//****************************************** // NINTENDO 64 MODULE //****************************************** #ifdef enable_N64 /****************************************** Defines *****************************************/ // These two macros toggle the eepDataPin/ControllerDataPin between input and output // External 1K pull-up resistor from eepDataPin to VCC required // 0x10 = 00010000 -> Port H Pin 4 #define N64_HIGH DDRH &= ~0x10 #define N64_LOW DDRH |= 0x10 // Read the current state(0/1) of the eepDataPin #define N64_QUERY (PINH & 0x10) /****************************************** Variables *****************************************/ // Received N64 Eeprom data bits, 1 page int eepPages; // N64 Controller struct { char stick_x; char stick_y; } N64_status; //stings that hold the buttons String button = "N/A"; String lastbutton = "N/A"; // Rom base address unsigned long romBase = 0x10000000; // Flashram type byte flashramType = 1; boolean MN63F81MPN = false; //ControllerTest bool quit = 1; #ifdef savesummarytotxt String CRC1 = ""; String CRC2 = ""; #endif static const char N64_EEP_FILENAME_FMT[] PROGMEM = "%s.eep"; static const char N64_SAVE_DIRNAME_FMT[] PROGMEM = "N64/SAVE/%s/%d"; /****************************************** Menu *****************************************/ // N64 start menu static const char n64MenuItem1[] PROGMEM = "Game Cartridge"; static const char n64MenuItem2[] PROGMEM = "Controller"; static const char n64MenuItem3[] PROGMEM = "Flash Repro"; static const char n64MenuItem4[] PROGMEM = "Flash Gameshark"; //static const char n64MenuItem5[] PROGMEM = "Reset"; (stored in common strings array) static const char* const menuOptionsN64[] PROGMEM = { n64MenuItem1, n64MenuItem2, n64MenuItem3, n64MenuItem4, string_reset2 }; // N64 controller menu items static const char N64ContMenuItem1[] PROGMEM = "Test Controller"; static const char N64ContMenuItem2[] PROGMEM = "Read ControllerPak"; static const char N64ContMenuItem3[] PROGMEM = "Write ControllerPak"; //static const char N64ContMenuItem4[] PROGMEM = "Reset"; (stored in common strings array) static const char* const menuOptionsN64Controller[] PROGMEM = { N64ContMenuItem1, N64ContMenuItem2, N64ContMenuItem3, string_reset2 }; // N64 cart menu items static const char N64CartMenuItem1[] PROGMEM = "Read ROM"; static const char N64CartMenuItem2[] PROGMEM = "Read Save"; static const char N64CartMenuItem3[] PROGMEM = "Write Save"; static const char N64CartMenuItem4[] PROGMEM = "Force Savetype"; //static const char N64CartMenuItem5[] PROGMEM = "Reset"; (stored in common strings array) static const char* const menuOptionsN64Cart[] PROGMEM = { N64CartMenuItem1, N64CartMenuItem2, N64CartMenuItem3, N64CartMenuItem4, string_reset2 }; // N64 CRC32 error menu items static const char N64CRCMenuItem1[] PROGMEM = "No"; static const char N64CRCMenuItem2[] PROGMEM = "Yes and keep old"; static const char N64CRCMenuItem3[] PROGMEM = "Yes and delete old"; //static const char N64CRCMenuItem4[] PROGMEM = "Reset"; (stored in common strings array) static const char* const menuOptionsN64CRC[] PROGMEM = { N64CRCMenuItem1, N64CRCMenuItem2, N64CRCMenuItem3, string_reset2 }; // Rom menu static const char N64RomItem1[] PROGMEM = "4 MB"; static const char N64RomItem2[] PROGMEM = "8 MB"; static const char N64RomItem3[] PROGMEM = "12 MB"; static const char N64RomItem4[] PROGMEM = "16 MB"; static const char N64RomItem5[] PROGMEM = "32 MB"; static const char N64RomItem6[] PROGMEM = "64 MB"; static const char N64RomItem7[] PROGMEM = "128 MB"; static const char* const romOptionsN64[] PROGMEM = { N64RomItem1, N64RomItem2, N64RomItem3, N64RomItem4, N64RomItem5, N64RomItem6, N64RomItem7 }; // Save menu static const char N64SaveItem1[] PROGMEM = "None"; static const char N64SaveItem2[] PROGMEM = "4K EEPROM"; static const char N64SaveItem3[] PROGMEM = "16K EEPROM"; static const char N64SaveItem4[] PROGMEM = "SRAM"; static const char N64SaveItem5[] PROGMEM = "FLASH"; static const char* const saveOptionsN64[] PROGMEM = { N64SaveItem1, N64SaveItem2, N64SaveItem3, N64SaveItem4, N64SaveItem5 }; // Repro write buffer menu static const char N64BufferItem1[] PROGMEM = "No buffer"; static const char N64BufferItem2[] PROGMEM = "32 Byte"; static const char N64BufferItem3[] PROGMEM = "64 Byte"; static const char N64BufferItem4[] PROGMEM = "128 Byte"; static const char* const bufferOptionsN64[] PROGMEM = { N64BufferItem1, N64BufferItem2, N64BufferItem3, N64BufferItem4 }; // Repro sector size menu static const char N64SectorItem1[] PROGMEM = "8 KB"; static const char N64SectorItem2[] PROGMEM = "32 KB"; static const char N64SectorItem3[] PROGMEM = "64 KB"; static const char N64SectorItem4[] PROGMEM = "128 KB"; static const char* const sectorOptionsN64[] PROGMEM = { N64SectorItem1, N64SectorItem2, N64SectorItem3, N64SectorItem4 }; // N64 start menu void n64Menu() { // create menu with title and 5 options to choose from unsigned char n64Dev; // Copy menuOptions out of progmem convertPgm(menuOptionsN64, 5); n64Dev = question_box(F("Select N64 device"), menuOptions, 5, 0); // wait for user choice to come back from the question box menu switch (n64Dev) { case 0: display_Clear(); display_Update(); setup_N64_Cart(); printCartInfo_N64(); mode = mode_N64_Cart; break; case 1: display_Clear(); display_Update(); setup_N64_Controller(); mode = mode_N64_Controller; break; case 2: display_Clear(); display_Update(); setup_N64_Cart(); flashRepro_N64(); printCartInfo_N64(); mode = mode_N64_Cart; break; case 3: display_Clear(); display_Update(); setup_N64_Cart(); flashGameshark_N64(); printCartInfo_N64(); mode = mode_N64_Cart; break; case 4: resetArduino(); break; } } // N64 Controller Menu void n64ControllerMenu() { // create menu with title and 4 options to choose from unsigned char mainMenu; // Copy menuOptions out of progmem convertPgm(menuOptionsN64Controller, 4); mainMenu = question_box(F("N64 Controller"), menuOptions, 4, 0); // wait for user choice to come back from the question box menu switch (mainMenu) { case 0: resetController(); display_Clear(); display_Update(); #if (defined(enable_OLED) || defined(enable_LCD)) controllerTest_Display(); #elif defined(enable_serial) controllerTest_Serial(); #endif quit = 1; break; case 1: resetController(); checkController(); display_Clear(); display_Update(); readMPK(); verifyCRC(); validateMPK(); println_Msg(F("")); // Prints string out of the common strings array either with or without newline print_STR(press_button_STR, 1); display_Update(); wait(); break; case 2: resetController(); checkController(); display_Clear(); display_Update(); // Change to root filePath[0] = '\0'; sd.chdir("/"); // Launch file browser fileBrowser(F("Select mpk file")); display_Clear(); display_Update(); writeMPK(); delay(500); verifyMPK(); println_Msg(F("")); // Prints string out of the common strings array either with or without newline print_STR(press_button_STR, 1); display_Update(); wait(); break; case 3: resetArduino(); break; } } // N64 Cartridge Menu void n64CartMenu() { // create menu with title and 4 options to choose from unsigned char mainMenu; // Copy menuOptions out of progmem convertPgm(menuOptionsN64Cart, 5); mainMenu = question_box(F("N64 Cart Reader"), menuOptions, 5, 0); // wait for user choice to come back from the question box menu switch (mainMenu) { case 0: display_Clear(); sd.chdir("/"); #ifndef fastcrc // Dumping ROM slow readRom_N64(); sd.chdir("/"); compareCRC("n64.txt", 0, 1, 0); #else // Dumping ROM fast compareCRC("n64.txt", readRom_N64(), 1, 0); #endif #ifdef global_log save_log(); #endif // Prints string out of the common strings array either with or without newline print_STR(press_button_STR, 1); display_Update(); wait(); break; case 1: sd.chdir("/"); display_Clear(); if (saveType == 1) { println_Msg(F("Reading SRAM...")); display_Update(); readSram(32768, 1); } else if (saveType == 4) { getFramType(); println_Msg(F("Reading FLASH...")); display_Update(); readFram(flashramType); } else if ((saveType == 5) || (saveType == 6)) { println_Msg(F("Reading EEPROM...")); display_Update(); readEeprom(); } else { print_Error(F("Savetype Error")); } println_Msg(F("")); // Prints string out of the common strings array either with or without newline print_STR(press_button_STR, 1); display_Update(); wait(); break; case 2: filePath[0] = '\0'; sd.chdir("/"); if (saveType == 1) { // Launch file browser fileBrowser(F("Select sra file")); display_Clear(); writeSram(32768); writeErrors = verifySram(32768, 1); if (writeErrors == 0) { println_Msg(F("SRAM verified OK")); display_Update(); } else { print_STR(error_STR, 0); print_Msg(writeErrors); print_STR(_bytes_STR, 1); print_Error(did_not_verify_STR); } } else if (saveType == 4) { // Launch file browser fileBrowser(F("Select fla file")); display_Clear(); getFramType(); writeFram(flashramType); print_STR(verifying_STR, 0); display_Update(); writeErrors = verifyFram(flashramType); if (writeErrors == 0) { println_Msg(F("OK")); display_Update(); } else { println_Msg(""); print_STR(error_STR, 0); print_Msg(writeErrors); print_STR(_bytes_STR, 1); print_Error(did_not_verify_STR); } } else if ((saveType == 5) || (saveType == 6)) { // Launch file browser fileBrowser(F("Select eep file")); display_Clear(); writeEeprom(); writeErrors = verifyEeprom(); if (writeErrors == 0) { println_Msg(F("EEPROM verified OK")); display_Update(); } else { print_STR(error_STR, 0); print_Msg(writeErrors); print_STR(_bytes_STR, 1); print_Error(did_not_verify_STR); } } else { display_Clear(); print_Error(F("Save Type Error")); } // Prints string out of the common strings array either with or without newline print_STR(press_button_STR, 1); display_Update(); wait(); break; case 3: // create submenu with title and 6 options to choose from unsigned char N64SaveMenu; // Copy menuOptions out of progmem convertPgm(saveOptionsN64, 5); N64SaveMenu = question_box(F("Select save type"), menuOptions, 5, 0); // wait for user choice to come back from the question box menu switch (N64SaveMenu) { case 0: // None saveType = 0; break; case 1: // 4K EEPROM saveType = 5; eepPages = 64; break; case 2: // 16K EEPROM saveType = 6; eepPages = 256; break; case 3: // SRAM saveType = 1; break; case 4: // FLASHRAM saveType = 4; break; } break; case 4: resetArduino(); break; } } /****************************************** Setup *****************************************/ void setup_N64_Controller() { #ifdef ENABLE_VSELECT // Set Automatic Voltage Selection to 3V setVoltage(VOLTS_SET_3V3); #endif // Output a low signal PORTH &= ~(1 << 4); // Set Controller Data Pin(PH4) to Input DDRH &= ~(1 << 4); } void setup_N64_Cart() { #ifdef ENABLE_VSELECT // Set Automatic Voltage Selection to 3V setVoltage(VOLTS_SET_3V3); #endif // Set Address Pins to Output and set them low //A0-A7 DDRF = 0xFF; PORTF = 0x00; //A8-A15 DDRK = 0xFF; PORTK = 0x00; // Set Control Pins to Output RESET(PH0) WR(PH5) RD(PH6) aleL(PC0) aleH(PC1) DDRH |= (1 << 0) | (1 << 5) | (1 << 6); DDRC |= (1 << 0) | (1 << 1); // Pull RESET(PH0) low until we are ready PORTH &= ~(1 << 0); // Output a high signal on WR(PH5) RD(PH6), pins are active low therefore everything is disabled now PORTH |= (1 << 5) | (1 << 6); // Pull aleL(PC0) low and aleH(PC1) high PORTC &= ~(1 << 0); PORTC |= (1 << 1); #ifdef clockgen_installed // Adafruit Clock Generator initializeClockOffset(); if (!i2c_found) { display_Clear(); print_FatalError(F("Clock Generator not found")); } // Set Eeprom clock to 2Mhz clockgen.set_freq(200000000ULL, SI5351_CLK1); // Start outputting Eeprom clock clockgen.output_enable(SI5351_CLK1, 1); // Eeprom clock #else // Set Eeprom Clock Pin(PH1) to Output DDRH |= (1 << 1); // Output a high signal PORTH |= (1 << 1); #endif // Set Eeprom Data Pin(PH4) to Input DDRH &= ~(1 << 4); // Activate Internal Pullup Resistors //PORTH |= (1 << 4); // Set sram base address sramBase = 0x08000000; #ifdef clockgen_installed // Wait for clock generator clockgen.update_status(); #endif // Wait until all is stable delay(300); // Pull RESET(PH0) high to start eeprom PORTH |= (1 << 0); } /****************************************** Low level functions *****************************************/ // Switch Cartridge address/data pins to write void adOut_N64() { //A0-A7 DDRF = 0xFF; PORTF = 0x00; //A8-A15 DDRK = 0xFF; PORTK = 0x00; } // Switch Cartridge address/data pins to read void adIn_N64() { //A0-A7 DDRF = 0x00; //A8-A15 DDRK = 0x00; //Enable internal pull-up resistors //PORTF = 0xFF; //PORTK = 0xFF; } // Set Cartridge address void setAddress_N64(unsigned long myAddress) { // Set address pins to output adOut_N64(); // Split address into two words word myAdrLowOut = myAddress & 0xFFFF; word myAdrHighOut = myAddress >> 16; // Switch WR(PH5) RD(PH6) ale_L(PC0) ale_H(PC1) to high (since the pins are active low) PORTH |= (1 << 5) | (1 << 6); PORTC |= (1 << 1); __asm__("nop\n\t"); PORTC |= (1 << 0); // Output high part to address pins PORTF = myAdrHighOut & 0xFF; PORTK = (myAdrHighOut >> 8) & 0xFF; // Leave ale_H high for additional 62.5ns __asm__("nop\n\t"); // Pull ale_H(PC1) low PORTC &= ~(1 << 1); // Output low part to address pins PORTF = myAdrLowOut & 0xFF; PORTK = (myAdrLowOut >> 8) & 0xFF; // Leave ale_L high for ~125ns __asm__("nop\n\t" "nop\n\t"); // Pull ale_L(PC0) low PORTC &= ~(1 << 0); // Wait ~600ns just to be sure address is set __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"); // Set data pins to input adIn_N64(); } // Read one word out of the cartridge word readWord_N64() { // Pull read(PH6) low PORTH &= ~(1 << 6); // Wait ~310ns __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"); // Join bytes from PINF and PINK into a word word tempWord = ((PINK & 0xFF) << 8) | (PINF & 0xFF); // Pull read(PH6) high PORTH |= (1 << 6); // Wait 62.5ns __asm__("nop\n\t"); return tempWord; } // Write one word to data pins of the cartridge void writeWord_N64(word myWord) { // Set address pins to output adOut_N64(); // Output word to AD0-AD15 PORTF = myWord & 0xFF; PORTK = (myWord >> 8) & 0xFF; // Wait ~62.5ns __asm__("nop\n\t"); // Pull write(PH5) low PORTH &= ~(1 << 5); // Wait ~310ns __asm__("nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t"); // Pull write(PH5) high PORTH |= (1 << 5); // Wait ~125ns __asm__("nop\n\t" "nop\n\t"); // Set data pins to input adIn_N64(); } /****************************************** N64 Controller CRC Functions *****************************************/ static word addrCRC(word address) { const char n64_address_crc_table[] = { 0x15, 0x1F, 0x0B, 0x16, 0x19, 0x07, 0x0E, 0x1C, 0x0D, 0x1A, 0x01 }; const char* cur_xor = n64_address_crc_table; byte crc = 0; for (word mask = 0x0020; mask; mask <<= 1, cur_xor++) { if (address & mask) { crc ^= *cur_xor; } } return (address & 0xFFE0) | crc; } static uint8_t dataCRC(uint8_t* data) { uint8_t ret = 0; for (uint8_t i = 0; i <= 32; i++) { for (uint8_t mask = 0x80; mask; mask >>= 1) { uint8_t tmp = ret & 0x80 ? 0x85 : 0; ret <<= 1; if (i < 32) { if (data[i] & mask) { ret |= 0x1; } } ret ^= tmp; } } return ret; } // Macro producing a delay loop waiting an number of cycles multiple of 3, with // a range of 3 to 768 cycles (187.5ns to 48us). It takes 6 bytes to do so // (3 instructions) making it the same size as the equivalent 3-cycles NOP // delay. For shorter delays or non-multiple-of-3-cycle delays, add your own // NOPs. #define N64_DELAY_LOOP(cycle_count) \ do { \ byte i; \ __asm__ __volatile__("\n" \ "\tldi %[i], %[loop_count]\n" \ ".delay_loop_%=:\n" \ "\tdec %[i]\n" \ "\tbrne .delay_loop_%=\n" \ : [i] "=r"(i) \ : [loop_count] "i"(cycle_count / 3) \ : "cc"); \ } while (0) /****************************************** N64 Controller Protocol Functions *****************************************/ void sendJoyBus(const byte* buffer, char length) { // Implemented in assembly as there is very little wiggle room, timing-wise. // Overall structure: // outer_loop: // mask = 0x80 // cur_byte = *(buffer++) // inner_loop: // falling edge // if (cur_byte & mask) { // wait 1us starting at the falling edge // rising edge // wait 2us starting at the rising edge // } else { // wait 3us starting at the falling edge // rising edge // } // inner_common_codepath: // mask >>= 1 // if (mask == 0) // goto outer_loop_trailer // wait +1us from the rising edge // goto inner_loop // outer_loop_trailer: // length -= 1 // if (length == 0) // goto stop_bit // wait +1us from the rising edge // goto outer_loop // stop_bit: // wait +1us from the rising edge // falling edge // wait 1us from the falling edge // rising edge byte mask, cur_byte, scratch; // Note on DDRH: retrieve the current DDRH value, and pre-compute the values // to write in order to drive the line high or low. This saves 3 cycles per // transition: sts (2 cycles) instead of lds, or/and, sts (2 + 1 + 2 cycles). // This means that no other code may run in parallel, but this function anyway // requires interrupts to be disabled in order to work in the expected amount // of time. const byte line_low = DDRH | 0x10; const byte line_high = line_low & 0xef; __asm__ __volatile__("\n" ".outer_loop_%=:\n" // mask = 0x80 "\tldi %[mask], 0x80\n" // 1 // load byte to send from memory "\tld %[cur_byte], Z+\n" // 2 ".inner_loop_%=:\n" // Falling edge "\tsts %[out_byte], %[line_low]\n" // 2 // Test cur_byte & mask, without clobbering either "\tmov %[scratch], %[cur_byte]\n" // 1 "\tand %[scratch], %[mask]\n" // 1 "\tbreq .bit_is_0_%=\n" // bit is 1: 1, bit is 0: 2 // bit is a 1 // Stay low for 1us (16 cycles). // Time before: 3 cycles (mov, and, breq-false). // Time after: sts (2 cycles). // So 11 to go, so 3 3-cycles iterations and 2 nop. "\tldi %[scratch], 3\n" // 1 ".delay_1_low_%=:\n" "\tdec %[scratch]\n" // 1 "\tbrne .delay_1_low_%=\n" // exit: 1, loop: 2 "\tnop\n" // 1 "\tnop\n" // 1 // Rising edge "\tsts %[out_byte], %[line_high]\n" // 2 // Wait for 2us (32 cycles) to sync with the bot_is_0 codepath. // Time before: 0 cycles. // Time after: 2 cycles (rjmp). // So 30 to go, so 10 3-cycles iterations and 0 nop. "\tldi %[scratch], 10\n" // 1 ".delay_1_high_%=:\n" "\tdec %[scratch]\n" // 1 "\tbrne .delay_1_high_%=\n" // exit: 1, loop: 2 "\trjmp .inner_common_path_%=\n" // 2 ".bit_is_0_%=:\n" // bit is a 0 // Stay high for 3us (48 cycles). // Time before: 4 cycles (mov, and, breq-true). // Time after: 2 cycles (sts). // So 42 to go, so 14 3-cycles iterations, and 0 nop. "\tldi %[scratch], 14\n" // 1 ".delay_0_low_%=:\n" "\tdec %[scratch]\n" // 1 "\tbrne .delay_0_low_%=\n" // exit: 1, loop: 2 // Rising edge "\tsts %[out_byte], %[line_high]\n" // 2 // codepath common to both possible values ".inner_common_path_%=:\n" "\tnop\n" // 1 "\tlsr %[mask]\n" // 1 "\tbreq .outer_loop_trailer_%=\n" // mask!=0: 1, mask==0: 2 // Stay high for 1us (16 cycles). // Time before: 3 cycles (nop, lsr, breq-false). // Time after: 4 cycles (rjmp, sts) // So 9 to go, so 3 3-cycles iterations and 0 nop. "\tldi %[scratch], 3\n" // 1 ".delay_common_high_%=:\n" "\tdec %[scratch]\n" // 1 "\tbrne .delay_common_high_%=\n" // exit: 1, loop: 2 "\trjmp .inner_loop_%=\n" // 2 ".outer_loop_trailer_%=:\n" "\tdec %[length]\n" // 1 "\tbreq .stop_bit_%=\n" // length!=0: 1, length==0: 2 // Stay high for 1us (16 cycles). // Time before: 6 cycles (lsr, nop, breq-true, dec, breq-false). // Time after: 7 cycles (rjmp, ldi, ld, sts). // So 3 to go, so 3 nop (for simplicity). "\tnop\n" // 1 "\tnop\n" // 1 "\tnop\n" // 1 "\trjmp .outer_loop_%=\n" // 2 // Done sending data, send a stop bit. ".stop_bit_%=:\n" // Stay high for 1us (16 cycles). // Time before: 7 cycles (lsr, nop, breq-true, dec, breq-true). // Time after: 2 cycles (sts). // So 7 to go, so 2 3-cycles iterations and 1 nop. "\tldi %[scratch], 2\n" // 1 ".delay_stop_high_%=:\n" "\tdec %[scratch]\n" // 1 "\tbrne .delay_stop_high_%=\n" // exit: 1, loop: 2 "\tnop\n" "\tsts %[out_byte], %[line_low]\n" // 2 // Stay low for 1us (16 cycles). // Time before: 0 cycles. // Time after: 2 cycles (sts). // So 14 to go, so 4 3-cycles iterations and 2 nop. "\tldi %[scratch], 5\n" // 1 ".delay_stop_low_%=:\n" "\tdec %[scratch]\n" // 1 "\tbrne .delay_stop_low_%=\n" // exit: 1, loop: 2 "\tnop\n" "\tnop\n" "\tsts %[out_byte], %[line_high]\n" // 2 // Notes on arguments: // - mask and scratch are used wth "ldi", which can only work on registers // 16 to 31, so tag these with "a" rather than the generic "r" // - mark all output-only arguments as early-clobber ("&"), as input // registers are used throughout all iterations and both sets must be // strictly distinct // - tag buffer with "z", to use the "ld r?, Z+" instruction (load from // 16bits RAM address and postincrement, in 2 cycles). // XXX: any pointer register pair would do, but mapping to Z explicitly // because I cannot find a way to get one of "X", "Y" or "Z" to appear // when expanding "%[buffer]", causing the assembler to reject the // instruction. Pick Z as it is the only call-used such register, // avoiding the need to preserve any value a caller may have set it to. : [buffer] "+z"(buffer), [length] "+r"(length), [cur_byte] "=&r"(cur_byte), [mask] "=&a"(mask), [scratch] "=&a"(scratch) : [line_low] "r"(line_low), [line_high] "r"(line_high), [out_byte] "i"(&DDRH) : "cc", "memory"); } word recvJoyBus(byte* output, byte byte_count) { // listen for expected byte_count bytes of data back from the controller // return the number of bytes not (fully) received if the delay for a signal // edge takes too long. // Implemented in assembly as there is very little wiggle room, timing-wise. // Overall structure: // mask = 0x80 // cur_byte = 0 // read_loop: // wait for falling edge // wait for a bit more than 1us // if input: // cur_byte |= mask // mask >>= 1 // if (mask == 0) // if (--byte_count == 0) // goto read_end // append cur_byte to output // mask = 0x80 // cur_byte = 0 // wait for data high // goto read_loop // read_end: // return byte_count byte mask, cur_byte, timeout, scratch; __asm__ __volatile__("\n" "\tldi %[mask], 0x80\n" "\tclr %[cur_byte]\n" ".read_loop_%=:\n" // Wait for input to be low. Time out if it takes more than ~27us (~7 bits // worth of time) for it to go low. // Takes 5 cycles to exit on input-low iteration (lds, sbrs-false, rjmp). // Takes 7 cycles to loop on input-high iteration (lds, sbrs-true, dec, // brne-true). "\tldi %[timeout], 0x3f\n" // 1 ".read_wait_falling_edge_%=:\n" "\tlds %[scratch], %[in_byte]\n" // 2 "\tsbrs %[scratch], %[in_bit]\n" // low: 1, high: 2 "\trjmp .read_input_low_%=\n" // 2 "\tdec %[timeout]\n" // 1 "\tbrne .read_wait_falling_edge_%=\n" // timeout==0: 1, timeout!=0: 2 "\trjmp .read_end_%=\n" // 2 ".read_input_low_%=:\n" // Wait for 1500 us (24 cycles) before reading input. // As it takes from 5 to 7 cycles for the prevous loop to exit, // this means this loop exits from 1812.5us to 1937.5us after the falling // edge, so at least 812.5us after a 1-bit rising edge, and at least // 1062.5us before a 0-bit rising edge. // This also leaves us with up to 2062.5us (33 cycles) to update cur_byte, // possibly moving on to the next byte, waiting for a high input, and // waiting for the next falling edge. // Time taken until waiting for input high for non-last byte: // - shift to current byte: // - 1: 4 cycles (lds, sbrc-false, or) // - 0: 4 cycles (lds, sbrc-true) // - byte done: 8 cycles (lsr, brne-false, st, dec, brne-false, ldi, clr) // - byte not done: 3 cycles (lsr, brne-true) // Total: 7 to 12 cycles, so there are at least 21 cycles left until the // next bit. "\tldi %[timeout], 8\n" // 1 ".read_wait_low_%=:\n" "\tdec %[timeout]\n" // 1 "\tbrne .read_wait_low_%=\n" // timeout=0: 1, timeout!=0: 2 // Sample input "\tlds %[scratch], %[in_byte]\n" // 2 // Add to cur_byte "\tsbrc %[scratch], %[in_bit]\n" // high: 1, low: 2 "\tor %[cur_byte], %[mask]\n" // 1 // Shift mask "\tlsr %[mask]\n" "\tbrne .read_wait_input_high_init_%=\n" // mask==0: 1, mask!=0: 2 // A wole byte was read, store in output "\tst Z+, %[cur_byte]\n" // 2 // Decrement byte count "\tdec %[byte_count]\n" // 1 // Are we done reading ? "\tbreq .read_end_%=\n" // byte_count!=0: 1, byte_count==0: 2 // No, prepare for reading another "\tldi %[mask], 0x80\n" "\tclr %[cur_byte]\n" // Wait for rising edge ".read_wait_input_high_init_%=:" "\tldi %[timeout], 0x3f\n" // 1 ".read_wait_input_high_%=:\n" "\tlds %[scratch], %[in_byte]\n" // 2 "\tsbrc %[scratch], %[in_bit]\n" // high: 1, low: 2 "\trjmp .read_loop_%=\n" // 2 "\tdec %[timeout]\n" // 1 "\tbrne .read_wait_input_high_%=\n" // timeout==0: 1, timeout!=0: 2 "\trjmp .read_end_%=\n" // 2 ".read_end_%=:\n" : [output] "+z"(output), [byte_count] "+r"(byte_count), [mask] "=&a"(mask), [cur_byte] "=&r"(cur_byte), [timeout] "=&a"(timeout), [scratch] "=&a"(scratch) : [in_byte] "i"(&PINH), [in_bit] "i"(4) : "cc", "memory"); return byte_count; } /****************************************** N64 Controller Functions *****************************************/ void get_button() { // Command to send to the gamecube // The last bit is rumble, flip it to rumble const byte command[] = { 0x01 }; byte response[4]; // don't want interrupts getting in the way noInterrupts(); sendJoyBus(command, sizeof(command)); recvJoyBus(response, sizeof(response)); // end of time sensitive code interrupts(); // These are 8 bit values centered at 0x80 (128) N64_status.stick_x = response[2]; N64_status.stick_y = response[3]; // Buttons (A,B,Z,S,DU,DD,DL,DR,0,0,L,R,CU,CD,CL,CR) if (response[0] & 0x80) button = F("A"); else if (response[0] & 0x40) button = F("B"); else if (response[0] & 0x20) button = F("Z"); else if (response[0] & 0x10) button = F("START"); else if (response[0] & 0x08) button = F("D-Up"); else if (response[0] & 0x04) button = F("D-Down"); else if (response[0] & 0x02) button = F("D-Left"); else if (response[0] & 0x01) button = F("D-Right"); //else if (response[1] & 0x80) //else if (response[1] & 0x40) else if (response[1] & 0x20) button = F("L"); else if (response[1] & 0x10) button = F("R"); else if (response[1] & 0x08) button = F("C-Up"); else if (response[1] & 0x04) button = F("C-Down"); else if (response[1] & 0x02) button = F("C-Left"); else if (response[1] & 0x01) button = F("C-Right"); else { lastbutton = button; button = F("Press a button"); } } /****************************************** N64 Controller Test *****************************************/ #ifdef enable_serial void controllerTest_Serial() { while (quit) { // Get Button and analog stick get_button(); // Print Button String buttonc = String("Button: " + String(button) + " "); Serial.print(buttonc); // Print Stick X Value String stickx = String("X: " + String(N64_status.stick_x, DEC) + " "); Serial.print(stickx); // Print Stick Y Value String sticky = String(" Y: " + String(N64_status.stick_y, DEC) + " "); Serial.println(sticky); if (button == "Press a button" && lastbutton == "Z") { // Quit Serial.println(""); quit = 0; } } } #endif #if (defined(enable_LCD) || defined(enable_OLED)) #define CENTER 64 // on which screens do we start int startscreen = 1; int test = 1; void printSTR(String st, int x, int y) { char buf[st.length() + 1]; if (x == CENTER) { x = 64 - (((st.length() - 5) / 2) * 4); } st.toCharArray(buf, st.length() + 1); display.drawStr(x, y, buf); } void nextscreen() { if (button == "Press a button" && lastbutton == "START") { // reset button lastbutton = "N/A"; display.clearDisplay(); if (startscreen != 4) startscreen = startscreen + 1; else { startscreen = 1; test = 1; } } else if (button == "Press a button" && lastbutton == "Z" && startscreen == 4) { // Quit quit = 0; } } void controllerTest_Display() { int mode = 0; //name of the current displayed result String anastick = ""; // Graph int xax = 24; // midpoint x int yax = 24; // midpoint y // variables to display test data of different sticks int upx = 0; int upy = 0; int uprightx = 0; int uprighty = 0; int rightx = 0; int righty = 0; int downrightx = 0; int downrighty = 0; int downx = 0; int downy = 0; int downleftx = 0; int downlefty = 0; int leftx = 0; int lefty = 0; int upleftx = 0; int uplefty = 0; // variables to save test data int bupx = 0; int bupy = 0; int buprightx = 0; int buprighty = 0; int brightx = 0; int brighty = 0; int bdownrightx = 0; int bdownrighty = 0; int bdownx = 0; int bdowny = 0; int bdownleftx = 0; int bdownlefty = 0; int bleftx = 0; int blefty = 0; int bupleftx = 0; int buplefty = 0; int results = 0; int prevStickX = 0; String stickx; String sticky; String stickx_old; String sticky_old; String button_old; while (quit) { // Get Button and analog stick get_button(); switch (startscreen) { case 1: { display.drawStr(32, 8, "Controller Test"); display.drawLine(0, 10, 128, 10); // Delete old button value if (button_old != button) { display.setDrawColor(0); for (byte y = 13; y < 22; y++) { display.drawLine(0, y, 128, y); } display.setDrawColor(1); } // Print button printSTR(" " + button + " ", CENTER, 20); // Save value button_old = button; // Update stick values stickx = String("X: " + String(N64_status.stick_x, DEC) + " "); sticky = String("Y: " + String(N64_status.stick_y, DEC) + " "); // Delete old stick values if ((stickx_old != stickx) || (sticky_old != sticky)) { display.setDrawColor(0); for (byte y = 31; y < 38; y++) { display.drawLine(0, y, 128, y); } display.setDrawColor(1); } // Print stick values printSTR(stickx, 36, 38); printSTR(sticky, 74, 38); // Save values stickx_old = stickx; sticky_old = sticky; printSTR("(Continue with START)", 16, 55); //Update LCD display.updateDisplay(); // go to next screen nextscreen(); break; } case 2: { display.drawStr(36, 8, "Range Test"); display.drawLine(0, 9, 128, 9); if (mode == 0) { // Print Stick X Value String stickx = String("X:" + String(N64_status.stick_x, DEC) + " "); printSTR(stickx, 22 + 54, 26); // Print Stick Y Value String sticky = String("Y:" + String(N64_status.stick_y, DEC) + " "); printSTR(sticky, 22 + 54, 36); } // Draw Axis display.drawPixel(10 + xax, 12 + yax); display.drawPixel(10 + xax, 12 + yax - 80 / 4); display.drawPixel(10 + xax, 12 + yax + 80 / 4); display.drawPixel(10 + xax + 80 / 4, 12 + yax); display.drawPixel(10 + xax - 80 / 4, 12 + yax); // Draw corners display.drawPixel(10 + xax - 68 / 4, 12 + yax - 68 / 4); display.drawPixel(10 + xax + 68 / 4, 12 + yax + 68 / 4); display.drawPixel(10 + xax + 68 / 4, 12 + yax - 68 / 4); display.drawPixel(10 + xax - 68 / 4, 12 + yax + 68 / 4); //Draw Analog Stick if (mode == 1) { display.drawPixel(10 + xax + N64_status.stick_x / 4, 12 + yax - N64_status.stick_y / 4); //Update LCD display.updateDisplay(); } else { display.drawCircle(10 + xax + N64_status.stick_x / 4, 12 + yax - N64_status.stick_y / 4, 2); //Update LCD display.updateDisplay(); display_Clear_Slow(); } // switch mode if (button == "Press a button" && lastbutton == "Z") { if (mode == 0) { mode = 1; display.clearDisplay(); } else { mode = 0; display.clearDisplay(); } } // go to next screen nextscreen(); break; } case 3: { display.setDrawColor(0); display.drawPixel(22 + prevStickX, 40); display.setDrawColor(1); printSTR("Skipping Test", 34, 8); display.drawLine(0, 9, 128, 9); display.drawFrame(22 + 0, 15, 22 + 59, 21); if (N64_status.stick_x > 0) { display.drawLine(22 + N64_status.stick_x, 15, 22 + N64_status.stick_x, 35); display.drawPixel(22 + N64_status.stick_x, 40); prevStickX = N64_status.stick_x; } printSTR("Try to fill the box by", 22, 45); printSTR("slowly moving right", 22, 55); //Update LCD display.updateDisplay(); if (button == "Press a button" && lastbutton == "Z") { // reset button lastbutton = "N/A"; display.clearDisplay(); } // go to next screen nextscreen(); break; } case 4: { switch (test) { case 0: // Display results { switch (results) { case 0: { anastick = "Your Stick"; upx = bupx; upy = bupy; uprightx = buprightx; uprighty = buprighty; rightx = brightx; righty = brighty; downrightx = bdownrightx; downrighty = bdownrighty; downx = bdownx; downy = bdowny; downleftx = bdownleftx; downlefty = bdownlefty; leftx = bleftx; lefty = blefty; upleftx = bupleftx; uplefty = buplefty; if (button == "Press a button" && lastbutton == "A") { // reset button lastbutton = "N/A"; results = 1; display.clearDisplay(); break; } printSTR(anastick, 22 + 50, 15); display.drawStr(22 + 50, 25, "U:"); printSTR(String(upy), 100, 25); display.drawStr(22 + 50, 35, "D:"); printSTR(String(downy), 100, 35); display.drawStr(22 + 50, 45, "L:"); printSTR(String(leftx), 100, 45); display.drawStr(22 + 50, 55, "R:"); printSTR(String(rightx), 100, 55); display.drawLine(xax + upx / 4, yax - upy / 4, xax + uprightx / 4, yax - uprighty / 4); display.drawLine(xax + uprightx / 4, yax - uprighty / 4, xax + rightx / 4, yax - righty / 4); display.drawLine(xax + rightx / 4, yax - righty / 4, xax + downrightx / 4, yax - downrighty / 4); display.drawLine(xax + downrightx / 4, yax - downrighty / 4, xax + downx / 4, yax - downy / 4); display.drawLine(xax + downx / 4, yax - downy / 4, xax + downleftx / 4, yax - downlefty / 4); display.drawLine(xax + downleftx / 4, yax - downlefty / 4, xax + leftx / 4, yax - lefty / 4); display.drawLine(xax + leftx / 4, yax - lefty / 4, xax + upleftx / 4, yax - uplefty / 4); display.drawLine(xax + upleftx / 4, yax - uplefty / 4, xax + upx / 4, yax - upy / 4); display.drawPixel(xax, yax); //Update LCD display.updateDisplay(); break; } case 1: { anastick = "Original"; upx = 1; upy = 84; uprightx = 67; uprighty = 68; rightx = 83; righty = -2; downrightx = 67; downrighty = -69; downx = 3; downy = -85; downleftx = -69; downlefty = -70; leftx = -85; lefty = 0; upleftx = -68; uplefty = 68; if (button == "Press a button" && lastbutton == "A") { // reset button lastbutton = "N/A"; results = 0; display.clearDisplay(); break; } printSTR(anastick, 22 + 50, 15); display.drawStr(22 + 50, 25, "U:"); printSTR(String(upy), 100, 25); display.drawStr(22 + 50, 35, "D:"); printSTR(String(downy), 100, 35); display.drawStr(22 + 50, 45, "L:"); printSTR(String(leftx), 100, 45); display.drawStr(22 + 50, 55, "R:"); printSTR(String(rightx), 100, 55); display.drawLine(xax + upx / 4, yax - upy / 4, xax + uprightx / 4, yax - uprighty / 4); display.drawLine(xax + uprightx / 4, yax - uprighty / 4, xax + rightx / 4, yax - righty / 4); display.drawLine(xax + rightx / 4, yax - righty / 4, xax + downrightx / 4, yax - downrighty / 4); display.drawLine(xax + downrightx / 4, yax - downrighty / 4, xax + downx / 4, yax - downy / 4); display.drawLine(xax + downx / 4, yax - downy / 4, xax + downleftx / 4, yax - downlefty / 4); display.drawLine(xax + downleftx / 4, yax - downlefty / 4, xax + leftx / 4, yax - lefty / 4); display.drawLine(xax + leftx / 4, yax - lefty / 4, xax + upleftx / 4, yax - uplefty / 4); display.drawLine(xax + upleftx / 4, yax - uplefty / 4, xax + upx / 4, yax - upy / 4); display.drawPixel(xax, yax); //Update LCD display.updateDisplay(); break; } } //results break; } //display results case 1: // +y Up { display.drawStr(34, 26, "Hold Stick Up"); display.drawStr(34, 34, "then press A"); //display.drawBitmap(110, 60, ana1); if (button == "Press a button" && lastbutton == "A") { bupx = N64_status.stick_x; bupy = N64_status.stick_y; // reset button lastbutton = "N/A"; display.clearDisplay(); test = 2; } break; } case 2: // +y+x Up-Right { display.drawStr(42, 26, "Up-Right"); //display.drawBitmap(110, 60, ana2); if (button == "Press a button" && lastbutton == "A") { buprightx = N64_status.stick_x; buprighty = N64_status.stick_y; test = 3; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 3: // +x Right { display.drawStr(50, 26, "Right"); //display.drawBitmap(110, 60, ana3); if (button == "Press a button" && lastbutton == "A") { brightx = N64_status.stick_x; brighty = N64_status.stick_y; test = 4; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 4: // -y+x Down-Right { display.drawStr(38, 26, "Down-Right"); //display.drawBitmap(110, 60, ana4); if (button == "Press a button" && lastbutton == "A") { bdownrightx = N64_status.stick_x; bdownrighty = N64_status.stick_y; test = 5; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 5: // -y Down { display.drawStr(49, 26, "Down"); //display.drawBitmap(110, 60, ana5); if (button == "Press a button" && lastbutton == "A") { bdownx = N64_status.stick_x; bdowny = N64_status.stick_y; test = 6; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 6: // -y-x Down-Left { display.drawStr(39, 26, "Down-Left"); //display.drawBitmap(110, 60, ana6); if (button == "Press a button" && lastbutton == "A") { bdownleftx = N64_status.stick_x; bdownlefty = N64_status.stick_y; test = 7; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 7: // -x Left { display.drawStr(51, 26, "Left"); //display.drawBitmap(110, 60, ana7); if (button == "Press a button" && lastbutton == "A") { bleftx = N64_status.stick_x; blefty = N64_status.stick_y; test = 8; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } case 8: // +y+x Up-Left { display.drawStr(43, 26, "Up-Left"); //display.drawBitmap(110, 60, ana8); if (button == "Press a button" && lastbutton == "A") { bupleftx = N64_status.stick_x; buplefty = N64_status.stick_y; test = 0; // reset button lastbutton = "N/A"; display.clearDisplay(); } break; } } if (test != 0) { display.drawStr(38, 8, "Benchmark"); display.drawLine(0, 9, 128, 9); } display.updateDisplay(); // go to next screen nextscreen(); break; } } } } #endif /****************************************** N64 Controller Pak Functions (connected via Controller) *****************************************/ // Reset the controller void resetController() { const byte command[] = { 0xFF }; noInterrupts(); sendJoyBus(command, sizeof(command)); interrupts(); delay(100); } // read 3 bytes from controller void checkController() { byte response[8]; const byte command[] = { 0x00 }; display_Clear(); // Check if line is HIGH if (!N64_QUERY) print_FatalError(F("Data line LOW")); // don't want interrupts getting in the way noInterrupts(); sendJoyBus(command, sizeof(command)); recvJoyBus(response, sizeof(response)); // end of time sensitive code interrupts(); if (response[0] != 0x05) print_FatalError(F("Controller not found")); if (response[2] != 0x01) print_FatalError(F("Controller Pak not found")); } // read 32bytes from controller pak and calculate CRC byte readBlock(byte* output, word myAddress) { byte response_crc; // Calculate the address CRC word myAddressCRC = addrCRC(myAddress); const byte command[] = { 0x02, (byte)(myAddressCRC >> 8), (byte)(myAddressCRC & 0xff) }; word error; // don't want interrupts getting in the way noInterrupts(); sendJoyBus(command, sizeof(command)); error = recvJoyBus(output, 32); if (error == 0) error = recvJoyBus(&response_crc, 1); // end of time sensitive code interrupts(); if (error) { myFile.close(); println_Msg(F("Controller Pak was")); println_Msg(F("not dumped due to a")); print_FatalError(F("read timeout")); } // Compare with computed CRC if (response_crc != dataCRC(output)) { display_Clear(); // Close the file: myFile.close(); println_Msg(F("Controller Pak was")); println_Msg(F("not dumped due to a")); print_FatalError(F("protocol CRC error")); } return response_crc; } // reads the MPK file to the sd card void readMPK() { // Change to root sd.chdir("/"); // Make MPK directory sd.mkdir("N64/MPK", true); // Change to MPK directory sd.chdir("N64/MPK"); // Get name, add extension and convert to char array for sd lib EEPROM_readAnything(0, foldern); sprintf(fileName, "%d", foldern); strcat(fileName, ".mpk"); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); //open crc file on sd card sprintf(filePath, "%d", foldern - 1); strcat(filePath, ".crc"); FsFile crcFile; if (!crcFile.open(filePath, O_RDWR | O_CREAT)) { print_FatalError(open_file_STR); } //open mpk file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_FatalError(open_file_STR); } print_Msg(F("Saving N64/MPK/")); println_Msg(fileName); display_Update(); // Dummy write because first write to file takes 1 second and messes up timing blinkLED(); myFile.write(0xFF); myFile.rewind(); blinkLED(); //Initialize progress bar uint32_t processedProgressBar = 0; uint32_t totalProgressBar = (uint32_t)(0x7FFF); draw_progressbar(0, totalProgressBar); // Controller paks, which all have 32kB of space, are mapped between 0x0000 – 0x7FFF for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += 512) { // Read 32 byte block into sdBuffer for (word currBlock = 0; currBlock < sizeof(sdBuffer); currBlock += 32) { // Read one block of the Controller Pak into array myBlock and write CRC of that block to crc file crcFile.write(readBlock(&sdBuffer[currBlock], currSdBuffer + currBlock)); // Real N64 has about 627us pause between banks, add a bit extra delay if (currBlock < 479) delayMicroseconds(800); } // This will take 1300us blinkLED(); myFile.write(sdBuffer, sizeof(sdBuffer)); // Blink led blinkLED(); // Update progress bar processedProgressBar += 512; draw_progressbar(processedProgressBar, totalProgressBar); } // Close the file: myFile.close(); crcFile.close(); } // verifies if read was successful void verifyCRC() { writeErrors = 0; print_STR(verifying_STR, 1); display_Update(); //open CRC file on sd card FsFile crcFile; if (!crcFile.open(filePath, O_READ)) { print_FatalError(open_file_STR); } //open MPK file on sd card if (!myFile.open(fileName, O_READ)) { print_FatalError(open_file_STR); } //Initialize progress bar uint32_t processedProgressBar = 0; uint32_t totalProgressBar = (uint32_t)(0x7FFF); draw_progressbar(0, totalProgressBar); // Controller paks, which all have 32kB of space, are mapped between 0x0000 – 0x7FFF for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += 512) { // Read 32 bytes into SD buffer myFile.read(sdBuffer, 512); // Compare 32 byte block CRC to CRC from file for (word currBlock = 0; currBlock < 512; currBlock += 32) { // Calculate CRC of block and compare against crc file if (dataCRC(&sdBuffer[currBlock]) != crcFile.read()) writeErrors++; } // Blink led blinkLED(); // Update progress bar processedProgressBar += 512; draw_progressbar(processedProgressBar, totalProgressBar); } // Close the file: myFile.close(); crcFile.close(); if (writeErrors == 0) { println_Msg(F("Saved successfully")); sd.remove(filePath); display_Update(); } else { print_STR(error_STR, 0); print_Msg(writeErrors); println_Msg(F(" blocks ")); print_Error(did_not_verify_STR); } } // Calculates the checksum of the header boolean checkHeader(byte* buf) { word sum = 0; word buf_sum = (buf[28] << 8) + buf[29]; // first 28 bytes are the header, then comes the checksum(word) followed by the reverse checksum(0xFFF2 - checksum) for (byte i = 0; i < 28; i += 2) { sum += (buf[i] << 8) + buf[i + 1]; } return sum == buf_sum; } // verifies if Controller Pak holds valid header data void validateMPK() { byte writeErrors = 0; boolean failed = false; SdFile mpk_file; byte buf[256]; //open file on sd card if (!mpk_file.open(fileName, O_READ)) { print_FatalError(open_file_STR); } // Read first 256 byte which contains the header including checksum and reverse checksum and three copies of it mpk_file.read(buf, sizeof(buf)); //Check all four header copies writeErrors = 0; if (!checkHeader(&buf[0x20])) writeErrors++; if (!checkHeader(&buf[0x60])) writeErrors++; if (!checkHeader(&buf[0x80])) writeErrors++; if (!checkHeader(&buf[0xC0])) writeErrors++; if (writeErrors) failed = true; print_Msg(F("HDR: ")); print_Msg(4 - writeErrors); print_Msg(F("/4 - ")); display_Update(); // Check both TOC copies writeErrors = 0; // Read 2nd and 3rd 256 byte page with TOC info for (word currSdBuffer = 0x100; currSdBuffer < 0x300; currSdBuffer += 256) { byte sum = 0; // Read 256 bytes into SD buffer mpk_file.read(buf, sizeof(buf)); // Calculate TOC checksum for (byte i = 5; i < 128; i++) { sum += buf[(i << 1) + 1]; } if (buf[1] != sum) writeErrors++; } if (writeErrors) failed = true; print_Msg(F("ToC: ")); print_Msg(2 - writeErrors); println_Msg(F("/2")); print_Msg(F("Consistency check ")); if (failed) { errorLvl = 1; print_Msg(F("failed")); } else { errorLvl = 0; print_Msg(F("passed")); } display_Update(); // Close the file: mpk_file.close(); } void writeMPK() { // 3 command bytes, 32 data bytes byte command[3 + 32]; command[0] = 0x03; // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); print_Msg(F("Writing ")); print_Msg(filePath); println_Msg(F("...")); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { //Initialize progress bar uint32_t totalProgressBar = 0x7FFF; draw_progressbar(0, totalProgressBar); for (word address = 0x0000; address < 0x8000; address += 32) { myFile.read(command + 3, sizeof(command) - 3); word address_with_crc = addrCRC(address); command[1] = (byte)(address_with_crc >> 8); command[2] = (byte)(address_with_crc & 0xff); // don't want interrupts getting in the way noInterrupts(); sendJoyBus(command, sizeof(command)); // Enable interrupts interrupts(); // Real N64 has about 627us pause between banks, add a bit extra delay delayMicroseconds(650); if ((address & 0x1FF) == 0) { // Blink led // Update progress bar blinkLED(); draw_progressbar(address, totalProgressBar); } } // Close the file: myFile.close(); } else { print_FatalError(open_file_STR); } } // verifies if write was successful void verifyMPK() { byte block[32]; writeErrors = 0; print_STR(verifying_STR, 1); display_Update(); //open file on sd card if (!myFile.open(filePath, O_READ)) { print_FatalError(open_file_STR); } //Initialize progress bar uint32_t processedProgressBar = 0; uint32_t totalProgressBar = (uint32_t)(0x7FFF); draw_progressbar(0, totalProgressBar); // Controller paks, which all have 32kB of space, are mapped between 0x0000 – 0x7FFF for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += sizeof(sdBuffer)) { // Read 512 bytes into SD buffer myFile.read(sdBuffer, sizeof(sdBuffer)); // Compare 32 byte block for (word currBlock = 0; currBlock < sizeof(sdBuffer); currBlock += 32) { // Read one block of the Controller Pak readBlock(block, currSdBuffer + currBlock); // Check against file on SD card for (byte currByte = 0; currByte < 32; currByte++) { if (sdBuffer[currBlock + currByte] != block[currByte]) { writeErrors++; } } // Real N64 has about 627us pause between banks, add a bit extra delay if (currBlock < 479) delayMicroseconds(1500); } // Blink led blinkLED(); // Update progress bar processedProgressBar += 512; draw_progressbar(processedProgressBar, totalProgressBar); } // Close the file: myFile.close(); if (writeErrors == 0) { println_Msg(F("Written successfully")); display_Update(); } else { print_STR(error_STR, 0); print_Msg(writeErrors); print_STR(_bytes_STR, 1); print_Error(did_not_verify_STR); } } /****************************************** N64 Cartridge functions *****************************************/ void printCartInfo_N64() { // Check cart getCartInfo_N64(); // Print start page if (cartSize != 0) { display_Clear(); print_Msg(F("Title: ")); println_Msg(romName); print_Msg(F("Serial: ")); println_Msg(cartID); print_Msg(F("Revision: ")); println_Msg(romVersion); print_Msg(F("ROM Size: ")); print_Msg(cartSize); println_Msg(F(" MB")); print_Msg(F("Save Type: ")); switch (saveType) { case 1: println_Msg(F("SRAM")); break; case 4: println_Msg(F("FLASH")); break; case 5: println_Msg(F("4K EEPROM")); eepPages = 64; break; case 6: println_Msg(F("16K EEPROM")); eepPages = 256; break; default: println_Msg(F("None/Unknown")); break; } print_Msg(F("CRC1: ")); println_Msg(checksumStr); // Wait for user input println_Msg(F(" ")); // Prints string out of the common strings array either with or without newline print_STR(press_button_STR, 1); display_Update(); wait(); } else { // Display error display_Clear(); println_Msg(F("GAMEPAK ERROR")); println_Msg(""); print_Msg(F("Title: ")); println_Msg(romName); print_Msg(F("Serial: ")); println_Msg(cartID); print_Msg(F("CRC1: ")); println_Msg(checksumStr); display_Update(); strcpy(romName, "GPERROR"); print_Error(F("Cartridge unknown")); println_Msg(""); // Prints string out of the common strings array either with or without newline print_STR(press_button_STR, 1); display_Update(); wait(); // Set cartsize manually unsigned char N64RomMenu; // Copy menuOptions out of progmem convertPgm(romOptionsN64, 7); N64RomMenu = question_box(F("Select ROM size"), menuOptions, 7, 0); // wait for user choice to come back from the question box menu switch (N64RomMenu) { case 0: // 4MB cartSize = 4; break; case 1: // 8MB cartSize = 8; break; case 2: // 12MB cartSize = 12; break; case 3: // 16MB cartSize = 16; break; case 4: // 32MB cartSize = 32; break; case 5: // 64MB cartSize = 64; break; case 6: // 128MB cartSize = 128; break; } } } /* look-up the calculated crc in the file n64.txt on sd card boolean searchCRC(char crcStr[9]) { boolean result = 0; char tempStr2[2]; char tempStr1[9]; char tempStr[5]; // Change to root dir sd.chdir("/"); if (myFile.open("n64.txt", O_READ)) { // Loop through file while (myFile.available()) { // Read 8 bytes into String, do it one at a time so byte order doesn't get mixed up sprintf(tempStr1, "%c", myFile.read()); for (byte i = 0; i < 7; i++) { sprintf(tempStr2, "%c", myFile.read()); strcat(tempStr1, tempStr2); } // Check if string is a match if (strcasecmp(tempStr1, crcStr) == 0) { // Skip the , in the file myFile.seekCur(1); // Read 4 bytes into String, do it one at a time so byte order doesn't get mixed up sprintf(tempStr, "%c", myFile.read()); for (byte i = 0; i < 3; i++) { sprintf(tempStr2, "%c", myFile.read()); strcat(tempStr, tempStr2); } if (strcmp(tempStr, cartID) == 0) { result = 1; break; } else { result = 0; break; } } // If no match, empty string, advance by 12 and try again else { myFile.seekCur(12); } } // Close the file: myFile.close(); return result; } else { print_FatalError(F("n64.txt missing")); } }*/ // look-up cart id in file n64.txt on sd card void getCartInfo_N64() { char tempStr[9]; int read_bytes; // cart not in list cartSize = 0; saveType = 0; // Read cart id idCart(); display_Clear(); println_Msg(F("Searching database...")); display_Update(); if (myFile.open("n64.txt", O_READ)) { // Loop through file while (myFile.available()) { // Skip first line with name skip_line(&myFile); // Skip over the CRC32 checksum myFile.seekCur(9); // Read 8 bytes into String read_bytes = myFile.read(tempStr, 8); tempStr[read_bytes == -1 ? 0 : read_bytes] = 0; // Check if string is a match if (strcmp(tempStr, checksumStr) == 0) { // Skip the , in the file myFile.seekCur(1); read_bytes = myFile.read(tempStr, 2); tempStr[read_bytes == -1 ? 0 : read_bytes] = 0; cartSize = atoi(tempStr); // Skip the , in the file myFile.seekCur(1); // Read the next ascii character and subtract 48 to convert to decimal saveType = myFile.read() - 48; // End loop break; } // If no match skip to next entry else { // skip rest of line myFile.seekCur(7); // skip third empty line skip_line(&myFile); } } // Close the file: myFile.close(); } else { print_FatalError(F("n64.txt missing")); } } // Read rom ID void idCart() { // Set the address setAddress_N64(romBase); // Read first 64 bytes of rom for (int c = 0; c < 64; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } // CRC1 sprintf(checksumStr, "%02X%02X%02X%02X", sdBuffer[0x10], sdBuffer[0x11], sdBuffer[0x12], sdBuffer[0x13]); // Get cart id cartID[0] = sdBuffer[0x3B]; cartID[1] = sdBuffer[0x3C]; cartID[2] = sdBuffer[0x3D]; cartID[3] = sdBuffer[0x3E]; // Get rom version romVersion = sdBuffer[0x3F]; // If name consists out of all japanese characters use cart id if (buildRomName(romName, &sdBuffer[0x20], 20) == 0) { strcpy(romName, cartID); } #ifdef savesummarytotxt // Get CRC1 for (int i = 0; i < 4; i++) { if (sdBuffer[0x10 + i] < 0x10) { CRC1 += '0'; } CRC1 += String(sdBuffer[0x10 + i], HEX); } // Get CRC2 for (int i = 0; i < 4; i++) { if (sdBuffer[0x14 + i] < 0x10) { CRC2 += '0'; } CRC2 += String(sdBuffer[0x14 + i], HEX); } #endif } // Write Eeprom to cartridge void writeEeprom() { if ((saveType == 5) || (saveType == 6)) { // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); println_Msg(F("Writing...")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { // 2 command bytes and 8 data bytes byte command[2 + 8]; command[0] = 0x05; // Note: eepPages can be 256, so page must be able to get to 256 for the // loop to exit. So it is not possible to use command[1] directly as loop // counter. for (int page = 0; page < eepPages; page++) { command[1] = page; // TODO: read 512 bytes in a 512 + 2 bytes buffer, and move the command start 32 bytes at a time myFile.read(command + 2, sizeof(command) - 2); // Disable interrupts for more uniform clock pulses // Blink led blinkLED(); if (page) delay(50); // Wait 50ms between pages when writing noInterrupts(); sendJoyBus(command, sizeof(command)); interrupts(); } // Close the file: myFile.close(); print_STR(done_STR, 1); display_Update(); delay(600); } else { print_FatalError(sd_error_STR); } } else { print_FatalError(F("Savetype Error")); } } void readEepromPageList(byte* output, byte page_number, byte page_count) { byte command[] = { 0x04, page_number }; // Disable interrupts for more uniform clock pulses while (page_count--) { // Blink led blinkLED(); noInterrupts(); sendJoyBus(command, sizeof(command)); // XXX: is it possible to read more than 8 bytes at a time ? recvJoyBus(output, 8); interrupts(); if (page_count) delayMicroseconds(600); // wait 600us between pages when reading command[1]++; output += 8; } } // Dump Eeprom to SD void readEeprom() { if ((saveType == 5) || (saveType == 6)) { // Get name, add extension and convert to char array for sd lib snprintf_P(fileName, sizeof(fileName), N64_EEP_FILENAME_FMT, romName); // create a new folder for the save file EEPROM_readAnything(0, foldern); snprintf_P(folder, sizeof(folder), N64_SAVE_DIRNAME_FMT, romName, foldern); sd.mkdir(folder, true); sd.chdir(folder); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); // Open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_FatalError(create_file_STR); } for (int i = 0; i < eepPages; i += sizeof(sdBuffer) / 8) { readEepromPageList(sdBuffer, i, sizeof(sdBuffer) / 8); // Write 64 pages at once to the SD card myFile.write(sdBuffer, sizeof(sdBuffer)); } // Close the file: myFile.close(); //clear the screen display_Clear(); print_Msg(F("Saved to ")); print_Msg(folder); println_Msg(F("/")); display_Update(); } else { print_FatalError(F("Savetype Error")); } } // Check if a write succeeded, returns 0 if all is ok and number of errors if not unsigned long verifyEeprom() { unsigned long writeErrors; if ((saveType == 5) || (saveType == 6)) { writeErrors = 0; display_Clear(); print_Msg(F("Verifying against ")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { for (int i = 0; i < eepPages; i += sizeof(sdBuffer) / 8) { readEepromPageList(sdBuffer, i, sizeof(sdBuffer) / 8); // Check sdBuffer content against file on sd card for (size_t c = 0; c < sizeof(sdBuffer); c++) { if (myFile.read() != sdBuffer[c]) { writeErrors++; } } } // Close the file: myFile.close(); } else { // SD Error writeErrors = 999999; print_FatalError(sd_error_STR); } // Return 0 if verified ok, or number of errors return writeErrors; } else { print_FatalError(F("Savetype Error")); return 1; } } /****************************************** SRAM functions *****************************************/ // Write sram to cartridge void writeSram(unsigned long sramSize) { if (saveType == 1) { // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); println_Msg(F("Writing...")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { for (unsigned long currByte = sramBase; currByte < (sramBase + sramSize); currByte += 512) { // Read save from SD into buffer myFile.read(sdBuffer, 512); // Set the address for the next 512 bytes setAddress_N64(currByte); for (int c = 0; c < 512; c += 2) { // Join bytes to word word myWord = ((sdBuffer[c] & 0xFF) << 8) | (sdBuffer[c + 1] & 0xFF); // Write word writeWord_N64(myWord); } } // Close the file: myFile.close(); print_STR(done_STR, 1); display_Update(); } else { print_FatalError(sd_error_STR); } } else { print_FatalError(F("Savetype Error")); } } // Read sram and save to the SD card void readSram(unsigned long sramSize, byte flashramType) { int offset = 512; int bufferSize = 512; if (flashramType == 2) { offset = 64; bufferSize = 128; } // Get name, add extension and convert to char array for sd lib strcpy(fileName, romName); if (saveType == 4) { strcat(fileName, ".fla"); } else if (saveType == 1) { strcat(fileName, ".sra"); } else { print_FatalError(F("Savetype Error")); } // create a new folder for the save file EEPROM_readAnything(0, foldern); sprintf(folder, "N64/SAVE/%s/%d", romName, foldern); sd.mkdir(folder, true); sd.chdir(folder); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); // Open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_FatalError(sd_error_STR); } for (unsigned long currByte = sramBase; currByte < (sramBase + (sramSize / flashramType)); currByte += offset) { // Set the address setAddress_N64(currByte); for (int c = 0; c < bufferSize; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } myFile.write(sdBuffer, bufferSize); } // Close the file: myFile.close(); print_Msg(F("Saved to ")); print_Msg(folder); println_Msg(F("/")); display_Update(); } unsigned long verifySram(unsigned long sramSize, byte flashramType) { writeErrors = 0; int offset = 512; int bufferSize = 512; if (flashramType == 2) { offset = 64; bufferSize = 128; } // Open file on sd card if (myFile.open(filePath, O_READ)) { for (unsigned long currByte = sramBase; currByte < (sramBase + (sramSize / flashramType)); currByte += offset) { // Set the address setAddress_N64(currByte); for (int c = 0; c < bufferSize; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } // Check sdBuffer content against file on sd card for (int i = 0; i < bufferSize; i++) { if (myFile.read() != sdBuffer[i]) { writeErrors++; } } } // Close the file: myFile.close(); } else { print_FatalError(sd_error_STR); } // Return 0 if verified ok, or number of errors return writeErrors; } /****************************************** Flashram functions *****************************************/ // Send a command to the flashram command register void sendFramCmd(unsigned long myCommand) { // Split command into two words word myComLowOut = myCommand & 0xFFFF; word myComHighOut = myCommand >> 16; // Set address to command register setAddress_N64(0x08010000); // Send command writeWord_N64(myComHighOut); writeWord_N64(myComLowOut); } // Init fram void initFram() { // FRAM_EXECUTE_CMD sendFramCmd(0xD2000000); delay(10); // FRAM_EXECUTE_CMD sendFramCmd(0xD2000000); delay(10); //FRAM_STATUS_MODE_CMD sendFramCmd(0xE1000000); delay(10); } void writeFram(byte flashramType) { if (saveType == 4) { // Erase fram eraseFram(); // Check if empty if (blankcheck_N64(flashramType) == 0) { println_Msg(F("OK")); display_Update(); } else { println_Msg(F("FAIL")); display_Update(); } // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); print_Msg(F("Writing ")); println_Msg(filePath); display_Update(); // Open file on sd card if (myFile.open(filePath, O_READ)) { // Init fram initFram(); // Write all 8 fram banks print_Msg(F("Bank ")); for (byte bank = 0; bank < 8; bank++) { print_Msg(bank); print_Msg(F(" ")); display_Update(); // Write one bank of 128*128 bytes for (byte offset = 0; offset < 128; offset++) { // Read save from SD into buffer myFile.read(sdBuffer, 128); // FRAM_WRITE_MODE_CMD sendFramCmd(0xB4000000); delay(1); // Set the address for the next 128 bytes setAddress_N64(0x08000000); // Send 128 bytes, 64 words for (byte c = 0; c < 128; c += 2) { // Join two bytes into one word word myWord = ((sdBuffer[c] & 0xFF) << 8) | (sdBuffer[c + 1] & 0xFF); // Write word writeWord_N64(myWord); } // Delay between each "DMA" delay(1); //FRAM_WRITE_OFFSET_CMD + offset sendFramCmd((0xA5000000 | (((bank * 128) + offset) & 0xFFFF))); delay(1); // FRAM_EXECUTE_CMD sendFramCmd(0xD2000000); while (waitForFram(flashramType)) { delay(1); } } // Delay between banks delay(20); } println_Msg(""); // Close the file: myFile.close(); } else { print_FatalError(sd_error_STR); } } else { print_FatalError(F("Savetype Error")); } } // Delete all 8 flashram banks void eraseFram() { if (saveType == 4) { print_Msg(F("Erasing...")); display_Update(); // Init fram initFram(); // Erase fram // 0x4B00007F 0x4B0000FF 0x4B00017F 0x4B0001FF 0x4B00027F 0x4B0002FF 0x4B00037F 0x4B0003FF for (unsigned long bank = 0x4B00007F; bank < 0x4B00047F; bank += 0x80) { sendFramCmd(bank); delay(10); // FRAM_ERASE_MODE_CMD sendFramCmd(0x78000000); delay(10); // FRAM_EXECUTE_CMD sendFramCmd(0xD2000000); while (waitForFram(flashramType)) { delay(1); } } } else { print_FatalError(F("Savetype Error")); } } // Read flashram void readFram(byte flashramType) { if (saveType == 4) { // Put flashram into read mode // FRAM_READ_MODE_CMD sendFramCmd(0xF0000000); // Read Flashram readSram(131072, flashramType); } else { print_FatalError(F("Savetype Error")); } } // Verify flashram unsigned long verifyFram(byte flashramType) { // Put flashram into read mode // FRAM_READ_MODE_CMD sendFramCmd(0xF0000000); writeErrors = verifySram(131072, flashramType); return writeErrors; } // Blankcheck flashram unsigned long blankcheck_N64(byte flashramType) { writeErrors = 0; int offset = 512; int bufferSize = 512; if (flashramType == 2) { offset = 64; bufferSize = 128; } // Put flashram into read mode // FRAM_READ_MODE_CMD sendFramCmd(0xF0000000); // Read Flashram for (unsigned long currByte = sramBase; currByte < (sramBase + (131072 / flashramType)); currByte += offset) { // Set the address for the next 512 bytes setAddress_N64(currByte); for (int c = 0; c < bufferSize; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } // Check sdBuffer content against file on sd card for (int i = 0; i < bufferSize; i++) { if (0xFF != sdBuffer[i]) { writeErrors++; } } } // Return 0 if verified ok, or number of errors return writeErrors; } // Wait until current operation is done byte waitForFram(byte flashramType) { byte framStatus = 0; byte statusMXL1100[] = { 0x11, 0x11, 0x80, 0x01, 0x00, 0xC2, 0x00, 0x1E }; byte statusMXL1101[] = { 0x11, 0x11, 0x80, 0x01, 0x00, 0xC2, 0x00, 0x1D }; byte statusMN63F81[] = { 0x11, 0x11, 0x80, 0x01, 0x00, 0x32, 0x00, 0xF1 }; // FRAM_STATUS_MODE_CMD sendFramCmd(0xE1000000); delay(1); // Set address to Fram status register setAddress_N64(0x08000000); // Read Status for (byte c = 0; c < 8; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } if (flashramType == 2) { for (byte c = 0; c < 8; c++) { if (statusMXL1100[c] != sdBuffer[c]) { framStatus = 1; } } } else if (flashramType == 1) { //MX29L1101 if (MN63F81MPN == false) { for (byte c = 0; c < 8; c++) { if (statusMXL1101[c] != sdBuffer[c]) { framStatus = 1; } } } //MN63F81MPN else if (MN63F81MPN == true) { for (byte c = 0; c < 8; c++) { if (statusMN63F81[c] != sdBuffer[c]) { framStatus = 1; } } } } return framStatus; } // Get flashram type void getFramType() { // FRAM_STATUS_MODE_CMD sendFramCmd(0xE1000000); delay(10); // Set address to Fram status register setAddress_N64(0x08000000); // Read Status for (byte c = 0; c < 8; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } //MX29L1100 if (sdBuffer[7] == 0x1e) { flashramType = 2; println_Msg(F("Type: MX29L1100")); display_Update(); } //MX29L1101 else if (sdBuffer[7] == 0x1d) { flashramType = 1; MN63F81MPN = false; println_Msg(F("Type: MX29L1101")); display_Update(); } //MN63F81MPN else if (sdBuffer[7] == 0xf1) { flashramType = 1; MN63F81MPN = true; println_Msg(F("Type: MN63F81MPN")); display_Update(); } // 29L1100KC-15B0 compat MX29L1101 else if ((sdBuffer[7] == 0x8e) || (sdBuffer[7] == 0x84)) { flashramType = 1; MN63F81MPN = false; println_Msg(F("Type: 29L1100KC-15B0")); println_Msg(F("(compat. MX29L1101)")); display_Update(); } // Type unknown else { for (byte c = 0; c < 8; c++) { print_Msg(sdBuffer[c], HEX); print_Msg(F(", ")); } print_FatalError(F("Flashram unknown")); } } /****************************************** Rom functions *****************************************/ // Read rom and save to the SD card #ifndef fastcrc // dumping rom slow void readRom_N64() { // Get name, add extension and convert to char array for sd lib strcpy(fileName, romName); strcat(fileName, ".Z64"); // create a new folder EEPROM_readAnything(0, foldern); sprintf(folder, "N64/ROM/%s/%d", romName, foldern); sd.mkdir(folder, true); sd.chdir(folder); // clear the screen // display_Clear(); print_STR(saving_to_STR, 0); print_Msg(folder); println_Msg(F("/...")); display_Update(); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); // Open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_FatalError(create_file_STR); } //Initialize progress bar uint32_t processedProgressBar = 0; uint32_t totalProgressBar = (uint32_t)(cartSize)*1024 * 1024; draw_progressbar(0, totalProgressBar); for (unsigned long currByte = romBase; currByte < (romBase + (cartSize * 1024 * 1024)); currByte += 512) { // Blink led if ((currByte & 0x3FFF) == 0) blinkLED(); // Set the address for the next 512 bytes setAddress_N64(currByte); for (word c = 0; c < 512; c += 2) { word myWord = readWord_N64(); sdBuffer[c] = myWord >> 8; sdBuffer[c + 1] = myWord & 0xFF; } myFile.write(sdBuffer, 512); processedProgressBar += 512; draw_progressbar(processedProgressBar, totalProgressBar); } // Close the file: myFile.close(); } #else // dumping rom fast uint32_t readRom_N64() { // Get name, add extension and convert to char array for sd lib strcpy(fileName, romName); strcat(fileName, ".Z64"); // create a new folder EEPROM_readAnything(0, foldern); sprintf(folder, "N64/ROM/%s/%d", romName, foldern); sd.mkdir(folder, true); sd.chdir(folder); // clear the screen // display_Clear(); print_STR(saving_to_STR, 0); print_Msg(folder); println_Msg(F("/...")); display_Update(); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); // Open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_FatalError(create_file_STR); } byte buffer[1024]; //Initialize progress bar uint32_t processedProgressBar = 0; uint32_t totalProgressBar = (uint32_t)(cartSize)*1024 * 1024; draw_progressbar(0, totalProgressBar); // prepare crc32 uint32_t oldcrc32 = 0xFFFFFFFF; // run combined dumper + crc32 routine for better performance, as N64 ROMs are quite large for an 8bit micro // currently dumps + checksums a 32MB cart in 170 seconds (down from 347 seconds) for (unsigned long currByte = romBase; currByte < (romBase + (cartSize * 1024 * 1024)); currByte += 1024) { // Blink led if (currByte % 16384 == 0) blinkLED(); // Set the address for the first 512 bytes to dump setAddress_N64(currByte); // Wait 62.5ns (safety) NOP; for (int c = 0; c < 512; c += 2) { // Pull read(PH6) low PORTH &= ~(1 << 6); // Wait ~310ns NOP; NOP; NOP; NOP; NOP; // data on PINK and PINF is valid now, read into sd card buffer buffer[c] = PINK; // hiByte buffer[c + 1] = PINF; // loByte // Pull read(PH6) high PORTH |= (1 << 6); // crc32 update UPDATE_CRC(oldcrc32, buffer[c]); UPDATE_CRC(oldcrc32, buffer[c + 1]); } // Set the address for the next 512 bytes to dump setAddress_N64(currByte + 512); // Wait 62.5ns (safety) NOP; for (int c = 512; c < 1024; c += 2) { // Pull read(PH6) low PORTH &= ~(1 << 6); // Wait ~310ns NOP; NOP; NOP; NOP; NOP; // data on PINK and PINF is valid now, read into sd card buffer buffer[c] = PINK; // hiByte buffer[c + 1] = PINF; // loByte // Pull read(PH6) high PORTH |= (1 << 6); // crc32 update UPDATE_CRC(oldcrc32, buffer[c]); UPDATE_CRC(oldcrc32, buffer[c + 1]); } processedProgressBar += 1024; draw_progressbar(processedProgressBar, totalProgressBar); // write out 1024 bytes to file myFile.write(buffer, 1024); } // Close the file: myFile.close(); // Return checksum return oldcrc32; } #endif #ifdef savesummarytotxt // Save an info.txt with information on the dumped rom to the SD card void savesummary_N64(boolean checkfound, char crcStr[9], unsigned long timeElapsed) { // Open file on sd card if (!myFile.open("N64/ROM/n64log.txt", O_RDWR | O_CREAT | O_APPEND)) { print_FatalError(sd_error_STR); } //Write the info myFile.print(F("Name\t: ")); myFile.println(romName); myFile.print(F("ID\t: ")); myFile.println(cartID); myFile.print(F("ROM CRC1: ")); myFile.println(CRC1); myFile.print(F("ROM CRC2: ")); myFile.println(CRC2); myFile.print(F("Size\t: ")); myFile.print(cartSize); myFile.println(F(" MB")); myFile.print(F("Save\t: ")); switch (saveType) { case 1: myFile.println(F("SRAM")); break; case 4: myFile.println(F("FLASH")); break; case 5: myFile.println(F("4K EEPROM")); break; case 6: myFile.println(F("16K EEPROM")); break; default: myFile.println(F("None/Unknown")); break; } myFile.print(F("Version\t: 1.")); myFile.println(romVersion); myFile.print(F("Saved To: ")); myFile.println(folder); #ifdef RTC_installed myFile.print(F("Dumped\t: ")); myFile.println(RTCStamp()); #endif myFile.print(F("CRC\t: ")); myFile.print(crcStr); if (checkfound) { // Dump was a known good rom // myFile.println(F("Checksum matches")); myFile.println(" [Match]"); } else { // myFile.println(F("Checksum not found")); myFile.println(" [No Match]"); } myFile.print(F("Time\t: ")); myFile.println(timeElapsed); myFile.println(F(" ")); // Close the file: myFile.close(); } #endif /****************************************** N64 Repro Flashrom Functions *****************************************/ void flashRepro_N64() { unsigned long sectorSize = 0; byte bufferSize = 0; // Check flashrom ID's idFlashrom_N64(); // If the ID is known continue if (cartSize != 0) { // Print flashrom name if ((flashid == 0x227E) && (strcmp(cartID, "2201") == 0)) { print_Msg(F("Spansion S29GL256N")); if (cartSize == 64) println_Msg(F(" x2")); else println_Msg(""); } else if ((flashid == 0x227E) && (strcmp(cartID, "2101") == 0)) { print_Msg(F("Spansion S29GL128N")); } else if ((flashid == 0x227E) && (strcmp(cartID, "2100") == 0)) { print_Msg(F("ST M29W128GL")); } else if ((flashid == 0x22C9) || (flashid == 0x22CB)) { print_Msg(F("Macronix MX29LV640")); if (cartSize == 16) println_Msg(F(" x2")); else println_Msg(""); } else if (flashid == 0x8816) println_Msg(F("Intel 4400L0ZDQ0")); else if (flashid == 0x7E7E) println_Msg(F("Fujitsu MSP55LV100S")); else if ((flashid == 0x227E) && (strcmp(cartID, "2301") == 0)) println_Msg(F("Fujitsu MSP55LV512")); else if ((flashid == 0x227E) && (strcmp(cartID, "3901") == 0)) println_Msg(F("Intel 512M29EW")); // Print info print_Msg(F("ID: ")); print_Msg(flashid_str); print_Msg(F(" Size: ")); print_Msg(cartSize); println_Msg(F("MB")); println_Msg(""); println_Msg(F("This will erase your")); println_Msg(F("Repro Cartridge.")); println_Msg(F("Attention: Use 3.3V!")); println_Msg(""); // Prints string out of the common strings array either with or without newline print_STR(press_button_STR, 1); display_Update(); wait(); } else { println_Msg(F("Unknown flashrom")); print_Msg(F("ID: ")); print_Msg(vendorID); print_Msg(F(" ")); print_Msg(flashid_str); print_Msg(F(" ")); println_Msg(cartID); println_Msg(F(" ")); println_Msg(F("Press button for")); println_Msg(F("manual config")); println_Msg(F("This will erase your")); println_Msg(F("Repro Cartridge.")); println_Msg(F("Attention: Use 3.3V!")); display_Update(); wait(); // clear IDs sprintf(vendorID, "%s", "CONF"); flashid = 0; sprintf(flashid_str, "%s", "CONF"); sprintf(cartID, "%s", "CONF"); // Set cartsize manually unsigned char N64RomMenu; // Copy menuOptions out of progmem convertPgm(romOptionsN64, 7); N64RomMenu = question_box(F("Select flash size"), menuOptions, 7, 0); // wait for user choice to come back from the question box menu switch (N64RomMenu) { case 0: // 4MB cartSize = 4; break; case 1: // 8MB cartSize = 8; break; case 2: // 12MB cartSize = 12; break; case 3: // 16MB cartSize = 16; break; case 4: // 32MB cartSize = 32; break; case 5: // 64MB cartSize = 64; break; case 6: // 128MB cartSize = 128; break; } // Set flash buffer manually unsigned char N64BufferMenu; // Copy menuOptions out of progmem convertPgm(bufferOptionsN64, 4); N64BufferMenu = question_box(F("Select buffer size"), menuOptions, 4, 0); // wait for user choice to come back from the question box menu switch (N64BufferMenu) { case 0: // no buffer bufferSize = 0; break; case 1: // 32 byte buffer bufferSize = 32; break; case 2: // 64 byte buffer bufferSize = 64; break; case 3: // 128 byte buffer bufferSize = 128; break; } // Set sector size manually unsigned char N64SectorMenu; // Copy menuOptions out of progmem convertPgm(sectorOptionsN64, 4); N64SectorMenu = question_box(F("Select sector size"), menuOptions, 4, 0); // wait for user choice to come back from the question box menu switch (N64SectorMenu) { case 0: // 8KB sectors sectorSize = 0x2000; break; case 1: // 32KB sectors sectorSize = 0x8000; break; case 2: // 64KB sectors sectorSize = 0x10000; break; case 3: // 128KB sectors sectorSize = 0x20000; break; } } // Launch file browser filePath[0] = '\0'; sd.chdir("/"); fileBrowser(F("Select z64 file")); display_Clear(); display_Update(); // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); // Open file on sd card if (myFile.open(filePath, O_READ)) { // Get rom size from file fileSize = myFile.fileSize(); print_Msg(F("File size: ")); print_Msg(fileSize / 1048576); println_Msg(F("MB")); display_Update(); // Compare file size to flashrom size if ((fileSize / 1048576) > cartSize) { print_FatalError(file_too_big_STR); } // Erase needed sectors if (flashid == 0x227E) { // Spansion S29GL256N or Fujitsu MSP55LV512 with 0x20000 sector size and 32 byte buffer eraseSector_N64(0x20000); } else if (flashid == 0x7E7E) { // Fujitsu MSP55LV100S eraseMSP55LV100_N64(); } else if ((flashid == 0x8813) || (flashid == 0x8816)) { // Intel 4400L0ZDQ0 eraseIntel4400_N64(); resetIntel4400_N64(); } else if ((flashid == 0x22C9) || (flashid == 0x22CB)) { // Macronix MX29LV640, C9 is top boot and CB is bottom boot block eraseSector_N64(0x8000); } else { eraseFlashrom_N64(); } // Check if erase was successful if (blankcheckFlashrom_N64()) { // Write flashrom println_Msg(F("OK")); print_Msg(F("Writing ")); println_Msg(filePath); display_Update(); if ((strcmp(cartID, "3901") == 0) && (flashid == 0x227E)) { // Intel 512M29EW(64MB) with 0x20000 sector size and 128 byte buffer writeFlashBuffer_N64(0x20000, 128); } else if ((strcmp(cartID, "2100") == 0) && (flashid == 0x227E)) { // ST M29W128GH(16MB) with 0x20000 sector size and 64 byte buffer writeFlashBuffer_N64(0x20000, 64); } else if (flashid == 0x227E) { // Spansion S29GL128N/S29GL256N or Fujitsu MSP55LV512 with 0x20000 sector size and 32 byte buffer writeFlashBuffer_N64(0x20000, 32); } else if (flashid == 0x7E7E) { //Fujitsu MSP55LV100S writeMSP55LV100_N64(0x20000); } else if ((flashid == 0x22C9) || (flashid == 0x22CB)) { // Macronix MX29LV640 without buffer and 0x8000 sector size writeFlashrom_N64(0x8000); } else if ((flashid == 0x8813) || (flashid == 0x8816)) { // Intel 4400L0ZDQ0 writeIntel4400_N64(); resetIntel4400_N64(); } else if (sectorSize) { if (bufferSize) { writeFlashBuffer_N64(sectorSize, bufferSize); } else { writeFlashrom_N64(sectorSize); } } else { print_FatalError(F("sectorSize not set")); } // Close the file: myFile.close(); // Verify print_STR(verifying_STR, 0); display_Update(); writeErrors = verifyFlashrom_N64(); if (writeErrors == 0) { println_Msg(F("OK")); display_Update(); } else { print_Msg(writeErrors); print_Msg(F(" bytes ")); print_Error(did_not_verify_STR); } } else { // Close the file myFile.close(); print_Error(F("failed")); } } else { print_Error(F("Can't open file")); } // Prints string out of the common strings array either with or without newline print_STR(press_button_STR, 1); display_Update(); wait(); display_Clear(); display_Update(); } // Reset to read mode void resetIntel4400_N64() { for (unsigned long currPartition = 0; currPartition < (cartSize * 0x100000); currPartition += 0x20000) { setAddress_N64(romBase + currPartition); writeWord_N64(0xFF); } } // Reset Fujitsu MSP55LV100S void resetMSP55LV100_N64(unsigned long flashBase) { // Send reset Command setAddress_N64(flashBase); writeWord_N64(0xF0F0); delay(100); } // Common reset command void resetFlashrom_N64(unsigned long flashBase) { // Send reset Command setAddress_N64(flashBase); writeWord_N64(0xF0); delay(100); } void idFlashrom_N64() { // Set size to 0 if no ID is found cartSize = 0; // Send flashrom ID command setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(romBase + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0x90); // Read 1 byte vendor ID setAddress_N64(romBase); sprintf(vendorID, "%02X", readWord_N64()); // Read 2 bytes flashrom ID flashid = readWord_N64(); sprintf(flashid_str, "%04X", flashid); // Read 2 bytes secondary flashrom ID setAddress_N64(romBase + 0x1C); sprintf(cartID, "%04X", ((readWord_N64() << 8) | (readWord_N64() & 0xFF))); // Spansion S29GL256N(32MB/64MB) with either one or two flashrom chips if ((strcmp(cartID, "2201") == 0) && (flashid == 0x227E)) { cartSize = 32; // Reset flashrom resetFlashrom_N64(romBase); // Test for second flashrom chip at 0x2000000 (32MB) setAddress_N64(romBase + 0x2000000 + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(romBase + 0x2000000 + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + 0x2000000 + (0x555 << 1)); writeWord_N64(0x90); char tempID[5]; setAddress_N64(romBase + 0x2000000); // Read manufacturer ID readWord_N64(); // Read flashrom ID sprintf(tempID, "%04X", readWord_N64()); // Check if second flashrom chip is present if (strcmp(tempID, "227E") == 0) { cartSize = 64; } resetFlashrom_N64(romBase + 0x2000000); } // Macronix MX29LV640(8MB/16MB) with either one or two flashrom chips else if ((flashid == 0x22C9) || (flashid == 0x22CB)) { cartSize = 8; resetFlashrom_N64(romBase + 0x800000); // Test for second flashrom chip at 0x800000 (8MB) setAddress_N64(romBase + 0x800000 + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(romBase + 0x800000 + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + 0x800000 + (0x555 << 1)); writeWord_N64(0x90); char tempID[5]; setAddress_N64(romBase + 0x800000); // Read manufacturer ID readWord_N64(); // Read flashrom ID sprintf(tempID, "%04X", readWord_N64()); // Check if second flashrom chip is present if ((strcmp(tempID, "22C9") == 0) || (strcmp(tempID, "22CB") == 0)) { cartSize = 16; } resetFlashrom_N64(romBase + 0x800000); } // Intel 4400L0ZDQ0 (64MB) else if (flashid == 0x8816) { // Found first flashrom chip, set to 32MB cartSize = 32; resetIntel4400_N64(); // Test if second half of the flashrom might be hidden setAddress_N64(romBase + 0x2000000 + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(romBase + 0x2000000 + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + 0x2000000 + (0x555 << 1)); writeWord_N64(0x90); // Read manufacturer ID setAddress_N64(romBase + 0x2000000); readWord_N64(); // Read flashrom ID sprintf(cartID, "%04X", readWord_N64()); if (strcmp(cartID, "8813") == 0) { cartSize = 64; flashid = 0x8813; strncpy(flashid_str, cartID, 5); } resetIntel4400_N64(); // Empty cartID string cartID[0] = '\0'; } //Fujitsu MSP55LV512/Spansion S29GL512N (64MB) else if ((strcmp(cartID, "2301") == 0) && (flashid == 0x227E)) { cartSize = 64; // Reset flashrom resetFlashrom_N64(romBase); } // Spansion S29GL128N(16MB) with one flashrom chip else if ((strcmp(cartID, "2101") == 0) && (flashid == 0x227E)) { cartSize = 16; // Reset flashrom resetFlashrom_N64(romBase); } // ST M29W128GL(16MB) with one flashrom chip else if ((strcmp(cartID, "2100") == 0) && (flashid == 0x227E)) { cartSize = 16; // Reset flashrom resetFlashrom_N64(romBase); } // Intel 512M29EW(64MB) with one flashrom chip else if ((strcmp(cartID, "3901") == 0) && (flashid == 0x227E)) { cartSize = 64; // Reset flashrom resetFlashrom_N64(romBase); } // Unknown 227E type else if (flashid == 0x227E) { cartSize = 0; // Reset flashrom resetFlashrom_N64(romBase); } //Test for Fujitsu MSP55LV100S (64MB) else { // Send flashrom ID command setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0xAAAA); setAddress_N64(romBase + (0x2AA << 1)); writeWord_N64(0x5555); setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0x9090); setAddress_N64(romBase); // Read 1 byte vendor ID readWord_N64(); // Read 2 bytes flashrom ID sprintf(cartID, "%04X", readWord_N64()); if (strcmp(cartID, "7E7E") == 0) { resetMSP55LV100_N64(romBase); cartSize = 64; flashid = 0x7E7E; strncpy(flashid_str, cartID, 5); } } if ((flashid == 0x1240) && (strcmp(cartID, "1240") == 0)) { print_FatalError(F("Please reseat cartridge")); } } // Erase Intel flashrom void eraseIntel4400_N64() { unsigned long flashBase = romBase; print_Msg(F("Erasing...")); display_Update(); // If the game is smaller than 32Mbit only erase the needed blocks unsigned long lastBlock = 0x1FFFFFF; if (fileSize < 0x1FFFFFF) lastBlock = fileSize; // Erase 4 blocks with 16kwords each for (unsigned long currBlock = 0x0; currBlock < 0x1FFFF; currBlock += 0x8000) { // Unlock block command setAddress_N64(flashBase + currBlock); writeWord_N64(0x60); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Erase command setAddress_N64(flashBase + currBlock); writeWord_N64(0x20); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Read the status register setAddress_N64(flashBase + currBlock); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(flashBase + currBlock); statusReg = readWord_N64(); } } // Erase up to 255 blocks with 64kwords each for (unsigned long currBlock = 0x20000; currBlock < lastBlock; currBlock += 0x1FFFF) { // Unlock block command setAddress_N64(flashBase + currBlock); writeWord_N64(0x60); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Erase command setAddress_N64(flashBase + currBlock); writeWord_N64(0x20); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Read the status register setAddress_N64(flashBase + currBlock); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(flashBase + currBlock); statusReg = readWord_N64(); } // Blink led blinkLED(); } // Check if we should erase the second chip too if ((cartSize = 64) && (fileSize > 0x2000000)) { // Switch base address to second chip flashBase = romBase + 0x2000000; // 255 blocks with 64kwords each for (unsigned long currBlock = 0x0; currBlock < 0x1FDFFFF; currBlock += 0x1FFFF) { // Unlock block command setAddress_N64(flashBase + currBlock); writeWord_N64(0x60); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Erase command setAddress_N64(flashBase + currBlock); writeWord_N64(0x20); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Read the status register setAddress_N64(flashBase + currBlock); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(flashBase + currBlock); statusReg = readWord_N64(); } // Blink led blinkLED(); } // 4 blocks with 16kword each for (unsigned long currBlock = 0x1FE0000; currBlock < 0x1FFFFFF; currBlock += 0x8000) { // Unlock block command setAddress_N64(flashBase + currBlock); writeWord_N64(0x60); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Erase command setAddress_N64(flashBase + currBlock); writeWord_N64(0x20); setAddress_N64(flashBase + currBlock); writeWord_N64(0xD0); // Read the status register setAddress_N64(flashBase + currBlock); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(flashBase + currBlock); statusReg = readWord_N64(); } } } } // Erase Fujutsu MSP55LV100S void eraseMSP55LV100_N64() { unsigned long flashBase = romBase; unsigned long sectorSize = 0x20000; print_Msg(F("Erasing...")); display_Update(); for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) { // Blink led blinkLED(); // Send Erase Command to first chip setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAAAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x5555); setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0x8080); setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAAAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x5555); setAddress_N64(romBase + currSector); writeWord_N64(0x3030); // Read the status register setAddress_N64(romBase + currSector); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(romBase + currSector); statusReg = readWord_N64(); } // Read the status register setAddress_N64(romBase + currSector); statusReg = readWord_N64(); while ((statusReg | 0x7FFF) != 0xFFFF) { setAddress_N64(romBase + currSector); statusReg = readWord_N64(); } } } // Common chip erase command void eraseFlashrom_N64() { print_Msg(F("Chip erase...")); display_Update(); // Send Erase Command setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(romBase + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0x80); setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(romBase + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + (0x555 << 1)); writeWord_N64(0x10); // Read the status register setAddress_N64(romBase); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(romBase); statusReg = readWord_N64(); // Blink led blinkLED(); delay(500); } } // Common sector erase command void eraseSector_N64(unsigned long sectorSize) { unsigned long flashBase = romBase; print_Msg(F("Sector erase...")); display_Update(); for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) { // Blink led blinkLED(); // Spansion S29GL256N(32MB/64MB) with two flashrom chips if ((currSector == 0x2000000) && (strcmp(cartID, "2201") == 0) && (flashid == 0x227E)) { // Change to second chip flashBase = romBase + 0x2000000; } // Macronix MX29LV640(8MB/16MB) with two flashrom chips else if ((currSector == 0x800000) && ((flashid == 0x22C9) || (flashid == 0x22CB))) { flashBase = romBase + 0x800000; } // Send Erase Command setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0x80); setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x55); setAddress_N64(romBase + currSector); writeWord_N64(0x30); // Read the status register setAddress_N64(romBase + currSector); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(romBase + currSector); statusReg = readWord_N64(); } } } boolean blankcheckFlashrom_N64() { for (unsigned long currByte = romBase; currByte < romBase + fileSize; currByte += 512) { // Blink led if (currByte % 131072 == 0) blinkLED(); // Set the address setAddress_N64(currByte); for (int c = 0; c < 512; c += 2) { if (readWord_N64() != 0xFFFF) { return 0; } } } return 1; } // Write Intel flashrom void writeIntel4400_N64() { for (unsigned long currSector = 0; currSector < fileSize; currSector += 131072) { // Blink led blinkLED(); // Write to flashrom for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) { // Fill SD buffer myFile.read(sdBuffer, 512); // Write 32 words at a time for (int currWriteBuffer = 0; currWriteBuffer < 512; currWriteBuffer += 64) { // Buffered program command setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); writeWord_N64(0xE8); // Check Status register setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); statusReg = readWord_N64(); } // Write word count (minus 1) setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); writeWord_N64(0x1F); // Write buffer for (byte currByte = 0; currByte < 64; currByte += 2) { // Join two bytes into one word word currWord = ((sdBuffer[currWriteBuffer + currByte] & 0xFF) << 8) | (sdBuffer[currWriteBuffer + currByte + 1] & 0xFF); setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + currByte); writeWord_N64(currWord); } // Write Buffer to Flash setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 62); writeWord_N64(0xD0); // Read the status register at last written address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 62); statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != 0xFFFF) { setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 62); statusReg = readWord_N64(); } } } } } // Write Fujitsu MSP55LV100S flashrom consisting out of two MSP55LV512 flashroms one used for the high byte the other for the low byte void writeMSP55LV100_N64(unsigned long sectorSize) { unsigned long flashBase = romBase; for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) { // Blink led blinkLED(); // Write to flashrom for (unsigned long currSdBuffer = 0; currSdBuffer < sectorSize; currSdBuffer += 512) { // Fill SD buffer myFile.read(sdBuffer, 512); // Write 32 bytes at a time for (int currWriteBuffer = 0; currWriteBuffer < 512; currWriteBuffer += 32) { // 2 unlock commands setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAAAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x5555); // Write buffer load command at sector address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); writeWord_N64(0x2525); // Write word count (minus 1) at sector address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); writeWord_N64(0x0F0F); // Define variable before loop so we can use it later when reading the status register word currWord; for (byte currByte = 0; currByte < 32; currByte += 2) { // Join two bytes into one word currWord = ((sdBuffer[currWriteBuffer + currByte] & 0xFF) << 8) | (sdBuffer[currWriteBuffer + currByte + 1] & 0xFF); // Load Buffer Words setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + currByte); writeWord_N64(currWord); } // Write Buffer to Flash setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 30); writeWord_N64(0x2929); // Read the status register at last written address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 30); word statusReg = readWord_N64(); while ((statusReg | 0x7F7F) != (currWord | 0x7F7F)) { setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 30); statusReg = readWord_N64(); } } } } } // Write Spansion S29GL256N flashrom using the 32 byte write buffer void writeFlashBuffer_N64(unsigned long sectorSize, byte bufferSize) { unsigned long flashBase = romBase; for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) { // Blink led blinkLED(); // Spansion S29GL256N(32MB/64MB) with two flashrom chips if ((currSector == 0x2000000) && (strcmp(cartID, "2201") == 0)) { flashBase = romBase + 0x2000000; } // Write to flashrom for (unsigned long currSdBuffer = 0; currSdBuffer < sectorSize; currSdBuffer += 512) { // Fill SD buffer myFile.read(sdBuffer, 512); // Write 32 bytes at a time for (int currWriteBuffer = 0; currWriteBuffer < 512; currWriteBuffer += bufferSize) { // 2 unlock commands setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x55); // Write buffer load command at sector address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); writeWord_N64(0x25); // Write word count (minus 1) at sector address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer); writeWord_N64((bufferSize / 2) - 1); // Define variable before loop so we can use it later when reading the status register word currWord = 0; for (byte currByte = 0; currByte < bufferSize; currByte += 2) { // Join two bytes into one word currWord = ((sdBuffer[currWriteBuffer + currByte] & 0xFF) << 8) | (sdBuffer[currWriteBuffer + currByte + 1] & 0xFF); // Load Buffer Words setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + currByte); writeWord_N64(currWord); } // Write Buffer to Flash setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + bufferSize - 2); writeWord_N64(0x29); // Read the status register at last written address setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + bufferSize - 2); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != (currWord | 0xFF7F)) { setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + bufferSize - 2); statusReg = readWord_N64(); } } } } } // Write MX29LV640 flashrom without write buffer void writeFlashrom_N64(unsigned long sectorSize) { unsigned long flashBase = romBase; for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) { // Blink led blinkLED(); // Macronix MX29LV640(8MB/16MB) with two flashrom chips if (currSector == 0x800000) { flashBase = romBase + 0x800000; } // Write to flashrom for (unsigned long currSdBuffer = 0; currSdBuffer < sectorSize; currSdBuffer += 512) { // Fill SD buffer myFile.read(sdBuffer, 512); for (int currByte = 0; currByte < 512; currByte += 2) { // Join two bytes into one word word currWord = ((sdBuffer[currByte] & 0xFF) << 8) | (sdBuffer[currByte + 1] & 0xFF); // 2 unlock commands setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xAA); setAddress_N64(flashBase + (0x2AA << 1)); writeWord_N64(0x55); // Program command setAddress_N64(flashBase + (0x555 << 1)); writeWord_N64(0xA0); // Write word setAddress_N64(romBase + currSector + currSdBuffer + currByte); writeWord_N64(currWord); // Read the status register setAddress_N64(romBase + currSector + currSdBuffer + currByte); word statusReg = readWord_N64(); while ((statusReg | 0xFF7F) != (currWord | 0xFF7F)) { setAddress_N64(romBase + currSector + currSdBuffer + currByte); statusReg = readWord_N64(); } } } } } unsigned long verifyFlashrom_N64() { // Open file on sd card if (myFile.open(filePath, O_READ)) { writeErrors = 0; for (unsigned long currSector = 0; currSector < fileSize; currSector += 131072) { // Blink led blinkLED(); for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) { // Fill SD buffer myFile.read(sdBuffer, 512); for (int currByte = 0; currByte < 512; currByte += 2) { // Join two bytes into one word word currWord = ((sdBuffer[currByte] & 0xFF) << 8) | (sdBuffer[currByte + 1] & 0xFF); // Read flash setAddress_N64(romBase + currSector + currSdBuffer + currByte); // Compare both if (readWord_N64() != currWord) { writeErrors++; // Abord if too many errors if (writeErrors > 20) { print_Msg(F("More than ")); // Close the file: myFile.close(); return writeErrors; } } } } } // Close the file: myFile.close(); return writeErrors; } else { print_STR(open_file_STR, 1); display_Update(); return 9999; } } /****************************************** N64 Gameshark Flash Functions *****************************************/ void flashGameshark_N64() { // Check flashrom ID's idGameshark_N64(); // Check for SST 29LE010 (0808)/SST 28LF040 (0404)/AMTEL AT29LV010A (3535)/SST 29EE010 (0707) // !!!! This has been confirmed to allow reading of v1.07, v1.09, v2.0-2.21, v3.2-3.3 !!!! // !!!! 29LE010/29EE010/AT29LV010A are very similar and can possibly be written to with this process. !!!! // !!!! !!!! // !!!! PROCEED AT YOUR OWN RISK !!!! // !!!! !!!! // !!!! SST 29EE010 may have a 5V requirement for writing however dumping works at 3V. As such it is not !!!! // !!!! advised to write to a cart with this chip until further testing can be completed. !!!! if (flashid == 0x0808 || flashid == 0x0404 || flashid == 0x3535 || flashid == 0x0707) { backupGameshark_N64(); println_Msg(""); println_Msg(F("This will erase your")); println_Msg(F("Gameshark cartridge")); println_Msg(F("Attention: Use 3.3V!")); println_Msg(F("Power OFF if Unsure!")); // Prints string out of the common strings array either with or without newline print_STR(press_button_STR, 1); display_Update(); wait(); // Launch file browser filePath[0] = '\0'; sd.chdir("/"); fileBrowser(F("Select z64 file")); display_Clear(); display_Update(); // Create filepath sprintf(filePath, "%s/%s", filePath, fileName); // Open file on sd card if (myFile.open(filePath, O_READ)) { // Get rom size from file fileSize = myFile.fileSize(); print_Msg(F("File size: ")); print_Msg(fileSize / 1024); println_Msg(F("KB")); display_Update(); // Compare file size to flashrom size if (fileSize > 262144) { print_FatalError(file_too_big_STR); } // SST 29LE010, chip erase not needed as this eeprom automaticly erases during the write cycle eraseGameshark_N64(); // Write flashrom print_Msg(F("Writing ")); println_Msg(filePath); display_Update(); writeGameshark_N64(); // Close the file: myFile.close(); // Verify print_STR(verifying_STR, 0); display_Update(); writeErrors = verifyGameshark_N64(); if (writeErrors == 0) { println_Msg(F("OK")); println_Msg(F("")); println_Msg(F("Turn Cart Reader off now")); display_Update(); while (1) ; } else { print_Msg(writeErrors); print_Msg(F(" bytes ")); print_Error(did_not_verify_STR); } } else { print_Error(F("Can't open file")); } } // If the ID is unknown show error message else { print_Msg(F("ID: ")); println_Msg(flashid_str); print_Error(F("Unknown flashrom")); } // Prints string out of the common strings array either with or without newline print_STR(press_button_STR, 1); display_Update(); wait(); display_Clear(); display_Update(); } //Test for SST 29LE010 or SST 28LF040 (0404) or AMTEL AT29LV010A (3535) or SST 29EE010 (0707) void idGameshark_N64() { //Send flashrom ID command setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xAAAA); setAddress_N64(romBase + 0x5554); writeWord_N64(0x5555); setAddress_N64(romBase + 0xAAAA); writeWord_N64(0x9090); setAddress_N64(romBase); // Read 1 byte vendor ID readWord_N64(); // Read 2 bytes flashrom ID flashid = readWord_N64(); sprintf(flashid_str, "%04X", flashid); // Reset flashrom resetGameshark_N64(); } //Reset ST29LE010 void resetGameshark_N64() { // Send reset Command setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xAAAA); setAddress_N64(romBase + 0x5554); writeWord_N64(0x5555); setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xF0F0); delay(100); } // Read rom and save to the SD card void backupGameshark_N64() { // create a new folder EEPROM_readAnything(0, foldern); sprintf(fileName, "GS%d", foldern); strcat(fileName, ".z64"); sd.mkdir("N64/ROM/Gameshark", true); sd.chdir("N64/ROM/Gameshark"); display_Clear(); print_Msg(F("Saving ")); print_Msg(fileName); println_Msg(F("...")); display_Update(); // write new folder number back to eeprom foldern = foldern + 1; EEPROM_writeAnything(0, foldern); // Open file on sd card if (!myFile.open(fileName, O_RDWR | O_CREAT)) { print_FatalError(sd_error_STR); } for (unsigned long currByte = romBase + 0xC00000; currByte < (romBase + 0xC00000 + 262144); currByte += 512) { // Blink led if (currByte % 16384 == 0) blinkLED(); // Set the address for the next 512 bytes setAddress_N64(currByte); for (int c = 0; c < 512; c += 2) { // split word word myWord = readWord_N64(); byte loByte = myWord & 0xFF; byte hiByte = myWord >> 8; // write to buffer sdBuffer[c] = hiByte; sdBuffer[c + 1] = loByte; } myFile.write(sdBuffer, 512); } // Close the file: myFile.close(); } // Send chip erase to the two SST29LE010 inside the Gameshark void eraseGameshark_N64() { println_Msg(F("Erasing...")); display_Update(); //Sending erase command according to datasheet setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xAAAA); setAddress_N64(romBase + 0x5554); writeWord_N64(0x5555); setAddress_N64(romBase + 0xAAAA); writeWord_N64(0x8080); setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xAAAA); setAddress_N64(romBase + 0x5554); writeWord_N64(0x5555); setAddress_N64(romBase + 0xAAAA); writeWord_N64(0x1010); delay(20); } // Write Gameshark with 2x SST29LE010 Eeproms void writeGameshark_N64() { // Each 29LE010 has 1024 pages, each 128 bytes in size for (unsigned long currPage = 0; currPage < fileSize / 2; currPage += 128) { // Fill SD buffer with twice the amount since we flash 2 chips myFile.read(sdBuffer, 256); // Blink led blinkLED(); //Send page write command to both flashroms setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xAAAA); setAddress_N64(romBase + 0x5554); writeWord_N64(0x5555); setAddress_N64(romBase + 0xAAAA); writeWord_N64(0xA0A0); // Write 1 page each, one flashrom gets the low byte, the other the high byte. for (unsigned long currByte = 0; currByte < 256; currByte += 2) { // Set address setAddress_N64(romBase + 0xC00000 + (currPage * 2) + currByte); // Join two bytes into one word word currWord = ((sdBuffer[currByte] & 0xFF) << 8) | (sdBuffer[currByte + 1] & 0xFF); // Send byte data writeWord_N64(currWord); } delay(30); } } unsigned long verifyGameshark_N64() { // Open file on sd card if (myFile.open(filePath, O_READ)) { writeErrors = 0; for (unsigned long currSector = 0; currSector < fileSize; currSector += 131072) { // Blink led blinkLED(); for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) { // Fill SD buffer myFile.read(sdBuffer, 512); for (int currByte = 0; currByte < 512; currByte += 2) { // Join two bytes into one word word currWord = ((sdBuffer[currByte] & 0xFF) << 8) | (sdBuffer[currByte + 1] & 0xFF); // Read flash setAddress_N64(romBase + 0xC00000 + currSector + currSdBuffer + currByte); // Compare both if (readWord_N64() != currWord) { if ((flashid == 0x0808) && (currSector + currSdBuffer + currByte > 0x3F) && (currSector + currSdBuffer + currByte < 0x1080)) { // Gameshark maps this area to the bootcode of the plugged in cartridge } else { writeErrors++; } } } } } // Close the file: myFile.close(); return writeErrors; } else { print_STR(open_file_STR, 1); display_Update(); return 9999; } } #endif //****************************************** // End of File //******************************************