHighOut = myAddress >> 16; // Set address pins to output adOut_N64(); // Switch WR(PH5) RD(PH6) ale_L(PC0) ale_H(PC1) to high (since the pins are active low) PORTH |= (1 << 5) | (1 << 6); PORTC |= (1 << 0) | (1 << 1); // Output high part to address pins PORTF = myAdrHighOut & 0xFF; PORTK = (myAdrHighOut >> 8) & 0xFF; // Leave ale_H and ale_L high for ~120ns __asm__("nop\n\t""nop\n\t"); // Pull ale_H(PC1) low PORTC &= ~(1 << 1); // Output low part to address pins PORTF = myAdrLowOut & 0xFF; PORTK = (myAdrLowOut >> 8) & 0xFF; // Leave ale_L high for another ~110ns __asm__("nop\n\t""nop\n\t"); // Pull ale_L(PC0) low PORTC &= ~(1 << 0); // Wait ~1000ns before read __asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t"); // Set data pins to input adIn_N64(); } // Read one word out of the cartridge word readWord_N64() { // Pull read(PH6) low PORTH &= ~(1 << 6); // Wait ~100ns __asm__("nop\n\t""nop\n\t"); // Join bytes from PINF and PINK into a word word tempWord = ( ( PINK & 0xFF ) << 8 ) | ( PINF & 0xFF ); // Wait ~200ns __asm__("nop\n\t""nop\n\t""nop\n\t"); // Pull read(PH6) high PORTH |= (1 << 6); // Wait ~60ns __asm__("nop\n\t"); return tempWord; } // Write one word to data pins of the cartridge void writeWord_N64(word myWord) { // Set address pins to output adOut_N64(); // Output word to AD0-AD15 PORTF = myWord & 0xFF; PORTK = (myWord >> 8) & 0xFF; // Wait ~62.5ns __asm__("nop\n\t"); // Pull write(PH5) low PORTH &= ~(1 << 5); // Wait ~310ns __asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t"); // Pull write(PH5) high PORTH |= (1 << 5); // Wait ~125ns __asm__("nop\n\t""nop\n\t"); // Set data pins to input adIn_N64(); } /****************************************** N64 Controller CRC Functions *****************************************/ static word addrCRC(word address) { // CRC table word xor_table[16] = { 0x0, 0x0, 0x0, 0x0, 0x0, 0x15, 0x1F, 0x0B, 0x16, 0x19, 0x07, 0x0E, 0x1C, 0x0D, 0x1A, 0x01 }; word crc = 0; // Make sure we have a valid address address &= ~0x1F; // Go through each bit in the address, and if set, xor the right value into the output for (int i = 15; i >= 5; i--) { // Is this bit set? if ( ((address >> i) & 0x1)) { crc ^= xor_table[i]; } } // Just in case crc &= 0x1F; // Create a new address with the CRC appended return address | crc; } static byte dataCRC(byte * data) { byte ret = 0; for (byte i = 0; i <= 32; i++) { for (byte j = 7; j >= 0; j--) { int tmp = 0; if (ret & 0x80) { tmp = 0x85; } ret <<= 1; if ( i < 32 ) { if (data[i] & (0x01 << j)) { ret |= 0x1; } } ret ^= tmp; } } return ret; } /****************************************** N64 Controller Protocol Functions *****************************************/ void N64_send(unsigned char *buffer, char length) { // Send these bytes char bits; bool bit; // This routine is very carefully timed by examining the assembly output. // Do not change any statements, it could throw the timings off // // We get 16 cycles per microsecond, which should be plenty, but we need to // be conservative. Most assembly ops take 1 cycle, but a few take 2 // // I use manually constructed for-loops out of gotos so I have more control // over the outputted assembly. I can insert nops where it was impossible // with a for loop asm volatile (";Starting outer for loop"); outer_loop: { asm volatile (";Starting inner for loop"); bits = 8; inner_loop: { // Starting a bit, set the line low asm volatile (";Setting line to low"); N64_LOW; // 1 op, 2 cycles asm volatile (";branching"); if (*buffer >> 7) { asm volatile (";Bit is a 1"); // 1 bit // remain low for 1us, then go high for 3us // nop block 1 asm volatile ("nop\nnop\nnop\nnop\nnop\n"); asm volatile (";Setting line to high"); N64_HIGH; // nop block 2 // we'll wait only 2us to sync up with both conditions // at the bottom of the if statement asm volatile ("nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" ); } else { asm volatile (";Bit is a 0"); // 0 bit // remain low for 3us, then go high for 1us // nop block 3 asm volatile ("nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\n"); asm volatile (";Setting line to high"); N64_HIGH; // wait for 1us asm volatile ("; end of conditional branch, need to wait 1us more before next bit"); } // end of the if, the line is high and needs to remain // high for exactly 16 more cycles, regardless of the previous // branch path asm volatile (";finishing inner loop body"); --bits; if (bits != 0) { // nop block 4 // this block is why a for loop was impossible asm volatile ("nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\n"); // rotate bits asm volatile (";rotating out bits"); *buffer <<= 1; goto inner_loop; } // fall out of inner loop } asm volatile (";continuing outer loop"); // In this case: the inner loop exits and the outer loop iterates, // there are /exactly/ 16 cycles taken up by the necessary operations. // So no nops are needed here (that was lucky!) --length; if (length != 0) { ++buffer; goto outer_loop; } // fall out of outer loop } } void N64_stop() { // send a single stop (1) bit // nop block 5 asm volatile ("nop\nnop\nnop\nnop\n"); N64_LOW; // wait 1 us, 16 cycles, then raise the line // 16-2=14 // nop block 6 asm volatile ("nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\n"); N64_HIGH; } void N64_get(word bitcount) { // listen for the expected bitcount/8 bytes of data back from the controller and // blast it out to the N64_raw_dump array, one bit per byte for extra speed. asm volatile (";Starting to listen"); unsigned char timeout; char *bitbin = N64_raw_dump; // Again, using gotos here to make the assembly more predictable and // optimization easier (please don't kill me) read_loop: timeout = 0x3f; // wait for line to go low while (N64_QUERY) { if (!--timeout) return; } // wait approx 2us and poll the line asm volatile ( "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" "nop\nnop\nnop\nnop\nnop\n" ); *bitbin = N64_QUERY; ++bitbin; --bitcount; if (bitcount == 0) return; // wait for line to go high again // it may already be high, so this should just drop through timeout = 0x3f; while (!N64_QUERY) { if (!--timeout) return; } goto read_loop; } /****************************************** N64 Controller Functions *****************************************/ void get_button() { // Command to send to the gamecube // The last bit is rumble, flip it to rumble // yes this does need to be inside the loop, the // array gets mutilated when it goes through N64_send unsigned char command[] = { 0x01 }; // don't want interrupts getting in the way noInterrupts(); // send those 3 bytes N64_send(command, 1); N64_stop(); // read in 32bits of data and dump it to N64_raw_dump N64_get(32); // end of time sensitive code interrupts(); // The get_N64_status function sloppily dumps its data 1 bit per byte // into the get_status_extended char array. It's our job to go through // that and put each piece neatly into the struct N64_status int i; memset(&N64_status, 0, sizeof(N64_status)); // bits: joystick x value // These are 8 bit values centered at 0x80 (128) for (i = 0; i < 8; i++) { N64_status.stick_x |= N64_raw_dump[16 + i] ? (0x80 >> i) : 0; } for (i = 0; i < 8; i++) { N64_status.stick_y |= N64_raw_dump[24 + i] ? (0x80 >> i) : 0; } // read char array N64_raw_dump into string rawStr rawStr = ""; for (i = 0; i < 16; i++) { rawStr = rawStr + String(N64_raw_dump[i], DEC); } // Buttons (A,B,Z,S,DU,DD,DL,DR,0,0,L,R,CU,CD,CL,CR) if (rawStr.substring(0, 16) == "0000000000000000") { lastbutton = button; button = "Press a button"; } else { for (int i = 0; i < 16; i++) { // seems to be 16, 8 or 4 depending on what pin is used if (N64_raw_dump[i] == 16) { switch (i) { case 7: button = "D-Right"; break; case 6: button = "D-Left"; break; case 5: button = "D-Down"; break; case 4: button = "D-Up"; break; case 3: button = "START"; break; case 2: button = "Z"; break; case 1: button = "B"; break; case 0: button = "A"; break; case 15: button = "C-Right"; break; case 14: button = "C-Left"; break; case 13: button = "C-Down"; break; case 12: button = "C-Up"; break; case 11: button = "R"; break; case 10: button = "L"; break; } } } } } void readController() { bool quit = 1; while (quit) { display_Clear(); // Get Button and analog stick get_button(); println_Msg(F("Controller Test")); println_Msg(""); println_Msg(button); println_Msg(""); String stickx = String("X: " + String(N64_status.stick_x, DEC) + " "); println_Msg(stickx); String sticky = String("Y: " + String(N64_status.stick_y, DEC) + " "); println_Msg(sticky); println_Msg(""); println_Msg(F("Press START to quit")); display_Update(); delay(100); if (button == "START") { quit = 0; } } } /****************************************** N64 Controller Pak Functions (connected via Controller) *****************************************/ // read 32bytes from controller pak void readBlock(word myAddress) { // Calculate the address CRC word myAddressCRC = addrCRC(myAddress); // Read Controller Pak command unsigned char command[] = {0x02}; // Address Command unsigned char addressHigh[] = {(unsigned char)(myAddressCRC >> 8)}; unsigned char addressLow[] = {(unsigned char)(myAddressCRC & 0xff)}; // don't want interrupts getting in the way noInterrupts(); // send those 3 bytes N64_send(command, 1); N64_send(addressHigh, 1); N64_send(addressLow, 1); N64_stop(); // read in data N64_get(256); // end of time sensitive code interrupts(); // Empty N64_raw_dump into myBlock for (word i = 0; i < 256; i += 8) { boolean byteFlipped[9]; // Flip byte order byteFlipped[0] = N64_raw_dump[i + 7]; byteFlipped[1] = N64_raw_dump[i + 6]; byteFlipped[2] = N64_raw_dump[i + 5]; byteFlipped[3] = N64_raw_dump[i + 4]; byteFlipped[4] = N64_raw_dump[i + 3]; byteFlipped[5] = N64_raw_dump[i + 2]; byteFlipped[6] = N64_raw_dump[i + 1]; byteFlipped[7] = N64_raw_dump[i + 0]; // Join bits into one byte unsigned char myByte = 0; for (byte j = 0; j < 8; ++j) { if (byteFlipped[j]) { myByte |= 1 << j; } } // Save byte into block array myBlock[i / 8] = myByte; } } // reads the MPK file to the sd card void readMPK() { // Change to root sd.chdir("/"); // Change to MPK directory sd.chdir("MPK"); // Get name, add extension and convert to char array for sd lib EEPROM_readAnything(0, foldern); sprintf(fileName, "%d", foldern); strcat(fileName, ".mpk"); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); //open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_Error(F("Can't open file on SD"), true); } println_Msg(F("Please wait...")); display_Update(); // Controller paks, which all have 32kB of space, are mapped between 0x0000 – 0x7FFF for (word i = 0x0000; i < 0x8000; i += 32) { // Read one block of the Controller Pak into array myBlock readBlock(i); // Write block to SD card for (byte j = 0; j < 32; j++) { myFile.write(myBlock[j]); } } // Close the file: myFile.close(); print_Msg(F("Saved as /MPK/")); println_Msg(fileName); display_Update(); } void writeMPK() { // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); println_Msg(F("Writing...")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { for (word myAddress = 0x0000; myAddress < 0x8000; myAddress += 32) { // Read 32 bytes into SD buffer myFile.read(sdBuffer, 32); // Calculate the address CRC word myAddressCRC = addrCRC(myAddress); // Write Controller Pak command unsigned char command[] = {0x03}; // Address Command unsigned char addressHigh[] = {(unsigned char)(myAddressCRC >> 8)}; unsigned char addressLow[] = {(unsigned char)(myAddressCRC & 0xff)}; // don't want interrupts getting in the way noInterrupts(); // Send write command N64_send(command, 1); // Send block number N64_send(addressHigh, 1); N64_send(addressLow, 1); // Send data to write N64_send(sdBuffer, 32); // Send stop N64_stop(); // Enable interrupts interrupts(); } // Close the file: myFile.close(); println_Msg(F("Done")); display_Update(); } else { print_Error(F("Can't create file on SD"), true); } } // verifies if write was successful void verifyMPK() { writeErrors = 0; println_Msg(F("Verifying...")); display_Update(); //open file on sd card if (!myFile.open(filePath, O_RDWR | O_CREAT)) { print_Error(F("Can't create file on SD"), true); } // Controller paks, which all have 32kB of space, are mapped between 0x0000 – 0x7FFF for (word i = 0x0000; i < 0x8000; i += 32) { // Read one block of the Controller Pak into array myBlock readBlock(i); // Check against file on SD card for (byte j = 0; j < 32; j++) { if (myFile.read() != myBlock[j]) { writeErrors++; } } } // Close the file: myFile.close(); if (writeErrors == 0) { println_Msg(F("OK")); display_Update(); } else { print_Msg(F("Error: ")); print_Msg(writeErrors); println_Msg(F(" bytes ")); print_Error(F("did not verify."), false); } } /****************************************** N64 Cartridge functions *****************************************/ // CRC32 lookup table static const uint32_t crc_32_tab[] PROGMEM = { /* CRC polynomial 0xedb88320 */ 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d }; // Calculate dumped rom's CRC32 inline uint32_t updateCRC32(uint8_t ch, uint32_t crc) { uint32_t idx = ((crc) ^ (ch)) & 0xff; uint32_t tab_value = pgm_read_dword(crc_32_tab + idx); return tab_value ^ ((crc) >> 8); } // Read rom from sd uint32_t crc32() { if (myFile.open(fileName, O_READ)) { uint32_t oldcrc32 = 0xFFFFFFFF; for (unsigned long currByte = 0; currByte < cartSize * 2048; currByte++) { myFile.read(sdBuffer, 512); for (int c = 0; c < 512; c++) { oldcrc32 = updateCRC32(sdBuffer[c], oldcrc32); } } // Close the file: myFile.close(); return ~oldcrc32; } else { print_Error(F("File not found"), true); } } // look-up the calculated crc in the file n64.txt on sd card boolean searchCRC(char crcStr[9]) { boolean result = 0; char tempStr2[2]; char tempStr1[9]; char tempStr[5]; // Change to root dir sd.chdir("/"); if (myFile.open("n64.txt", O_READ)) { // Loop through file while (myFile.available()) { // Read 8 bytes into String, do it one at a time so byte order doesn't get mixed up sprintf(tempStr1, "%c", myFile.read()); for (byte i = 0; i < 7; i++) { sprintf(tempStr2, "%c", myFile.read()); strcat(tempStr1, tempStr2); } // Check if string is a match if (strcmp(tempStr1, crcStr) == 0) { // Skip the , in the file myFile.seekSet(myFile.curPosition() + 1); // Read 4 bytes into String, do it one at a time so byte order doesn't get mixed up sprintf(tempStr, "%c", myFile.read()); for (byte i = 0; i < 3; i++) { sprintf(tempStr2, "%c", myFile.read()); strcat(tempStr, tempStr2); } if (strcmp(tempStr, cartID) == 0) { result = 1; break; } else { result = 0; break; } } // If no match, empty string, advance by 12 and try again else { myFile.seekSet(myFile.curPosition() + 12); } } // Close the file: myFile.close(); return result; } else { print_Error(F("N64.txt missing"), true); } } // look-up cart id in file n64.txt on sd card void getCartInfo_N64() { char tempStr2[2]; char tempStr[5]; char sizeStr[3]; char saveStr[2]; // cart not in list cartSize = 0; saveType = 0; // Read cart id idCart(); if (myFile.open("n64.txt", O_READ)) { // Skip over the first crc myFile.seekSet(myFile.curPosition() + 9); // Loop through file while (myFile.available()) { // Read 4 bytes into String, do it one at a time so byte order doesn't get mixed up sprintf(tempStr, "%c", myFile.read()); for (byte i = 0; i < 3; i++) { sprintf(tempStr2, "%c", myFile.read()); strcat(tempStr, tempStr2); } // Check if string is a match if (strcmp(tempStr, cartID) == 0) { // Skip the , in the file myFile.seekSet(myFile.curPosition() + 1); // Read the next ascii character and subtract 48 to convert to decimal cartSize = myFile.read() - 48; // Remove leading 0 for single digit cart sizes if (cartSize != 0) { cartSize = cartSize * 10 + myFile.read() - 48; } else { cartSize = myFile.read() - 48; } // Skip the , in the file myFile.seekSet(myFile.curPosition() + 1); // Read the next ascii character and subtract 48 to convert to decimal saveType = myFile.read() - 48; } // If no match, empty string, advance by 16 and try again else { myFile.seekSet(myFile.curPosition() + 16); } } // Close the file: myFile.close(); } else { print_Error(F("N64.txt missing"), true); } } // Read rom ID void idCart() { // Set address setAddress_N64(romBase + 0x3A); // Split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // First letter is always N or C cartID[0] = loByte; // Split word myWord = readWord_N64(); loByte = myWord & 0xFF; hiByte = myWord >> 8; // Game ID cartID[1] = char(hiByte); cartID[2] = char(loByte); // Split word myWord = readWord_N64(); loByte = myWord & 0xFF; hiByte = myWord >> 8; // Country Code cartID[3] = char(hiByte); // Get rom version romVersion = loByte; } // Read name out of rom void printName() { // Set the address for the next 512 bytes setAddress_N64(romBase + 0x20); // Dump name into 8.3 compatible format byte myLength = 0; for (unsigned int i = 0; i < 20; i += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; if (((char(hiByte) >= 48 && char(hiByte) <= 57) || (char(hiByte) >= 65 && char(hiByte) <= 122)) && myLength < 8) { romName[myLength] = char(hiByte); myLength++; } if (((char(loByte) >= 48 && char(loByte) <= 57) || (char(loByte) >= 65 && char(loByte) <= 122)) && myLength < 8) { romName[myLength] = char(loByte); myLength++; } } print_Msg(F("Name: ")); println_Msg(romName); display_Update(); } /****************************************** Eeprom functions *****************************************/ // Send a clock pulse of 2us length, 50% duty, 500kHz void pulseClock_N64(unsigned int times) { for (unsigned int i = 0; i < (times * 2); i++) { // Switch the clock pin to 0 if it's 1 and 0 if it's 1 PORTH ^= (1 << 1); // without the delay the clock pulse would be 1.5us and 666kHz //__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t")); } } // Send one byte of data to eeprom void sendData(byte data) { for (byte i = 0; i < 8; i++) { // pull data line low N64_LOW; // if current bit is 1, pull high after ~1us, 2 cycles if (data >> 7) { pulseClock_N64(2); N64_HIGH; pulseClock_N64(6); } // if current bit is 0 pull high after ~3us, 6 cycles else { pulseClock_N64(6); N64_HIGH; pulseClock_N64(2); } // rotate to the next bit data <<= 1; } } // Send stop bit to eeprom void sendStop() { N64_LOW; pulseClock_N64(2); N64_HIGH; pulseClock_N64(4); } // Capture 8 bytes in 64 bits into bit array tempBits void readData() { for (byte i = 0; i < 64; i++) { // pulse clock until we get response from eeprom while (N64_QUERY) { pulseClock_N64(1); } // Skip over the 1us low part of a high bit pulseClock_N64(3); // Read bit tempBits[i] = N64_QUERY; // wait for line to go high again while (!N64_QUERY) { pulseClock_N64(1); } } } // Write Eeprom to cartridge void writeEeprom() { if ((saveType == 5) || (saveType == 6)) { // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); println_Msg(F("Writing...")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { for (byte i = 0; i < (eepPages / 64); i++) { myFile.read(sdBuffer, 512); for (byte pageNumber = 0; pageNumber < 64; pageNumber++) { // Disable interrupts for more uniform clock pulses noInterrupts(); // Wait ~50ms between page writes or eeprom will have write errors pulseClock_N64(26000); // Send write command sendData(0x05); // Send page number sendData(pageNumber + (i * 64)); // Send data to write for (byte j = 0; j < 8; j++) { sendData(sdBuffer[(pageNumber * 8) + j]); } sendStop(); interrupts(); } } // Close the file: myFile.close(); println_Msg(F("Done")); display_Update(); } else { print_Error(F("SD Error"), true); } } else { print_Error(F("Savetype Error"), true); } } // Dump Eeprom to SD void readEeprom() { if ((saveType == 5) || (saveType == 6)) { // Wait 0.6ms pulseClock_N64(300); // Get name, add extension and convert to char array for sd lib strcpy(fileName, romName); strcat(fileName, ".eep"); // create a new folder for the save file EEPROM_readAnything(0, foldern); sprintf(folder, "SAVE/%s/%d", romName, foldern); sd.mkdir(folder, true); sd.chdir(folder); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); // Open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_Error(F("Can't create file on SD"), true); } for (byte i = 0; i < (eepPages / 64); i++) { for (byte pageNumber = 0; pageNumber < 64; pageNumber++) { // Disable interrupts for more uniform clock pulses noInterrupts(); // Send read command sendData(0x04); // Send Page number sendData(pageNumber + (i * 64)); // Send stop bit sendStop(); // read data readData(); sendStop(); interrupts(); // OR 8 bits into one byte for a total of 8 bytes for (byte j = 0; j < 64; j += 8) { sdBuffer[(pageNumber * 8) + (j / 8)] = tempBits[0 + j] << 7 | tempBits[1 + j] << 6 | tempBits[2 + j] << 5 | tempBits[3 + j] << 4 | tempBits[4 + j] << 3 | tempBits[5 + j] << 2 | tempBits[6 + j] << 1 | tempBits[7 + j]; } // Wait ~0.6ms between pages or eeprom will lock up pulseClock_N64(300); } // Write 64 pages at once to the SD card myFile.write(sdBuffer, 512); } // Close the file: myFile.close(); print_Msg(F("Saved to SAVE/")); print_Msg(romName); print_Msg(F("/")); print_Msg(foldern - 1); print_Msg(F("/")); println_Msg(fileName); display_Update(); } else { print_Error(F("Savetype Error"), true); } } // Check if a write succeeded, returns 0 if all is ok and number of errors if not unsigned long verifyEeprom() { if ((saveType == 5) || (saveType == 6)) { writeErrors = 0; // Wait 0.6ms pulseClock_N64(300); print_Msg(F("Verifying against ")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { for (byte i = 0; i < (eepPages / 64); i++) { for (byte pageNumber = 0; pageNumber < 64; pageNumber++) { // Disable interrupts for more uniform clock pulses noInterrupts(); // Send read command sendData(0x04); // Send Page number sendData(pageNumber + (i * 64)); // Send stop bit sendStop(); // read data readData(); sendStop(); interrupts(); // OR 8 bits into one byte for a total of 8 bytes for (byte j = 0; j < 64; j += 8) { sdBuffer[(pageNumber * 8) + (j / 8)] = tempBits[0 + j] << 7 | tempBits[1 + j] << 6 | tempBits[2 + j] << 5 | tempBits[3 + j] << 4 | tempBits[4 + j] << 3 | tempBits[5 + j] << 2 | tempBits[6 + j] << 1 | tempBits[7 + j]; } // Wait ~0.6ms between pages or eeprom will lock up pulseClock_N64(300); } // Check sdBuffer content against file on sd card for (int c = 0; c < 512; c++) { if (myFile.read() != sdBuffer[c]) { writeErrors++; } } } // Close the file: myFile.close(); } else { // SD Error writeErrors = 999999; print_Error(F("SD Error"), true); } // Return 0 if verified ok, or number of errors return writeErrors; } else { print_Error(F("Savetype Error"), true); } } /****************************************** SRAM functions *****************************************/ // Write sram to cartridge void writeSram(unsigned long sramSize) { if (saveType == 1) { // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); println_Msg(F("Writing...")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { for (unsigned long currByte = sramBase; currByte < (sramBase + sramSize); currByte += 512) { // Read save from SD into buffer myFile.read(sdBuffer, 512); // Set the address for the next 512 bytes setAddress_N64(currByte); for (int c = 0; c < 512; c += 2) { // Join bytes to word word myWord = ( ( sdBuffer[c] & 0xFF ) << 8 ) | ( sdBuffer[c + 1] & 0xFF ); // Write word writeWord_N64(myWord); } } // Close the file: myFile.close(); println_Msg(F("Done")); display_Update(); } else { print_Error(F("SD Error"), true); } } else { print_Error(F("Savetype Error"), true); } } // Read sram and save to the SD card void readSram(unsigned long sramSize, byte flashramType) { int offset = 512; int bufferSize = 512; if (flashramType == 2) { offset = 64; bufferSize = 128; } // Get name, add extension and convert to char array for sd lib strcpy(fileName, romName); if (saveType == 4) { strcat(fileName, ".fla"); } else if (saveType == 1) { strcat(fileName, ".sra"); } else { print_Error(F("Savetype Error"), true); } // create a new folder for the save file EEPROM_readAnything(0, foldern); sprintf(folder, "SAVE/%s/%d", romName, foldern); sd.mkdir(folder, true); sd.chdir(folder); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); // Open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_Error(F("SD Error"), true); } for (unsigned long currByte = sramBase; currByte < (sramBase + (sramSize / flashramType)); currByte += offset) { // Set the address setAddress_N64(currByte); for (int c = 0; c < bufferSize; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } myFile.write(sdBuffer, bufferSize); } // Close the file: myFile.close(); print_Msg(F("Saved to SAVE/")); print_Msg(romName); print_Msg(F("/")); print_Msg(foldern - 1); print_Msg(F("/")); println_Msg(fileName); display_Update(); } unsigned long verifySram(unsigned long sramSize, byte flashramType) { writeErrors = 0; int offset = 512; int bufferSize = 512; if (flashramType == 2) { offset = 64; bufferSize = 128; } // Open file on sd card if (myFile.open(filePath, O_READ)) { for (unsigned long currByte = sramBase; currByte < (sramBase + (sramSize / flashramType)); currByte += offset) { // Set the address setAddress_N64(currByte); for (int c = 0; c < bufferSize; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } // Check sdBuffer content against file on sd card for (int i = 0; i < bufferSize; i++) { if (myFile.read() != sdBuffer[i]) { writeErrors++; } } } // Close the file: myFile.close(); } else { print_Error(F("SD Error"), true); } // Return 0 if verified ok, or number of errors return writeErrors; } /****************************************** Flashram functions *****************************************/ // Send a command to the flashram command register void sendFramCmd (unsigned long myCommand) { // Split command into two words word myComLowOut = myCommand & 0xFFFF; word myComHighOut = myCommand >> 16; // Set address to command register setAddress_N64(0x08010000); // Send command writeWord_N64(myComHighOut); writeWord_N64(myComLowOut); } // Init fram void initFram() { // FRAM_EXECUTE_CMD sendFramCmd(0xD2000000); delay(10); // FRAM_EXECUTE_CMD sendFramCmd(0xD2000000); delay(10); //FRAM_STATUS_MODE_CMD sendFramCmd(0xE1000000); delay(10); } void writeFram(byte flashramType) { if (saveType == 4) { // Erase fram eraseFram(); // Check if empty if (blankcheck_N64(flashramType) == 0) { println_Msg(F("OK")); display_Update(); } else { println_Msg("FAILED"); print_Error(F("Flash is not blank"), true); } // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); print_Msg(F("Writing ")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { // Init fram initFram(); // Write all 8 fram banks print_Msg(F("Bank ")); for (byte bank = 0; bank < 8; bank++) { print_Msg(bank); print_Msg(F(" ")); display_Update(); // Write one bank of 128*128 bytes for (byte offset = 0; offset < 128; offset++) { // Read save from SD into buffer myFile.read(sdBuffer, 128); // FRAM_WRITE_MODE_CMD sendFramCmd(0xB4000000); delay(1); // Set the address for the next 128 bytes setAddress_N64(0x08000000); // Send 128 bytes, 64 words for (byte c = 0; c < 128; c += 2) { // Join two bytes into one word word myWord = ( ( sdBuffer[c] & 0xFF ) << 8 ) | ( sdBuffer[c + 1] & 0xFF ); // Write word writeWord_N64(myWord); } // Delay between each "DMA" delay(1); //FRAM_WRITE_OFFSET_CMD + offset sendFramCmd((0xA5000000 | (((bank * 128) + offset) & 0xFFFF))); delay(1); // FRAM_EXECUTE_CMD sendFramCmd(0xD2000000); while (waitForFram(flashramType)) { delay(1); } } // Delay between banks delay(20); } // Close the file: myFile.close(); } else { print_Error(F("SD Error"), true); } } else { print_Error(F("Savetype Error"), true); } } // Delete all 8 flashram banks void eraseFram() { if (saveType == 4) { print_Msg(F("Erasing...")); display_Update(); // Init fram initFram(); // Erase fram // 0x4B00007F 0x4B0000FF 0x4B00017F 0x4B0001FF 0x4B00027F 0x4B0002FF 0x4B00037F 0x4B0003FF for (unsigned long bank = 0x4B00007F; bank < 0x4B00047F; bank += 0x80) { sendFramCmd(bank); delay(10); // FRAM_ERASE_MODE_CMD sendFramCmd(0x78000000); delay(10); // FRAM_EXECUTE_CMD sendFramCmd(0xD2000000); while (waitForFram(flashramType)) { delay(1); } } } else { print_Error(F("Savetype Error"), true); } } // Read flashram void readFram(byte flashramType) { if (saveType == 4) { // Put flashram into read mode // FRAM_READ_MODE_CMD sendFramCmd(0xF0000000); // Read Flashram readSram(131072, flashramType); } else { print_Error(F("Savetype Error"), true); } } // Verify flashram unsigned long verifyFram(byte flashramType) { // Put flashram into read mode // FRAM_READ_MODE_CMD sendFramCmd(0xF0000000); writeErrors = verifySram(131072, flashramType); return writeErrors; } // Blankcheck flashram unsigned long blankcheck_N64(byte flashramType) { writeErrors = 0; int offset = 512; int bufferSize = 512; if (flashramType == 2) { offset = 64; bufferSize = 128; } // Put flashram into read mode // FRAM_READ_MODE_CMD sendFramCmd(0xF0000000); // Read Flashram for (unsigned long currByte = sramBase; currByte < (sramBase + (131072 / flashramType)); currByte += offset) { // Set the address for the next 512 bytes setAddress_N64(currByte); for (int c = 0; c < bufferSize; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } // Check sdBuffer content against file on sd card for (int i = 0; i < bufferSize; i++) { if (0xFF != sdBuffer[i]) { writeErrors++; } } } // Return 0 if verified ok, or number of errors return writeErrors; } // Wait until current operation is done byte waitForFram(byte flashramType) { byte framStatus = 0; byte statusMXL1100[] = {0x11, 0x11, 0x80, 0x01, 0x00, 0xC2, 0x00, 0x1E}; byte statusMXL1101[] = {0x11, 0x11, 0x80, 0x01, 0x00, 0xC2, 0x00, 0x1D}; byte statusMN63F81[] = {0x11, 0x11, 0x80, 0x01, 0x00, 0x32, 0x00, 0xF1}; // FRAM_STATUS_MODE_CMD sendFramCmd(0xE1000000); delay(1); // Set address to Fram status register setAddress_N64(0x08000000); // Read Status for (byte c = 0; c < 8; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } if (flashramType == 2) { for (byte c = 0; c < 8; c++) { if (statusMXL1100[c] != sdBuffer[c]) { framStatus = 1; } } } else if (flashramType == 1) { //MX29L1101 if (MN63F81MPN == false) { for (byte c = 0; c < 8; c++) { if (statusMXL1101[c] != sdBuffer[c]) { framStatus = 1; } } } //MN63F81MPN else if (MN63F81MPN == true) { for (byte c = 0; c < 8; c++) { if (statusMN63F81[c] != sdBuffer[c]) { framStatus = 1; } } } } return framStatus; } // Get flashram type void getFramType() { // FRAM_STATUS_MODE_CMD sendFramCmd(0xE1000000); delay(10); // Set address to Fram status register setAddress_N64(0x08000000); // Read Status for (byte c = 0; c < 8; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } //MX29L1100 if (sdBuffer[7] == 0x1e ) { flashramType = 2; println_Msg(F("Type: MX29L1100")); display_Update(); } //MX29L1101 else if (sdBuffer[7] == 0x1d ) { flashramType = 1; MN63F81MPN = false; println_Msg(F("Type: MX29L1101")); display_Update(); } //MN63F81MPN else if (sdBuffer[7] == 0xf1 ) { flashramType = 1; MN63F81MPN = true; println_Msg(F("Type: MN63F81MPN")); display_Update(); } // Type unknown else { for (byte c = 0; c < 8; c++) { print_Msg(sdBuffer[c], HEX); print_Msg(F(", ")); } print_Error(F("Flashram unknown"), true); } } /****************************************** Rom functions *****************************************/ // Read rom and save to the SD card void readRom_N64() { // Get name, add extension and convert to char array for sd lib strcpy(fileName, romName); strcat(fileName, ".Z64"); // create a new folder EEPROM_readAnything(0, foldern); sprintf(folder, "ROM/%s/%d", romName, foldern); sd.mkdir(folder, true); sd.chdir(folder); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); readn64rom: // Open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_Error(F("SD Error"), true); } for (unsigned long currByte = romBase; currByte < (romBase + (cartSize * 1024 * 1024)); currByte += 512) { // Blink led if (currByte % 16384 == 0) PORTB ^= (1 << 4); // Set the address for the next 512 bytes setAddress_N64(currByte); for (int c = 0; c < 512; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } myFile.write(sdBuffer, 512); } // Close the file: myFile.close(); print_Msg(F("Saved to ROM/")); print_Msg(romName); print_Msg(F("/")); print_Msg(foldern - 1); print_Msg(F("/")); println_Msg(fileName); display_Update(); calcn64crc: // Calculate Checksum and convert to string println_Msg(F("Calculating CRC..")); display_Update(); char crcStr[9]; sprintf(crcStr, "%08lx", crc32()); // Print checksum println_Msg(crcStr); display_Update(); // Search n64.txt for crc if (searchCRC(crcStr)) { // Dump was a known good rom println_Msg(F("Checksum matches")); println_Msg(F("")); println_Msg(F("Press Button...")); display_Update(); wait(); } else { // Dump was bad or unknown rgb.setColor(255, 0, 0); // N64 CRC32 error Menu unsigned char CRCMenu; // Copy menuOptions of of progmem convertPgm(menuOptionsN64CRC, 4); char tempStr3[20]; strcpy(tempStr3, "CRC ERROR "); strcat(tempStr3, crcStr); CRCMenu = question_box(tempStr3, menuOptions, 4, 0); // wait for user choice to come back from the question box menu switch (CRCMenu) { case 0: // Change to last directory sd.chdir(folder); // Delete old file if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_Error(F("SD Error"), true); } if (!myFile.remove()) { print_Error(F("Delete Error"), true); } // Dump again display_Clear(); println_Msg(F("Reading Rom...")); display_Update(); rgb.setColor(0, 0, 0); goto readn64rom; break; case 1: // Change to last directory sd.chdir(folder); display_Clear(); // Calculate CRC again rgb.setColor(0, 0, 0); goto calcn64crc; break; case 2: // Return to N64 menu break; case 3: // Reset asm volatile (" jmp 0"); break; } } display_Update(); } //****************************************** // End of File //******************************************