cartreader/Cart_Reader/N64.ino

4812 lines
144 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//******************************************
// NINTENDO 64 MODULE
//******************************************
#ifdef ENABLE_N64
/******************************************
Defines
*****************************************/
// These two macros toggle the eepDataPin/ControllerDataPin between input and output
// External 1K pull-up resistor from eepDataPin to VCC required
// 0x10 = 00010000 -> Port H Pin 4
#define N64_HIGH DDRH &= ~0x10
#define N64_LOW DDRH |= 0x10
// Read the current state(0/1) of the eepDataPin
#define N64_QUERY (PINH & 0x10)
/******************************************
Variables
*****************************************/
// Received N64 Eeprom data bits, 1 page
int eepPages;
// N64 Controller
struct {
char stick_x;
char stick_y;
} N64_status;
//stings that hold the buttons
String button = "N/A";
String lastbutton = "N/A";
// Rom base address
unsigned long romBase = 0x10000000;
// Flashram type
byte flashramType = 1;
boolean MN63F81MPN = false;
//ControllerTest
bool quit = 1;
#ifdef OPTION_N64_SAVESUMMARY
String CRC1 = "";
String CRC2 = "";
#endif
#if !defined(ENABLE_FLASH)
unsigned long flashSize;
#endif
static const char N64_EEP_FILENAME_FMT[] PROGMEM = "%s.eep";
static const char N64_SAVE_DIRNAME_FMT[] PROGMEM = "N64/SAVE/%s/%d";
/******************************************
Menu
*****************************************/
// N64 start menu
static const char n64MenuItem1[] PROGMEM = "Game Cartridge";
static const char n64MenuItem2[] PROGMEM = "Controller";
static const char n64MenuItem3[] PROGMEM = "Flash Repro";
static const char n64MenuItem4[] PROGMEM = "Flash Gameshark";
static const char n64MenuItem5[] PROGMEM = "Flash Xplorer 64";
static const char* const menuOptionsN64[] PROGMEM = { n64MenuItem1, n64MenuItem2, n64MenuItem3, n64MenuItem4, n64MenuItem5, FSTRING_RESET };
// N64 controller menu items
static const char N64ContMenuItem1[] PROGMEM = "Test Controller";
static const char N64ContMenuItem2[] PROGMEM = "Read ControllerPak";
static const char N64ContMenuItem3[] PROGMEM = "Write ControllerPak";
static const char* const menuOptionsN64Controller[] PROGMEM = { N64ContMenuItem1, N64ContMenuItem2, N64ContMenuItem3, FSTRING_RESET };
// N64 cart menu items
static const char N64CartMenuItem4[] PROGMEM = "Force Savetype";
static const char* const menuOptionsN64Cart[] PROGMEM = { FSTRING_READ_ROM, FSTRING_READ_SAVE, FSTRING_WRITE_SAVE, N64CartMenuItem4, FSTRING_RESET };
// N64 CRC32 error menu items
static const char N64CRCMenuItem1[] PROGMEM = "No";
static const char N64CRCMenuItem2[] PROGMEM = "Yes and keep old";
static const char N64CRCMenuItem3[] PROGMEM = "Yes and delete old";
static const char* const menuOptionsN64CRC[] PROGMEM = { N64CRCMenuItem1, N64CRCMenuItem2, N64CRCMenuItem3, FSTRING_RESET };
// Rom menu
static const char N64RomItem1[] PROGMEM = "4 MB";
static const char N64RomItem2[] PROGMEM = "8 MB";
static const char N64RomItem3[] PROGMEM = "12 MB";
static const char N64RomItem4[] PROGMEM = "16 MB";
static const char N64RomItem5[] PROGMEM = "32 MB";
static const char N64RomItem6[] PROGMEM = "64 MB";
static const char N64RomItem7[] PROGMEM = "128 MB";
static const char* const romOptionsN64[] PROGMEM = { N64RomItem1, N64RomItem2, N64RomItem3, N64RomItem4, N64RomItem5, N64RomItem6, N64RomItem7 };
// Save menu
static const char N64SaveItem1[] PROGMEM = "None";
static const char N64SaveItem2[] PROGMEM = "4K EEPROM";
static const char N64SaveItem3[] PROGMEM = "16K EEPROM";
static const char N64SaveItem4[] PROGMEM = "SRAM";
static const char N64SaveItem5[] PROGMEM = "FLASH";
static const char* const saveOptionsN64[] PROGMEM = { N64SaveItem1, N64SaveItem2, N64SaveItem3, N64SaveItem4, N64SaveItem5 };
// Repro write buffer menu
static const char N64BufferItem1[] PROGMEM = "No buffer";
static const char N64BufferItem2[] PROGMEM = "32 Byte";
static const char N64BufferItem3[] PROGMEM = "64 Byte";
static const char N64BufferItem4[] PROGMEM = "128 Byte";
static const char* const bufferOptionsN64[] PROGMEM = { N64BufferItem1, N64BufferItem2, N64BufferItem3, N64BufferItem4 };
// Repro sector size menu
static const char N64SectorItem1[] PROGMEM = "8 KB";
static const char N64SectorItem2[] PROGMEM = "32 KB";
static const char N64SectorItem3[] PROGMEM = "64 KB";
static const char N64SectorItem4[] PROGMEM = "128 KB";
static const char* const sectorOptionsN64[] PROGMEM = { N64SectorItem1, N64SectorItem2, N64SectorItem3, N64SectorItem4 };
// N64 start menu
void n64Menu() {
// create menu with title and 6 options to choose from
unsigned char n64Dev;
// Copy menuOptions out of progmem
convertPgm(menuOptionsN64, 6);
n64Dev = question_box(F("Select N64 device"), menuOptions, 6, 0);
// wait for user choice to come back from the question box menu
switch (n64Dev) {
case 0:
display_Clear();
display_Update();
setup_N64_Cart();
printCartInfo_N64();
mode = CORE_N64_CART;
break;
case 1:
display_Clear();
display_Update();
setup_N64_Controller();
mode = CORE_N64_CONTROLLER;
break;
case 2:
display_Clear();
display_Update();
setup_N64_Cart();
flashRepro_N64();
printCartInfo_N64();
mode = CORE_N64_CART;
break;
case 3:
display_Clear();
display_Update();
setup_N64_Cart();
flashGameshark_N64();
printCartInfo_N64();
mode = CORE_N64_CART;
break;
case 4:
display_Clear();
display_Update();
setup_N64_Cart();
flashXplorer_N64();
mode = CORE_N64_CART;
print_STR(press_button_STR, 1);
display_Update();
wait();
resetArduino();
break;
case 5:
resetArduino();
break;
}
}
// N64 Controller Menu
void n64ControllerMenu() {
// create menu with title and 4 options to choose from
unsigned char mainMenu;
// Copy menuOptions out of progmem
convertPgm(menuOptionsN64Controller, 4);
mainMenu = question_box(F("N64 Controller"), menuOptions, 4, 0);
// wait for user choice to come back from the question box menu
switch (mainMenu) {
case 0:
resetController();
display_Clear();
display_Update();
#if (defined(ENABLE_OLED) || defined(ENABLE_LCD))
controllerTest_Display();
#elif defined(ENABLE_SERIAL)
controllerTest_Serial();
#endif
quit = 1;
break;
case 1:
resetController();
checkController();
display_Clear();
display_Update();
readMPK();
verifyCRC();
validateMPK();
println_Msg(FS(FSTRING_EMPTY));
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
break;
case 2:
resetController();
checkController();
display_Clear();
display_Update();
// Change to root
filePath[0] = '\0';
sd.chdir("/");
// Launch file browser
fileBrowser(F("Select mpk file"));
display_Clear();
display_Update();
writeMPK();
delay(500);
verifyMPK();
println_Msg(FS(FSTRING_EMPTY));
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
break;
case 3:
resetArduino();
break;
}
}
// N64 Cartridge Menu
void n64CartMenu() {
// create menu with title and 4 options to choose from
unsigned char mainMenu;
// Copy menuOptions out of progmem
convertPgm(menuOptionsN64Cart, 5);
mainMenu = question_box(F("N64 Cart Reader"), menuOptions, 5, 0);
// wait for user choice to come back from the question box menu
switch (mainMenu) {
case 0:
display_Clear();
sd.chdir("/");
#ifndef OPTION_N64_FASTCRC
// Dumping ROM slow
readRom_N64();
sd.chdir("/");
compareCRC("n64.txt", 0, 1, 0);
#else
// Dumping ROM fast
compareCRC("n64.txt", readRom_N64(), 1, 0);
#endif
#ifdef ENABLE_GLOBAL_LOG
save_log();
#endif
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
break;
case 1:
sd.chdir("/");
display_Clear();
if (saveType == 1) {
println_Msg(F("Reading SRAM..."));
display_Update();
readSram(32768, 1);
} else if (saveType == 4) {
getFramType();
println_Msg(F("Reading FLASH..."));
display_Update();
readFram(flashramType);
} else if ((saveType == 5) || (saveType == 6)) {
println_Msg(F("Reading EEPROM..."));
display_Update();
readEeprom();
} else {
print_Error(F("Savetype Error"));
}
println_Msg(FS(FSTRING_EMPTY));
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
break;
case 2:
filePath[0] = '\0';
sd.chdir("/");
if (saveType == 1) {
// Launch file browser
fileBrowser(F("Select sra file"));
display_Clear();
writeSram(32768);
writeErrors = verifySram(32768, 1);
if (writeErrors == 0) {
println_Msg(F("SRAM verified OK"));
display_Update();
} else {
print_STR(error_STR, 0);
print_Msg(writeErrors);
print_STR(_bytes_STR, 1);
print_Error(did_not_verify_STR);
}
} else if (saveType == 4) {
// Launch file browser
fileBrowser(F("Select fla file"));
display_Clear();
getFramType();
writeFram(flashramType);
print_STR(verifying_STR, 0);
display_Update();
writeErrors = verifyFram(flashramType);
if (writeErrors == 0) {
println_Msg(FS(FSTRING_OK));
display_Update();
} else {
println_Msg("");
print_STR(error_STR, 0);
print_Msg(writeErrors);
print_STR(_bytes_STR, 1);
print_Error(did_not_verify_STR);
}
} else if ((saveType == 5) || (saveType == 6)) {
// Launch file browser
fileBrowser(F("Select eep file"));
display_Clear();
writeEeprom();
writeErrors = verifyEeprom();
if (writeErrors == 0) {
println_Msg(F("EEPROM verified OK"));
display_Update();
} else {
print_STR(error_STR, 0);
print_Msg(writeErrors);
print_STR(_bytes_STR, 1);
print_Error(did_not_verify_STR);
}
} else {
display_Clear();
print_Error(F("Save Type Error"));
}
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
break;
case 3:
// create submenu with title and 6 options to choose from
unsigned char N64SaveMenu;
// Copy menuOptions out of progmem
convertPgm(saveOptionsN64, 5);
N64SaveMenu = question_box(F("Select save type"), menuOptions, 5, 0);
// wait for user choice to come back from the question box menu
switch (N64SaveMenu) {
case 0:
// None
saveType = 0;
break;
case 1:
// 4K EEPROM
saveType = 5;
eepPages = 64;
break;
case 2:
// 16K EEPROM
saveType = 6;
eepPages = 256;
break;
case 3:
// SRAM
saveType = 1;
break;
case 4:
// FLASHRAM
saveType = 4;
break;
}
break;
case 4:
resetArduino();
break;
}
}
/******************************************
Setup
*****************************************/
void setup_N64_Controller() {
// Request 3.3V
setVoltage(VOLTS_SET_3V3);
// Output a low signal
PORTH &= ~(1 << 4);
// Set Controller Data Pin(PH4) to Input
DDRH &= ~(1 << 4);
}
void setup_N64_Cart() {
// Request 3.3V
setVoltage(VOLTS_SET_3V3);
// Set Address Pins to Output and set them low
//A0-A7
DDRF = 0xFF;
PORTF = 0x00;
//A8-A15
DDRK = 0xFF;
PORTK = 0x00;
// Set Control Pins to Output RESET(PH0) WR(PH5) RD(PH6) aleL(PC0) aleH(PC1)
DDRH |= (1 << 0) | (1 << 5) | (1 << 6);
DDRC |= (1 << 0) | (1 << 1);
// Pull RESET(PH0) low until we are ready
PORTH &= ~(1 << 0);
// Output a high signal on WR(PH5) RD(PH6), pins are active low therefore everything is disabled now
PORTH |= (1 << 5) | (1 << 6);
// Pull aleL(PC0) low and aleH(PC1) high
PORTC &= ~(1 << 0);
PORTC |= (1 << 1);
#ifdef ENABLE_CLOCKGEN
// Adafruit Clock Generator
initializeClockOffset();
if (!i2c_found) {
display_Clear();
print_FatalError(F("Clock Generator not found"));
}
// Set Eeprom clock to 2Mhz
clockgen.set_freq(200000000ULL, SI5351_CLK1);
// Start outputting Eeprom clock
clockgen.output_enable(SI5351_CLK1, 1); // Eeprom clock
#else
// Set Eeprom Clock Pin(PH1) to Output
DDRH |= (1 << 1);
// Output a high signal
PORTH |= (1 << 1);
#endif
// Set Eeprom Data Pin(PH4) to Input
DDRH &= ~(1 << 4);
// Activate Internal Pullup Resistors
//PORTH |= (1 << 4);
// Set sram base address
sramBase = 0x08000000;
#ifdef ENABLE_CLOCKGEN
// Wait for clock generator
clockgen.update_status();
#endif
// Wait until all is stable
delay(300);
// Pull RESET(PH0) high to start eeprom
PORTH |= (1 << 0);
}
/******************************************
Low level functions
*****************************************/
// Switch Cartridge address/data pins to write
void adOut_N64() {
//A0-A7
DDRF = 0xFF;
PORTF = 0x00;
//A8-A15
DDRK = 0xFF;
PORTK = 0x00;
}
// Switch Cartridge address/data pins to read
void adIn_N64() {
//A0-A7
DDRF = 0x00;
//A8-A15
DDRK = 0x00;
//Enable internal pull-up resistors
//PORTF = 0xFF;
//PORTK = 0xFF;
}
// Set Cartridge address
void setAddress_N64(unsigned long myAddress) {
// Set address pins to output
adOut_N64();
// Split address into two words
word myAdrLowOut = myAddress & 0xFFFF;
word myAdrHighOut = myAddress >> 16;
// Switch WR(PH5) RD(PH6) ale_L(PC0) ale_H(PC1) to high (since the pins are active low)
PORTH |= (1 << 5) | (1 << 6);
PORTC |= (1 << 1);
__asm__("nop\n\t");
PORTC |= (1 << 0);
// Output high part to address pins
PORTF = myAdrHighOut & 0xFF;
PORTK = (myAdrHighOut >> 8) & 0xFF;
// Leave ale_H high for additional 62.5ns
__asm__("nop\n\t");
// Pull ale_H(PC1) low
PORTC &= ~(1 << 1);
// Output low part to address pins
PORTF = myAdrLowOut & 0xFF;
PORTK = (myAdrLowOut >> 8) & 0xFF;
// Leave ale_L high for ~125ns
__asm__("nop\n\t"
"nop\n\t");
// Pull ale_L(PC0) low
PORTC &= ~(1 << 0);
// Wait ~600ns just to be sure address is set
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
// Set data pins to input
adIn_N64();
}
// Read one word out of the cartridge
word readWord_N64() {
// Pull read(PH6) low
PORTH &= ~(1 << 6);
// Wait ~310ns
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
// Join bytes from PINF and PINK into a word
word tempWord = ((PINK & 0xFF) << 8) | (PINF & 0xFF);
// Pull read(PH6) high
PORTH |= (1 << 6);
// Wait 62.5ns
__asm__("nop\n\t");
return tempWord;
}
// Write one word to data pins of the cartridge
void writeWord_N64(word myWord) {
// Set address pins to output
adOut_N64();
// Output word to AD0-AD15
PORTF = myWord & 0xFF;
PORTK = (myWord >> 8) & 0xFF;
// Wait ~62.5ns
__asm__("nop\n\t");
// Pull write(PH5) low
PORTH &= ~(1 << 5);
// Wait ~310ns
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
// Pull write(PH5) high
PORTH |= (1 << 5);
// Wait ~125ns
__asm__("nop\n\t"
"nop\n\t");
// Set data pins to input
adIn_N64();
}
/******************************************
N64 Controller CRC Functions
*****************************************/
static word addrCRC(word address) {
const char n64_address_crc_table[] = { 0x15, 0x1F, 0x0B, 0x16, 0x19, 0x07, 0x0E, 0x1C, 0x0D, 0x1A, 0x01 };
const char* cur_xor = n64_address_crc_table;
byte crc = 0;
for (word mask = 0x0020; mask; mask <<= 1, cur_xor++) {
if (address & mask) {
crc ^= *cur_xor;
}
}
return (address & 0xFFE0) | crc;
}
static uint8_t dataCRC(uint8_t* data) {
uint8_t ret = 0;
for (uint8_t i = 0; i <= 32; i++) {
for (uint8_t mask = 0x80; mask; mask >>= 1) {
uint8_t tmp = ret & 0x80 ? 0x85 : 0;
ret <<= 1;
if (i < 32) {
if (data[i] & mask) {
ret |= 0x1;
}
}
ret ^= tmp;
}
}
return ret;
}
// Macro producing a delay loop waiting an number of cycles multiple of 3, with
// a range of 3 to 768 cycles (187.5ns to 48us). It takes 6 bytes to do so
// (3 instructions) making it the same size as the equivalent 3-cycles NOP
// delay. For shorter delays or non-multiple-of-3-cycle delays, add your own
// NOPs.
#define N64_DELAY_LOOP(cycle_count) \
do { \
byte i; \
__asm__ __volatile__("\n" \
"\tldi %[i], %[loop_count]\n" \
".delay_loop_%=:\n" \
"\tdec %[i]\n" \
"\tbrne .delay_loop_%=\n" \
: [i] "=r"(i) \
: [loop_count] "i"(cycle_count / 3) \
: "cc"); \
} while (0)
/******************************************
N64 Controller Protocol Functions
*****************************************/
void sendJoyBus(const byte* buffer, char length) {
// Implemented in assembly as there is very little wiggle room, timing-wise.
// Overall structure:
// outer_loop:
// mask = 0x80
// cur_byte = *(buffer++)
// inner_loop:
// falling edge
// if (cur_byte & mask) {
// wait 1us starting at the falling edge
// rising edge
// wait 2us starting at the rising edge
// } else {
// wait 3us starting at the falling edge
// rising edge
// }
// inner_common_codepath:
// mask >>= 1
// if (mask == 0)
// goto outer_loop_trailer
// wait +1us from the rising edge
// goto inner_loop
// outer_loop_trailer:
// length -= 1
// if (length == 0)
// goto stop_bit
// wait +1us from the rising edge
// goto outer_loop
// stop_bit:
// wait +1us from the rising edge
// falling edge
// wait 1us from the falling edge
// rising edge
byte mask, cur_byte, scratch;
// Note on DDRH: retrieve the current DDRH value, and pre-compute the values
// to write in order to drive the line high or low. This saves 3 cycles per
// transition: sts (2 cycles) instead of lds, or/and, sts (2 + 1 + 2 cycles).
// This means that no other code may run in parallel, but this function anyway
// requires interrupts to be disabled in order to work in the expected amount
// of time.
const byte line_low = DDRH | 0x10;
const byte line_high = line_low & 0xef;
__asm__ __volatile__("\n"
".outer_loop_%=:\n"
// mask = 0x80
"\tldi %[mask], 0x80\n" // 1
// load byte to send from memory
"\tld %[cur_byte], Z+\n" // 2
".inner_loop_%=:\n"
// Falling edge
"\tsts %[out_byte], %[line_low]\n" // 2
// Test cur_byte & mask, without clobbering either
"\tmov %[scratch], %[cur_byte]\n" // 1
"\tand %[scratch], %[mask]\n" // 1
"\tbreq .bit_is_0_%=\n" // bit is 1: 1, bit is 0: 2
// bit is a 1
// Stay low for 1us (16 cycles).
// Time before: 3 cycles (mov, and, breq-false).
// Time after: sts (2 cycles).
// So 11 to go, so 3 3-cycles iterations and 2 nop.
"\tldi %[scratch], 3\n" // 1
".delay_1_low_%=:\n"
"\tdec %[scratch]\n" // 1
"\tbrne .delay_1_low_%=\n" // exit: 1, loop: 2
"\tnop\n" // 1
"\tnop\n" // 1
// Rising edge
"\tsts %[out_byte], %[line_high]\n" // 2
// Wait for 2us (32 cycles) to sync with the bot_is_0 codepath.
// Time before: 0 cycles.
// Time after: 2 cycles (rjmp).
// So 30 to go, so 10 3-cycles iterations and 0 nop.
"\tldi %[scratch], 10\n" // 1
".delay_1_high_%=:\n"
"\tdec %[scratch]\n" // 1
"\tbrne .delay_1_high_%=\n" // exit: 1, loop: 2
"\trjmp .inner_common_path_%=\n" // 2
".bit_is_0_%=:\n"
// bit is a 0
// Stay high for 3us (48 cycles).
// Time before: 4 cycles (mov, and, breq-true).
// Time after: 2 cycles (sts).
// So 42 to go, so 14 3-cycles iterations, and 0 nop.
"\tldi %[scratch], 14\n" // 1
".delay_0_low_%=:\n"
"\tdec %[scratch]\n" // 1
"\tbrne .delay_0_low_%=\n" // exit: 1, loop: 2
// Rising edge
"\tsts %[out_byte], %[line_high]\n" // 2
// codepath common to both possible values
".inner_common_path_%=:\n"
"\tnop\n" // 1
"\tlsr %[mask]\n" // 1
"\tbreq .outer_loop_trailer_%=\n" // mask!=0: 1, mask==0: 2
// Stay high for 1us (16 cycles).
// Time before: 3 cycles (nop, lsr, breq-false).
// Time after: 4 cycles (rjmp, sts)
// So 9 to go, so 3 3-cycles iterations and 0 nop.
"\tldi %[scratch], 3\n" // 1
".delay_common_high_%=:\n"
"\tdec %[scratch]\n" // 1
"\tbrne .delay_common_high_%=\n" // exit: 1, loop: 2
"\trjmp .inner_loop_%=\n" // 2
".outer_loop_trailer_%=:\n"
"\tdec %[length]\n" // 1
"\tbreq .stop_bit_%=\n" // length!=0: 1, length==0: 2
// Stay high for 1us (16 cycles).
// Time before: 6 cycles (lsr, nop, breq-true, dec, breq-false).
// Time after: 7 cycles (rjmp, ldi, ld, sts).
// So 3 to go, so 3 nop (for simplicity).
"\tnop\n" // 1
"\tnop\n" // 1
"\tnop\n" // 1
"\trjmp .outer_loop_%=\n" // 2
// Done sending data, send a stop bit.
".stop_bit_%=:\n"
// Stay high for 1us (16 cycles).
// Time before: 7 cycles (lsr, nop, breq-true, dec, breq-true).
// Time after: 2 cycles (sts).
// So 7 to go, so 2 3-cycles iterations and 1 nop.
"\tldi %[scratch], 2\n" // 1
".delay_stop_high_%=:\n"
"\tdec %[scratch]\n" // 1
"\tbrne .delay_stop_high_%=\n" // exit: 1, loop: 2
"\tnop\n"
"\tsts %[out_byte], %[line_low]\n" // 2
// Stay low for 1us (16 cycles).
// Time before: 0 cycles.
// Time after: 2 cycles (sts).
// So 14 to go, so 4 3-cycles iterations and 2 nop.
"\tldi %[scratch], 5\n" // 1
".delay_stop_low_%=:\n"
"\tdec %[scratch]\n" // 1
"\tbrne .delay_stop_low_%=\n" // exit: 1, loop: 2
"\tnop\n"
"\tnop\n"
"\tsts %[out_byte], %[line_high]\n" // 2
// Notes on arguments:
// - mask and scratch are used wth "ldi", which can only work on registers
// 16 to 31, so tag these with "a" rather than the generic "r"
// - mark all output-only arguments as early-clobber ("&"), as input
// registers are used throughout all iterations and both sets must be
// strictly distinct
// - tag buffer with "z", to use the "ld r?, Z+" instruction (load from
// 16bits RAM address and postincrement, in 2 cycles).
// XXX: any pointer register pair would do, but mapping to Z explicitly
// because I cannot find a way to get one of "X", "Y" or "Z" to appear
// when expanding "%[buffer]", causing the assembler to reject the
// instruction. Pick Z as it is the only call-used such register,
// avoiding the need to preserve any value a caller may have set it to.
: [buffer] "+z"(buffer),
[length] "+r"(length),
[cur_byte] "=&r"(cur_byte),
[mask] "=&a"(mask),
[scratch] "=&a"(scratch)
: [line_low] "r"(line_low),
[line_high] "r"(line_high),
[out_byte] "i"(&DDRH)
: "cc", "memory");
}
word recvJoyBus(byte* output, byte byte_count) {
// listen for expected byte_count bytes of data back from the controller
// return the number of bytes not (fully) received if the delay for a signal
// edge takes too long.
// Implemented in assembly as there is very little wiggle room, timing-wise.
// Overall structure:
// mask = 0x80
// cur_byte = 0
// read_loop:
// wait for falling edge
// wait for a bit more than 1us
// if input:
// cur_byte |= mask
// mask >>= 1
// if (mask == 0)
// if (--byte_count == 0)
// goto read_end
// append cur_byte to output
// mask = 0x80
// cur_byte = 0
// wait for data high
// goto read_loop
// read_end:
// return byte_count
byte mask, cur_byte, timeout, scratch;
__asm__ __volatile__("\n"
"\tldi %[mask], 0x80\n"
"\tclr %[cur_byte]\n"
".read_loop_%=:\n"
// Wait for input to be low. Time out if it takes more than ~27us (~7 bits
// worth of time) for it to go low.
// Takes 5 cycles to exit on input-low iteration (lds, sbrs-false, rjmp).
// Takes 7 cycles to loop on input-high iteration (lds, sbrs-true, dec,
// brne-true).
"\tldi %[timeout], 0x3f\n" // 1
".read_wait_falling_edge_%=:\n"
"\tlds %[scratch], %[in_byte]\n" // 2
"\tsbrs %[scratch], %[in_bit]\n" // low: 1, high: 2
"\trjmp .read_input_low_%=\n" // 2
"\tdec %[timeout]\n" // 1
"\tbrne .read_wait_falling_edge_%=\n" // timeout==0: 1, timeout!=0: 2
"\trjmp .read_end_%=\n" // 2
".read_input_low_%=:\n"
// Wait for 1500 us (24 cycles) before reading input.
// As it takes from 5 to 7 cycles for the prevous loop to exit,
// this means this loop exits from 1812.5us to 1937.5us after the falling
// edge, so at least 812.5us after a 1-bit rising edge, and at least
// 1062.5us before a 0-bit rising edge.
// This also leaves us with up to 2062.5us (33 cycles) to update cur_byte,
// possibly moving on to the next byte, waiting for a high input, and
// waiting for the next falling edge.
// Time taken until waiting for input high for non-last byte:
// - shift to current byte:
// - 1: 4 cycles (lds, sbrc-false, or)
// - 0: 4 cycles (lds, sbrc-true)
// - byte done: 8 cycles (lsr, brne-false, st, dec, brne-false, ldi, clr)
// - byte not done: 3 cycles (lsr, brne-true)
// Total: 7 to 12 cycles, so there are at least 21 cycles left until the
// next bit.
"\tldi %[timeout], 8\n" // 1
".read_wait_low_%=:\n"
"\tdec %[timeout]\n" // 1
"\tbrne .read_wait_low_%=\n" // timeout=0: 1, timeout!=0: 2
// Sample input
"\tlds %[scratch], %[in_byte]\n" // 2
// Add to cur_byte
"\tsbrc %[scratch], %[in_bit]\n" // high: 1, low: 2
"\tor %[cur_byte], %[mask]\n" // 1
// Shift mask
"\tlsr %[mask]\n"
"\tbrne .read_wait_input_high_init_%=\n" // mask==0: 1, mask!=0: 2
// A wole byte was read, store in output
"\tst Z+, %[cur_byte]\n" // 2
// Decrement byte count
"\tdec %[byte_count]\n" // 1
// Are we done reading ?
"\tbreq .read_end_%=\n" // byte_count!=0: 1, byte_count==0: 2
// No, prepare for reading another
"\tldi %[mask], 0x80\n"
"\tclr %[cur_byte]\n"
// Wait for rising edge
".read_wait_input_high_init_%=:"
"\tldi %[timeout], 0x3f\n" // 1
".read_wait_input_high_%=:\n"
"\tlds %[scratch], %[in_byte]\n" // 2
"\tsbrc %[scratch], %[in_bit]\n" // high: 1, low: 2
"\trjmp .read_loop_%=\n" // 2
"\tdec %[timeout]\n" // 1
"\tbrne .read_wait_input_high_%=\n" // timeout==0: 1, timeout!=0: 2
"\trjmp .read_end_%=\n" // 2
".read_end_%=:\n"
: [output] "+z"(output),
[byte_count] "+r"(byte_count),
[mask] "=&a"(mask),
[cur_byte] "=&r"(cur_byte),
[timeout] "=&a"(timeout),
[scratch] "=&a"(scratch)
: [in_byte] "i"(&PINH),
[in_bit] "i"(4)
: "cc", "memory");
return byte_count;
}
/******************************************
N64 Controller Functions
*****************************************/
void get_button() {
// Command to send to the gamecube
// The last bit is rumble, flip it to rumble
const byte command[] = { 0x01 };
byte response[4];
// don't want interrupts getting in the way
noInterrupts();
sendJoyBus(command, sizeof(command));
recvJoyBus(response, sizeof(response));
// end of time sensitive code
interrupts();
// These are 8 bit values centered at 0x80 (128)
N64_status.stick_x = response[2];
N64_status.stick_y = response[3];
// Buttons (A,B,Z,S,DU,DD,DL,DR,0,0,L,R,CU,CD,CL,CR)
if (response[0] & 0x80)
button = F("A");
else if (response[0] & 0x40)
button = F("B");
else if (response[0] & 0x20)
button = F("Z");
else if (response[0] & 0x10)
button = F("START");
else if (response[0] & 0x08)
button = F("D-Up");
else if (response[0] & 0x04)
button = F("D-Down");
else if (response[0] & 0x02)
button = F("D-Left");
else if (response[0] & 0x01)
button = F("D-Right");
//else if (response[1] & 0x80)
//else if (response[1] & 0x40)
else if (response[1] & 0x20)
button = F("L");
else if (response[1] & 0x10)
button = F("R");
else if (response[1] & 0x08)
button = F("C-Up");
else if (response[1] & 0x04)
button = F("C-Down");
else if (response[1] & 0x02)
button = F("C-Left");
else if (response[1] & 0x01)
button = F("C-Right");
else {
lastbutton = button;
button = F("Press a button");
}
}
/******************************************
N64 Controller Test
*****************************************/
#ifdef ENABLE_SERIAL
void controllerTest_Serial() {
while (quit) {
// Get Button and analog stick
get_button();
// Print Button
String buttonc = String("Button: " + String(button) + " ");
Serial.print(buttonc);
// Print Stick X Value
String stickx = String("X: " + String(N64_status.stick_x, DEC) + " ");
Serial.print(stickx);
// Print Stick Y Value
String sticky = String(" Y: " + String(N64_status.stick_y, DEC) + " ");
Serial.println(sticky);
if (button == "Press a button" && lastbutton == "Z") {
// Quit
Serial.println("");
quit = 0;
}
}
}
#endif
#if (defined(ENABLE_LCD) || defined(ENABLE_OLED))
#define CENTER 64
// on which screens do we start
int startscreen = 1;
int test = 1;
void printSTR(String st, int x, int y) {
char buf[st.length() + 1];
if (x == CENTER) {
x = 64 - (((st.length() - 5) / 2) * 4);
}
st.toCharArray(buf, st.length() + 1);
display.drawStr(x, y, buf);
}
void nextscreen() {
if (button == "Press a button" && lastbutton == "START") {
// reset button
lastbutton = "N/A";
display.clearDisplay();
if (startscreen != 4)
startscreen = startscreen + 1;
else {
startscreen = 1;
test = 1;
}
} else if (button == "Press a button" && lastbutton == "Z" && startscreen == 4) {
// Quit
quit = 0;
}
}
void controllerTest_Display() {
boolean cmode = 1;
//name of the current displayed result
String anastick = "";
// Graph
int xax = 24; // midpoint x
int yax = 24; // midpoint y
// variables to display test data of different sticks
int upx = 0;
int upy = 0;
int uprightx = 0;
int uprighty = 0;
int rightx = 0;
int righty = 0;
int downrightx = 0;
int downrighty = 0;
int downx = 0;
int downy = 0;
int downleftx = 0;
int downlefty = 0;
int leftx = 0;
int lefty = 0;
int upleftx = 0;
int uplefty = 0;
// variables to save test data
int bupx = 0;
int bupy = 0;
int buprightx = 0;
int buprighty = 0;
int brightx = 0;
int brighty = 0;
int bdownrightx = 0;
int bdownrighty = 0;
int bdownx = 0;
int bdowny = 0;
int bdownleftx = 0;
int bdownlefty = 0;
int bleftx = 0;
int blefty = 0;
int bupleftx = 0;
int buplefty = 0;
int results = 0;
int prevStickX = 0;
String stickx;
String sticky;
String stickx_old;
String sticky_old;
String button_old;
while (quit) {
// Get Button and analog stick
get_button();
switch (startscreen) {
case 1:
{
display.drawStr(32, 8, "Controller Test");
display.drawLine(0, 10, 128, 10);
// Delete old button value
if (button_old != button) {
display.setDrawColor(0);
for (byte y = 13; y < 22; y++) {
display.drawLine(0, y, 128, y);
}
display.setDrawColor(1);
}
// Print button
printSTR(" " + button + " ", CENTER, 20);
// Save value
button_old = button;
// Update stick values
stickx = String("X: " + String(N64_status.stick_x, DEC) + " ");
sticky = String("Y: " + String(N64_status.stick_y, DEC) + " ");
// Delete old stick values
if ((stickx_old != stickx) || (sticky_old != sticky)) {
display.setDrawColor(0);
for (byte y = 31; y < 38; y++) {
display.drawLine(0, y, 128, y);
}
display.setDrawColor(1);
}
// Print stick values
printSTR(stickx, 36, 38);
printSTR(sticky, 74, 38);
// Save values
stickx_old = stickx;
sticky_old = sticky;
printSTR("(Continue with START)", 16, 55);
//Update LCD
display.updateDisplay();
// go to next screen
nextscreen();
break;
}
case 2:
{
display.drawStr(36, 8, "Range Test");
display.drawLine(0, 9, 128, 9);
if (cmode == 0) {
// Print Stick X Value
String stickx = String("X:" + String(N64_status.stick_x, DEC) + " ");
printSTR(stickx, 22 + 54, 26);
// Print Stick Y Value
String sticky = String("Y:" + String(N64_status.stick_y, DEC) + " ");
printSTR(sticky, 22 + 54, 36);
}
// Draw Axis
display.drawPixel(10 + xax, 12 + yax);
display.drawPixel(10 + xax, 12 + yax - 80 / 4);
display.drawPixel(10 + xax, 12 + yax + 80 / 4);
display.drawPixel(10 + xax + 80 / 4, 12 + yax);
display.drawPixel(10 + xax - 80 / 4, 12 + yax);
// Draw corners
display.drawPixel(10 + xax - 68 / 4, 12 + yax - 68 / 4);
display.drawPixel(10 + xax + 68 / 4, 12 + yax + 68 / 4);
display.drawPixel(10 + xax + 68 / 4, 12 + yax - 68 / 4);
display.drawPixel(10 + xax - 68 / 4, 12 + yax + 68 / 4);
//Draw Analog Stick
if (cmode == 1) {
display.drawPixel(10 + xax + N64_status.stick_x / 4, 12 + yax - N64_status.stick_y / 4);
//Update LCD
display.updateDisplay();
} else {
display.drawCircle(10 + xax + N64_status.stick_x / 4, 12 + yax - N64_status.stick_y / 4, 2);
//Update LCD
display.updateDisplay();
display_Clear_Slow();
}
// switch mode
if (button == "Press a button" && lastbutton == "Z") {
if (cmode == 0) {
cmode = 1;
display.clearDisplay();
} else {
cmode = 0;
display.clearDisplay();
}
}
// go to next screen
nextscreen();
break;
}
case 3:
{
display.setDrawColor(0);
display.drawPixel(22 + prevStickX, 40);
display.setDrawColor(1);
printSTR("Skipping Test", 34, 8);
display.drawLine(0, 9, 128, 9);
display.drawFrame(22 + 0, 15, 22 + 59, 21);
if (N64_status.stick_x > 0) {
display.drawLine(22 + N64_status.stick_x, 15, 22 + N64_status.stick_x, 35);
display.drawPixel(22 + N64_status.stick_x, 40);
prevStickX = N64_status.stick_x;
}
printSTR("Try to fill the box by", 22, 45);
printSTR("slowly moving right", 22, 55);
//Update LCD
display.updateDisplay();
if (button == "Press a button" && lastbutton == "Z") {
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
// go to next screen
nextscreen();
break;
}
case 4:
{
switch (test) {
case 0: // Display results
{
switch (results) {
case 0:
{
anastick = "Your Stick";
upx = bupx;
upy = bupy;
uprightx = buprightx;
uprighty = buprighty;
rightx = brightx;
righty = brighty;
downrightx = bdownrightx;
downrighty = bdownrighty;
downx = bdownx;
downy = bdowny;
downleftx = bdownleftx;
downlefty = bdownlefty;
leftx = bleftx;
lefty = blefty;
upleftx = bupleftx;
uplefty = buplefty;
if (button == "Press a button" && lastbutton == "A") {
// reset button
lastbutton = "N/A";
results = 1;
display.clearDisplay();
break;
}
printSTR(anastick, 22 + 50, 15);
display.drawStr(22 + 50, 25, "U:");
printSTR(String(upy), 100, 25);
display.drawStr(22 + 50, 35, "D:");
printSTR(String(downy), 100, 35);
display.drawStr(22 + 50, 45, "L:");
printSTR(String(leftx), 100, 45);
display.drawStr(22 + 50, 55, "R:");
printSTR(String(rightx), 100, 55);
display.drawLine(xax + upx / 4, yax - upy / 4, xax + uprightx / 4, yax - uprighty / 4);
display.drawLine(xax + uprightx / 4, yax - uprighty / 4, xax + rightx / 4, yax - righty / 4);
display.drawLine(xax + rightx / 4, yax - righty / 4, xax + downrightx / 4, yax - downrighty / 4);
display.drawLine(xax + downrightx / 4, yax - downrighty / 4, xax + downx / 4, yax - downy / 4);
display.drawLine(xax + downx / 4, yax - downy / 4, xax + downleftx / 4, yax - downlefty / 4);
display.drawLine(xax + downleftx / 4, yax - downlefty / 4, xax + leftx / 4, yax - lefty / 4);
display.drawLine(xax + leftx / 4, yax - lefty / 4, xax + upleftx / 4, yax - uplefty / 4);
display.drawLine(xax + upleftx / 4, yax - uplefty / 4, xax + upx / 4, yax - upy / 4);
display.drawPixel(xax, yax);
//Update LCD
display.updateDisplay();
break;
}
case 1:
{
anastick = "Original";
upx = 1;
upy = 84;
uprightx = 67;
uprighty = 68;
rightx = 83;
righty = -2;
downrightx = 67;
downrighty = -69;
downx = 3;
downy = -85;
downleftx = -69;
downlefty = -70;
leftx = -85;
lefty = 0;
upleftx = -68;
uplefty = 68;
if (button == "Press a button" && lastbutton == "A") {
// reset button
lastbutton = "N/A";
results = 0;
display.clearDisplay();
break;
}
printSTR(anastick, 22 + 50, 15);
display.drawStr(22 + 50, 25, "U:");
printSTR(String(upy), 100, 25);
display.drawStr(22 + 50, 35, "D:");
printSTR(String(downy), 100, 35);
display.drawStr(22 + 50, 45, "L:");
printSTR(String(leftx), 100, 45);
display.drawStr(22 + 50, 55, "R:");
printSTR(String(rightx), 100, 55);
display.drawLine(xax + upx / 4, yax - upy / 4, xax + uprightx / 4, yax - uprighty / 4);
display.drawLine(xax + uprightx / 4, yax - uprighty / 4, xax + rightx / 4, yax - righty / 4);
display.drawLine(xax + rightx / 4, yax - righty / 4, xax + downrightx / 4, yax - downrighty / 4);
display.drawLine(xax + downrightx / 4, yax - downrighty / 4, xax + downx / 4, yax - downy / 4);
display.drawLine(xax + downx / 4, yax - downy / 4, xax + downleftx / 4, yax - downlefty / 4);
display.drawLine(xax + downleftx / 4, yax - downlefty / 4, xax + leftx / 4, yax - lefty / 4);
display.drawLine(xax + leftx / 4, yax - lefty / 4, xax + upleftx / 4, yax - uplefty / 4);
display.drawLine(xax + upleftx / 4, yax - uplefty / 4, xax + upx / 4, yax - upy / 4);
display.drawPixel(xax, yax);
//Update LCD
display.updateDisplay();
break;
}
} //results
break;
} //display results
case 1: // +y Up
{
display.drawStr(34, 26, "Hold Stick Up");
display.drawStr(34, 34, "then press A");
//display.drawBitmap(110, 60, ana1);
if (button == "Press a button" && lastbutton == "A") {
bupx = N64_status.stick_x;
bupy = N64_status.stick_y;
// reset button
lastbutton = "N/A";
display.clearDisplay();
test = 2;
}
break;
}
case 2: // +y+x Up-Right
{
display.drawStr(42, 26, "Up-Right");
//display.drawBitmap(110, 60, ana2);
if (button == "Press a button" && lastbutton == "A") {
buprightx = N64_status.stick_x;
buprighty = N64_status.stick_y;
test = 3;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 3: // +x Right
{
display.drawStr(50, 26, "Right");
//display.drawBitmap(110, 60, ana3);
if (button == "Press a button" && lastbutton == "A") {
brightx = N64_status.stick_x;
brighty = N64_status.stick_y;
test = 4;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 4: // -y+x Down-Right
{
display.drawStr(38, 26, "Down-Right");
//display.drawBitmap(110, 60, ana4);
if (button == "Press a button" && lastbutton == "A") {
bdownrightx = N64_status.stick_x;
bdownrighty = N64_status.stick_y;
test = 5;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 5: // -y Down
{
display.drawStr(49, 26, "Down");
//display.drawBitmap(110, 60, ana5);
if (button == "Press a button" && lastbutton == "A") {
bdownx = N64_status.stick_x;
bdowny = N64_status.stick_y;
test = 6;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 6: // -y-x Down-Left
{
display.drawStr(39, 26, "Down-Left");
//display.drawBitmap(110, 60, ana6);
if (button == "Press a button" && lastbutton == "A") {
bdownleftx = N64_status.stick_x;
bdownlefty = N64_status.stick_y;
test = 7;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 7: // -x Left
{
display.drawStr(51, 26, "Left");
//display.drawBitmap(110, 60, ana7);
if (button == "Press a button" && lastbutton == "A") {
bleftx = N64_status.stick_x;
blefty = N64_status.stick_y;
test = 8;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
case 8: // +y+x Up-Left
{
display.drawStr(43, 26, "Up-Left");
//display.drawBitmap(110, 60, ana8);
if (button == "Press a button" && lastbutton == "A") {
bupleftx = N64_status.stick_x;
buplefty = N64_status.stick_y;
test = 0;
// reset button
lastbutton = "N/A";
display.clearDisplay();
}
break;
}
}
if (test != 0) {
display.drawStr(38, 8, "Benchmark");
display.drawLine(0, 9, 128, 9);
}
display.updateDisplay();
// go to next screen
nextscreen();
break;
}
}
}
}
#endif
/******************************************
N64 Controller Pak Functions
(connected via Controller)
*****************************************/
// Reset the controller
void resetController() {
const byte command[] = { 0xFF };
noInterrupts();
sendJoyBus(command, sizeof(command));
interrupts();
delay(100);
}
// read 3 bytes from controller
void checkController() {
byte response[8];
const byte command[] = { 0x00 };
display_Clear();
// Check if line is HIGH
if (!N64_QUERY)
print_FatalError(F("Data line LOW"));
// don't want interrupts getting in the way
noInterrupts();
sendJoyBus(command, sizeof(command));
recvJoyBus(response, sizeof(response));
// end of time sensitive code
interrupts();
if (response[0] != 0x05)
print_FatalError(F("Controller not found"));
if (response[2] != 0x01)
print_FatalError(F("Controller Pak not found"));
}
// read 32bytes from controller pak and calculate CRC
byte readBlock(byte* output, word myAddress) {
byte response_crc;
// Calculate the address CRC
word myAddressCRC = addrCRC(myAddress);
const byte command[] = { 0x02, (byte)(myAddressCRC >> 8), (byte)(myAddressCRC & 0xff) };
word error;
// don't want interrupts getting in the way
noInterrupts();
sendJoyBus(command, sizeof(command));
error = recvJoyBus(output, 32);
if (error == 0)
error = recvJoyBus(&response_crc, 1);
// end of time sensitive code
interrupts();
if (error) {
myFile.close();
println_Msg(F("Controller Pak was"));
println_Msg(F("not dumped due to a"));
print_FatalError(F("read timeout"));
}
// Compare with computed CRC
if (response_crc != dataCRC(output)) {
display_Clear();
// Close the file:
myFile.close();
println_Msg(F("Controller Pak was"));
println_Msg(F("not dumped due to a"));
print_FatalError(F("protocol CRC error"));
}
return response_crc;
}
// reads the MPK file to the sd card
void readMPK() {
// Change to root
sd.chdir("/");
// Make MPK directory
sd.mkdir("N64/MPK", true);
// Change to MPK directory
sd.chdir("N64/MPK");
// Get name, add extension and convert to char array for sd lib
EEPROM_readAnything(0, foldern);
sprintf(fileName, "%d", foldern);
strcat(fileName, ".mpk");
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
//open crc file on sd card
sprintf(filePath, "%d", foldern - 1);
strcat(filePath, ".crc");
FsFile crcFile;
if (!crcFile.open(filePath, O_RDWR | O_CREAT)) {
print_FatalError(open_file_STR);
}
//open mpk file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_FatalError(open_file_STR);
}
print_Msg(F("Saving N64/MPK/"));
println_Msg(fileName);
display_Update();
// Dummy write because first write to file takes 1 second and messes up timing
blinkLED();
myFile.write(0xFF);
myFile.rewind();
blinkLED();
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(0x7FFF);
draw_progressbar(0, totalProgressBar);
// Controller paks, which all have 32kB of space, are mapped between 0x0000 0x7FFF
for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += 512) {
// Read 32 byte block into sdBuffer
for (word currBlock = 0; currBlock < sizeof(sdBuffer); currBlock += 32) {
// Read one block of the Controller Pak into array myBlock and write CRC of that block to crc file
crcFile.write(readBlock(&sdBuffer[currBlock], currSdBuffer + currBlock));
// Real N64 has about 627us pause between banks, add a bit extra delay
if (currBlock < 479)
delayMicroseconds(800);
}
// This will take 1300us
blinkLED();
myFile.write(sdBuffer, sizeof(sdBuffer));
// Blink led
blinkLED();
// Update progress bar
processedProgressBar += 512;
draw_progressbar(processedProgressBar, totalProgressBar);
}
// Close the file:
myFile.close();
crcFile.close();
}
// verifies if read was successful
void verifyCRC() {
writeErrors = 0;
print_STR(verifying_STR, 1);
display_Update();
//open CRC file on sd card
FsFile crcFile;
if (!crcFile.open(filePath, O_READ)) {
print_FatalError(open_file_STR);
}
//open MPK file on sd card
if (!myFile.open(fileName, O_READ)) {
print_FatalError(open_file_STR);
}
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(0x7FFF);
draw_progressbar(0, totalProgressBar);
// Controller paks, which all have 32kB of space, are mapped between 0x0000 0x7FFF
for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += 512) {
// Read 32 bytes into SD buffer
myFile.read(sdBuffer, 512);
// Compare 32 byte block CRC to CRC from file
for (word currBlock = 0; currBlock < 512; currBlock += 32) {
// Calculate CRC of block and compare against crc file
if (dataCRC(&sdBuffer[currBlock]) != crcFile.read())
writeErrors++;
}
// Blink led
blinkLED();
// Update progress bar
processedProgressBar += 512;
draw_progressbar(processedProgressBar, totalProgressBar);
}
// Close the file:
myFile.close();
crcFile.close();
if (writeErrors == 0) {
println_Msg(F("Saved successfully"));
sd.remove(filePath);
display_Update();
} else {
print_STR(error_STR, 0);
print_Msg(writeErrors);
println_Msg(F(" blocks "));
print_Error(did_not_verify_STR);
}
}
// Calculates the checksum of the header
boolean checkHeader(byte* buf) {
word sum = 0;
word buf_sum = (buf[28] << 8) + buf[29];
// first 28 bytes are the header, then comes the checksum(word) followed by the reverse checksum(0xFFF2 - checksum)
for (byte i = 0; i < 28; i += 2) {
sum += (buf[i] << 8) + buf[i + 1];
}
return sum == buf_sum;
}
// verifies if Controller Pak holds valid header data
void validateMPK() {
byte writeErrors = 0;
boolean failed = false;
SdFile mpk_file;
byte buf[256];
//open file on sd card
if (!mpk_file.open(fileName, O_READ)) {
print_FatalError(open_file_STR);
}
// Read first 256 byte which contains the header including checksum and reverse checksum and three copies of it
mpk_file.read(buf, sizeof(buf));
//Check all four header copies
writeErrors = 0;
if (!checkHeader(&buf[0x20]))
writeErrors++;
if (!checkHeader(&buf[0x60]))
writeErrors++;
if (!checkHeader(&buf[0x80]))
writeErrors++;
if (!checkHeader(&buf[0xC0]))
writeErrors++;
if (writeErrors)
failed = true;
print_Msg(F("HDR: "));
print_Msg(4 - writeErrors);
print_Msg(F("/4 - "));
display_Update();
// Check both TOC copies
writeErrors = 0;
// Read 2nd and 3rd 256 byte page with TOC info
for (word currSdBuffer = 0x100; currSdBuffer < 0x300; currSdBuffer += 256) {
byte sum = 0;
// Read 256 bytes into SD buffer
mpk_file.read(buf, sizeof(buf));
// Calculate TOC checksum
for (byte i = 5; i < 128; i++) {
sum += buf[(i << 1) + 1];
}
if (buf[1] != sum)
writeErrors++;
}
if (writeErrors)
failed = true;
print_Msg(F("ToC: "));
print_Msg(2 - writeErrors);
println_Msg(F("/2"));
print_Msg(F("Consistency check "));
if (failed) {
errorLvl = 1;
print_Msg(F("failed"));
} else {
errorLvl = 0;
print_Msg(F("passed"));
}
display_Update();
// Close the file:
mpk_file.close();
}
void writeMPK() {
// 3 command bytes, 32 data bytes
byte command[3 + 32];
command[0] = 0x03;
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
print_Msg(F("Writing "));
print_Msg(filePath);
println_Msg(F("..."));
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
//Initialize progress bar
uint32_t totalProgressBar = 0x7FFF;
draw_progressbar(0, totalProgressBar);
for (word address = 0x0000; address < 0x8000; address += 32) {
myFile.read(command + 3, sizeof(command) - 3);
word address_with_crc = addrCRC(address);
command[1] = (byte)(address_with_crc >> 8);
command[2] = (byte)(address_with_crc & 0xff);
// don't want interrupts getting in the way
noInterrupts();
sendJoyBus(command, sizeof(command));
// Enable interrupts
interrupts();
// Real N64 has about 627us pause between banks, add a bit extra delay
delayMicroseconds(650);
if ((address & 0x1FF) == 0) {
// Blink led
// Update progress bar
blinkLED();
draw_progressbar(address, totalProgressBar);
}
}
// Close the file:
myFile.close();
} else {
print_FatalError(open_file_STR);
}
}
// verifies if write was successful
void verifyMPK() {
byte block[32];
writeErrors = 0;
print_STR(verifying_STR, 1);
display_Update();
//open file on sd card
if (!myFile.open(filePath, O_READ)) {
print_FatalError(open_file_STR);
}
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(0x7FFF);
draw_progressbar(0, totalProgressBar);
// Controller paks, which all have 32kB of space, are mapped between 0x0000 0x7FFF
for (word currSdBuffer = 0x0000; currSdBuffer < 0x8000; currSdBuffer += sizeof(sdBuffer)) {
// Read 512 bytes into SD buffer
myFile.read(sdBuffer, sizeof(sdBuffer));
// Compare 32 byte block
for (word currBlock = 0; currBlock < sizeof(sdBuffer); currBlock += 32) {
// Read one block of the Controller Pak
readBlock(block, currSdBuffer + currBlock);
// Check against file on SD card
for (byte currByte = 0; currByte < 32; currByte++) {
if (sdBuffer[currBlock + currByte] != block[currByte]) {
writeErrors++;
}
}
// Real N64 has about 627us pause between banks, add a bit extra delay
if (currBlock < 479)
delayMicroseconds(1500);
}
// Blink led
blinkLED();
// Update progress bar
processedProgressBar += 512;
draw_progressbar(processedProgressBar, totalProgressBar);
}
// Close the file:
myFile.close();
if (writeErrors == 0) {
println_Msg(F("Written successfully"));
display_Update();
} else {
print_STR(error_STR, 0);
print_Msg(writeErrors);
print_STR(_bytes_STR, 1);
print_Error(did_not_verify_STR);
}
}
/******************************************
N64 Cartridge functions
*****************************************/
void printCartInfo_N64() {
// Check cart
getCartInfo_N64();
// Print start page
if (cartSize != 0) {
display_Clear();
print_Msg(F("Title: "));
println_Msg(romName);
print_Msg(F("Serial: "));
println_Msg(cartID);
print_Msg(F("Revision: "));
println_Msg(romVersion);
print_Msg(F("ROM Size: "));
print_Msg(cartSize);
println_Msg(F(" MB"));
print_Msg(F("Save Type: "));
switch (saveType) {
case 1:
println_Msg(F("SRAM"));
break;
case 4:
println_Msg(F("FLASH"));
break;
case 5:
println_Msg(F("4K EEPROM"));
eepPages = 64;
break;
case 6:
println_Msg(F("16K EEPROM"));
eepPages = 256;
break;
default:
println_Msg(F("None/Unknown"));
break;
}
print_Msg(F("CRC1: "));
println_Msg(checksumStr);
// Wait for user input
println_Msg(FS(FSTRING_SPACE));
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
} else {
// Display error
display_Clear();
println_Msg(F("GAMEPAK ERROR"));
println_Msg("");
print_Msg(F("Title: "));
println_Msg(romName);
print_Msg(F("Serial: "));
println_Msg(cartID);
print_Msg(F("CRC1: "));
println_Msg(checksumStr);
display_Update();
strcpy(romName, "GPERROR");
print_Error(F("Cartridge unknown"));
println_Msg("");
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
// Set cartsize manually
unsigned char N64RomMenu;
// Copy menuOptions out of progmem
convertPgm(romOptionsN64, 7);
N64RomMenu = question_box(F("Select ROM size"), menuOptions, 7, 0);
// wait for user choice to come back from the question box menu
switch (N64RomMenu) {
case 0:
// 4MB
cartSize = 4;
break;
case 1:
// 8MB
cartSize = 8;
break;
case 2:
// 12MB
cartSize = 12;
break;
case 3:
// 16MB
cartSize = 16;
break;
case 4:
// 32MB
cartSize = 32;
break;
case 5:
// 64MB
cartSize = 64;
break;
case 6:
// 128MB
cartSize = 128;
break;
}
}
}
/* look-up the calculated crc in the file n64.txt on sd card
boolean searchCRC(char crcStr[9]) {
boolean result = 0;
char tempStr2[2];
char tempStr1[9];
char tempStr[5];
// Change to root dir
sd.chdir("/");
if (myFile.open("n64.txt", O_READ)) {
// Loop through file
while (myFile.available()) {
// Read 8 bytes into String, do it one at a time so byte order doesn't get mixed up
sprintf(tempStr1, "%c", myFile.read());
for (byte i = 0; i < 7; i++) {
sprintf(tempStr2, "%c", myFile.read());
strcat(tempStr1, tempStr2);
}
// Check if string is a match
if (strcasecmp(tempStr1, crcStr) == 0) {
// Skip the , in the file
myFile.seekCur(1);
// Read 4 bytes into String, do it one at a time so byte order doesn't get mixed up
sprintf(tempStr, "%c", myFile.read());
for (byte i = 0; i < 3; i++) {
sprintf(tempStr2, "%c", myFile.read());
strcat(tempStr, tempStr2);
}
if (strcmp(tempStr, cartID) == 0) {
result = 1;
break;
}
else {
result = 0;
break;
}
}
// If no match, empty string, advance by 12 and try again
else {
myFile.seekCur(12);
}
}
// Close the file:
myFile.close();
return result;
}
else {
print_FatalError(F("n64.txt missing"));
}
}*/
// look-up cart id in file n64.txt on sd card
void getCartInfo_N64() {
char tempStr[9];
int read_bytes;
// cart not in list
cartSize = 0;
saveType = 0;
// Read cart id
idCart();
display_Clear();
println_Msg(F("Searching database..."));
display_Update();
if (myFile.open("n64.txt", O_READ)) {
// Loop through file
while (myFile.available()) {
// Skip first line with name
skip_line(&myFile);
// Skip over the CRC32 checksum
myFile.seekCur(9);
// Read 8 bytes into String
read_bytes = myFile.read(tempStr, 8);
tempStr[read_bytes == -1 ? 0 : read_bytes] = 0;
// Check if string is a match
if (strcmp(tempStr, checksumStr) == 0) {
// Skip the , in the file
myFile.seekCur(1);
read_bytes = myFile.read(tempStr, 2);
tempStr[read_bytes == -1 ? 0 : read_bytes] = 0;
cartSize = atoi(tempStr);
// Skip the , in the file
myFile.seekCur(1);
// Read the next ascii character and subtract 48 to convert to decimal
saveType = myFile.read() - 48;
// End loop
break;
}
// If no match skip to next entry
else {
// skip rest of line
myFile.seekCur(7);
// skip third empty line
skip_line(&myFile);
}
}
// Close the file:
myFile.close();
} else {
print_FatalError(F("n64.txt missing"));
}
}
// Read rom ID
void idCart() {
// Set the address
setAddress_N64(romBase);
// Read first 64 bytes of rom
for (int c = 0; c < 64; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
// CRC1
sprintf(checksumStr, "%02X%02X%02X%02X", sdBuffer[0x10], sdBuffer[0x11], sdBuffer[0x12], sdBuffer[0x13]);
// Get cart id
cartID[0] = sdBuffer[0x3B];
cartID[1] = sdBuffer[0x3C];
cartID[2] = sdBuffer[0x3D];
cartID[3] = sdBuffer[0x3E];
// Get rom version
romVersion = sdBuffer[0x3F];
// If name consists out of all japanese characters use cart id
if (buildRomName(romName, &sdBuffer[0x20], 20) == 0) {
strcpy(romName, cartID);
}
#ifdef OPTION_N64_SAVESUMMARY
// Get CRC1
for (int i = 0; i < 4; i++) {
if (sdBuffer[0x10 + i] < 0x10) {
CRC1 += '0';
}
CRC1 += String(sdBuffer[0x10 + i], HEX);
}
// Get CRC2
for (int i = 0; i < 4; i++) {
if (sdBuffer[0x14 + i] < 0x10) {
CRC2 += '0';
}
CRC2 += String(sdBuffer[0x14 + i], HEX);
}
#endif
}
// Write Eeprom to cartridge
void writeEeprom() {
if ((saveType == 5) || (saveType == 6)) {
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
println_Msg(F("Writing..."));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
// 2 command bytes and 8 data bytes
byte command[2 + 8];
command[0] = 0x05;
// Note: eepPages can be 256, so page must be able to get to 256 for the
// loop to exit. So it is not possible to use command[1] directly as loop
// counter.
for (int page = 0; page < eepPages; page++) {
command[1] = page;
// TODO: read 512 bytes in a 512 + 2 bytes buffer, and move the command start 32 bytes at a time
myFile.read(command + 2, sizeof(command) - 2);
// Disable interrupts for more uniform clock pulses
// Blink led
blinkLED();
if (page)
delay(50); // Wait 50ms between pages when writing
noInterrupts();
sendJoyBus(command, sizeof(command));
interrupts();
}
// Close the file:
myFile.close();
print_STR(done_STR, 1);
display_Update();
delay(600);
} else {
print_FatalError(sd_error_STR);
}
} else {
print_FatalError(F("Savetype Error"));
}
}
boolean readEepromPageList(byte* output, byte page_number, byte page_count) {
byte command[] = { 0x04, page_number };
// Disable interrupts for more uniform clock pulses
while (page_count--) {
// Blink led
blinkLED();
noInterrupts();
sendJoyBus(command, sizeof(command));
// XXX: is it possible to read more than 8 bytes at a time ?
if (recvJoyBus(output, 8) > 0) {
// If any missing bytes error out
interrupts();
return 0;
break;
}
interrupts();
if (page_count)
delayMicroseconds(600); // wait 600us between pages when reading
command[1]++;
output += 8;
}
return 1;
}
// Dump Eeprom to SD
void readEeprom() {
if ((saveType == 5) || (saveType == 6)) {
// Get name, add extension and convert to char array for sd lib
snprintf_P(fileName, sizeof(fileName), N64_EEP_FILENAME_FMT, romName);
// create a new folder for the save file
EEPROM_readAnything(0, foldern);
snprintf_P(folder, sizeof(folder), N64_SAVE_DIRNAME_FMT, romName, foldern);
sd.mkdir(folder, true);
sd.chdir(folder);
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_FatalError(create_file_STR);
}
for (int i = 0; i < eepPages; i += sizeof(sdBuffer) / 8) {
// If any missing bytes error out
if (readEepromPageList(sdBuffer, i, sizeof(sdBuffer) / 8) == 0) {
println_Msg(FS(FSTRING_EMPTY));
print_STR(error_STR, 0);
println_Msg(F("no data received"));
println_Msg(FS(FSTRING_EMPTY));
break;
}
// Write 64 pages at once to the SD card
myFile.write(sdBuffer, sizeof(sdBuffer));
}
// Close the file:
myFile.close();
print_Msg(F("Saved to "));
print_Msg(folder);
println_Msg(F("/"));
display_Update();
} else {
print_FatalError(F("Savetype Error"));
}
}
// Check if a write succeeded, returns 0 if all is ok and number of errors if not
unsigned long verifyEeprom() {
unsigned long writeErrors;
if ((saveType == 5) || (saveType == 6)) {
writeErrors = 0;
display_Clear();
print_Msg(F("Verifying against "));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (int i = 0; i < eepPages; i += sizeof(sdBuffer) / 8) {
readEepromPageList(sdBuffer, i, sizeof(sdBuffer) / 8);
// Check sdBuffer content against file on sd card
for (size_t c = 0; c < sizeof(sdBuffer); c++) {
if (myFile.read() != sdBuffer[c]) {
writeErrors++;
}
}
}
// Close the file:
myFile.close();
} else {
// SD Error
writeErrors = 999999;
print_FatalError(sd_error_STR);
}
// Return 0 if verified ok, or number of errors
return writeErrors;
} else {
print_FatalError(F("Savetype Error"));
return 1;
}
}
/******************************************
SRAM functions
*****************************************/
// Write sram to cartridge
void writeSram(unsigned long sramSize) {
if (saveType == 1) {
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
println_Msg(F("Writing..."));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (unsigned long currByte = sramBase; currByte < (sramBase + sramSize); currByte += 512) {
// Read save from SD into buffer
myFile.read(sdBuffer, 512);
// Set the address for the next 512 bytes
setAddress_N64(currByte);
for (int c = 0; c < 512; c += 2) {
// Join bytes to word
word myWord = ((sdBuffer[c] & 0xFF) << 8) | (sdBuffer[c + 1] & 0xFF);
// Write word
writeWord_N64(myWord);
}
}
// Close the file:
myFile.close();
print_STR(done_STR, 1);
display_Update();
} else {
print_FatalError(sd_error_STR);
}
} else {
print_FatalError(F("Savetype Error"));
}
}
// Read sram and save to the SD card
void readSram(unsigned long sramSize, byte flashramType) {
int offset = 512;
int bufferSize = 512;
if (flashramType == 2) {
offset = 64;
bufferSize = 128;
}
// Get name, add extension and convert to char array for sd lib
const char* suffix;
if (saveType == 4) {
suffix = "fla";
} else if (saveType == 1) {
suffix = "sra";
} else {
print_FatalError(F("Savetype Error"));
}
createFolder("N64", "SAVE", romName, suffix);
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_FatalError(sd_error_STR);
}
for (unsigned long currByte = sramBase; currByte < (sramBase + (sramSize / flashramType)); currByte += offset) {
// Set the address
setAddress_N64(currByte);
for (int c = 0; c < bufferSize; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
myFile.write(sdBuffer, bufferSize);
}
// Close the file:
myFile.close();
print_Msg(F("Saved to "));
print_Msg(folder);
println_Msg(F("/"));
display_Update();
}
unsigned long verifySram(unsigned long sramSize, byte flashramType) {
writeErrors = 0;
int offset = 512;
int bufferSize = 512;
if (flashramType == 2) {
offset = 64;
bufferSize = 128;
}
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (unsigned long currByte = sramBase; currByte < (sramBase + (sramSize / flashramType)); currByte += offset) {
// Set the address
setAddress_N64(currByte);
for (int c = 0; c < bufferSize; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
// Check sdBuffer content against file on sd card
for (int i = 0; i < bufferSize; i++) {
if (myFile.read() != sdBuffer[i]) {
writeErrors++;
}
}
}
// Close the file:
myFile.close();
} else {
print_FatalError(sd_error_STR);
}
// Return 0 if verified ok, or number of errors
return writeErrors;
}
/******************************************
Flashram functions
*****************************************/
// Send a command to the flashram command register
void sendFramCmd(unsigned long myCommand) {
// Split command into two words
word myComLowOut = myCommand & 0xFFFF;
word myComHighOut = myCommand >> 16;
// Set address to command register
setAddress_N64(0x08010000);
// Send command
writeWord_N64(myComHighOut);
writeWord_N64(myComLowOut);
}
// Init fram
void initFram() {
// FRAM_EXECUTE_CMD
sendFramCmd(0xD2000000);
delay(10);
// FRAM_EXECUTE_CMD
sendFramCmd(0xD2000000);
delay(10);
//FRAM_STATUS_MODE_CMD
sendFramCmd(0xE1000000);
delay(10);
}
void writeFram(byte flashramType) {
if (saveType == 4) {
// Erase fram
eraseFram();
// Check if empty
if (blankcheck_N64(flashramType) == 0) {
println_Msg(FS(FSTRING_OK));
display_Update();
} else {
println_Msg(F("FAIL"));
display_Update();
}
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
print_Msg(F("Writing "));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
// Init fram
initFram();
// Write all 8 fram banks
print_Msg(F("Bank "));
for (byte bank = 0; bank < 8; bank++) {
print_Msg(bank);
print_Msg(FS(FSTRING_SPACE));
display_Update();
// Write one bank of 128*128 bytes
for (byte offset = 0; offset < 128; offset++) {
// Read save from SD into buffer
myFile.read(sdBuffer, 128);
// FRAM_WRITE_MODE_CMD
sendFramCmd(0xB4000000);
delay(1);
// Set the address for the next 128 bytes
setAddress_N64(0x08000000);
// Send 128 bytes, 64 words
for (byte c = 0; c < 128; c += 2) {
// Join two bytes into one word
word myWord = ((sdBuffer[c] & 0xFF) << 8) | (sdBuffer[c + 1] & 0xFF);
// Write word
writeWord_N64(myWord);
}
// Delay between each "DMA"
delay(1);
//FRAM_WRITE_OFFSET_CMD + offset
sendFramCmd((0xA5000000 | (((bank * 128) + offset) & 0xFFFF)));
delay(1);
// FRAM_EXECUTE_CMD
sendFramCmd(0xD2000000);
while (waitForFram(flashramType)) {
delay(1);
}
}
// Delay between banks
delay(20);
}
println_Msg("");
// Close the file:
myFile.close();
} else {
print_FatalError(sd_error_STR);
}
} else {
print_FatalError(F("Savetype Error"));
}
}
// Delete all 8 flashram banks
void eraseFram() {
if (saveType == 4) {
print_Msg(F("Erasing..."));
display_Update();
// Init fram
initFram();
// Erase fram
// 0x4B00007F 0x4B0000FF 0x4B00017F 0x4B0001FF 0x4B00027F 0x4B0002FF 0x4B00037F 0x4B0003FF
for (unsigned long bank = 0x4B00007F; bank < 0x4B00047F; bank += 0x80) {
sendFramCmd(bank);
delay(10);
// FRAM_ERASE_MODE_CMD
sendFramCmd(0x78000000);
delay(10);
// FRAM_EXECUTE_CMD
sendFramCmd(0xD2000000);
while (waitForFram(flashramType)) {
delay(1);
}
}
} else {
print_FatalError(F("Savetype Error"));
}
}
// Read flashram
void readFram(byte flashramType) {
if (saveType == 4) {
// Put flashram into read mode
// FRAM_READ_MODE_CMD
sendFramCmd(0xF0000000);
// Read Flashram
readSram(131072, flashramType);
} else {
print_FatalError(F("Savetype Error"));
}
}
// Verify flashram
unsigned long verifyFram(byte flashramType) {
// Put flashram into read mode
// FRAM_READ_MODE_CMD
sendFramCmd(0xF0000000);
writeErrors = verifySram(131072, flashramType);
return writeErrors;
}
// Blankcheck flashram
unsigned long blankcheck_N64(byte flashramType) {
writeErrors = 0;
int offset = 512;
int bufferSize = 512;
if (flashramType == 2) {
offset = 64;
bufferSize = 128;
}
// Put flashram into read mode
// FRAM_READ_MODE_CMD
sendFramCmd(0xF0000000);
// Read Flashram
for (unsigned long currByte = sramBase; currByte < (sramBase + (131072 / flashramType)); currByte += offset) {
// Set the address for the next 512 bytes
setAddress_N64(currByte);
for (int c = 0; c < bufferSize; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
// Check sdBuffer content against file on sd card
for (int i = 0; i < bufferSize; i++) {
if (0xFF != sdBuffer[i]) {
writeErrors++;
}
}
}
// Return 0 if verified ok, or number of errors
return writeErrors;
}
// Wait until current operation is done
byte waitForFram(byte flashramType) {
byte framStatus = 0;
byte statusMXL1100[] = { 0x11, 0x11, 0x80, 0x01, 0x00, 0xC2, 0x00, 0x1E };
byte statusMXL1101[] = { 0x11, 0x11, 0x80, 0x01, 0x00, 0xC2, 0x00, 0x1D };
byte statusMN63F81[] = { 0x11, 0x11, 0x80, 0x01, 0x00, 0x32, 0x00, 0xF1 };
// FRAM_STATUS_MODE_CMD
sendFramCmd(0xE1000000);
delay(1);
// Set address to Fram status register
setAddress_N64(0x08000000);
// Read Status
for (byte c = 0; c < 8; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
if (flashramType == 2) {
for (byte c = 0; c < 8; c++) {
if (statusMXL1100[c] != sdBuffer[c]) {
framStatus = 1;
}
}
} else if (flashramType == 1) {
//MX29L1101
if (MN63F81MPN == false) {
for (byte c = 0; c < 8; c++) {
if (statusMXL1101[c] != sdBuffer[c]) {
framStatus = 1;
}
}
}
//MN63F81MPN
else if (MN63F81MPN == true) {
for (byte c = 0; c < 8; c++) {
if (statusMN63F81[c] != sdBuffer[c]) {
framStatus = 1;
}
}
}
}
return framStatus;
}
// Get flashram type
void getFramType() {
// FRAM_STATUS_MODE_CMD
sendFramCmd(0xE1000000);
delay(10);
// Set address to Fram status register
setAddress_N64(0x08000000);
// Read Status
for (byte c = 0; c < 8; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
//MX29L1100
if (sdBuffer[7] == 0x1e) {
flashramType = 2;
println_Msg(F("Type: MX29L1100"));
display_Update();
}
//MX29L1101
else if (sdBuffer[7] == 0x1d) {
flashramType = 1;
MN63F81MPN = false;
println_Msg(F("Type: MX29L1101"));
display_Update();
}
//MN63F81MPN
else if (sdBuffer[7] == 0xf1) {
flashramType = 1;
MN63F81MPN = true;
println_Msg(F("Type: MN63F81MPN"));
display_Update();
}
// 29L1100KC-15B0 compat MX29L1101
else if ((sdBuffer[7] == 0x8e) || (sdBuffer[7] == 0x84)) {
flashramType = 1;
MN63F81MPN = false;
println_Msg(F("Type: 29L1100KC-15B0"));
println_Msg(F("(compat. MX29L1101)"));
display_Update();
}
// Type unknown
else {
for (byte c = 0; c < 8; c++) {
print_Msg(sdBuffer[c], HEX);
print_Msg(F(", "));
}
print_FatalError(F("Flashram unknown"));
}
}
/******************************************
Rom functions
*****************************************/
// Read rom and save to the SD card
#ifndef OPTION_N64_FASTCRC
// dumping rom slow
void readRom_N64() {
// Get name, add extension and convert to char array for sd lib
createFolder("N64", "ROM", romName, "Z64");
// clear the screen
// display_Clear();
print_STR(saving_to_STR, 0);
print_Msg(folder);
println_Msg(F("/..."));
display_Update();
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_FatalError(create_file_STR);
}
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(cartSize)*1024 * 1024;
draw_progressbar(0, totalProgressBar);
for (unsigned long currByte = romBase; currByte < (romBase + (cartSize * 1024 * 1024)); currByte += 512) {
// Blink led
if ((currByte & 0x3FFF) == 0)
blinkLED();
// Set the address for the next 512 bytes
setAddress_N64(currByte);
for (word c = 0; c < 512; c += 2) {
word myWord = readWord_N64();
sdBuffer[c] = myWord >> 8;
sdBuffer[c + 1] = myWord & 0xFF;
}
myFile.write(sdBuffer, 512);
processedProgressBar += 512;
draw_progressbar(processedProgressBar, totalProgressBar);
}
// Close the file:
myFile.close();
}
#else
// dumping rom fast
uint32_t readRom_N64() {
// Get name, add extension and convert to char array for sd lib
createFolder("N64", "ROM", romName, "Z64");
// clear the screen
// display_Clear();
print_STR(saving_to_STR, 0);
print_Msg(folder);
println_Msg(F("/..."));
display_Update();
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_FatalError(create_file_STR);
}
byte buffer[1024];
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(cartSize)*1024 * 1024;
draw_progressbar(0, totalProgressBar);
// prepare crc32
uint32_t oldcrc32 = 0xFFFFFFFF;
// run combined dumper + crc32 routine for better performance, as N64 ROMs are quite large for an 8bit micro
// currently dumps + checksums a 32MB cart in 170 seconds (down from 347 seconds)
for (unsigned long currByte = romBase; currByte < (romBase + (cartSize * 1024 * 1024)); currByte += 1024) {
// Blink led
if (currByte % 16384 == 0)
blinkLED();
// Set the address for the first 512 bytes to dump
setAddress_N64(currByte);
// Wait 62.5ns (safety)
NOP;
for (int c = 0; c < 512; c += 2) {
// Pull read(PH6) low
PORTH &= ~(1 << 6);
// Wait ~310ns
NOP;
NOP;
NOP;
NOP;
NOP;
// data on PINK and PINF is valid now, read into sd card buffer
buffer[c] = PINK; // hiByte
buffer[c + 1] = PINF; // loByte
// Pull read(PH6) high
PORTH |= (1 << 6);
// crc32 update
UPDATE_CRC(oldcrc32, buffer[c]);
UPDATE_CRC(oldcrc32, buffer[c + 1]);
}
// Set the address for the next 512 bytes to dump
setAddress_N64(currByte + 512);
// Wait 62.5ns (safety)
NOP;
for (int c = 512; c < 1024; c += 2) {
// Pull read(PH6) low
PORTH &= ~(1 << 6);
// Wait ~310ns
NOP;
NOP;
NOP;
NOP;
NOP;
// data on PINK and PINF is valid now, read into sd card buffer
buffer[c] = PINK; // hiByte
buffer[c + 1] = PINF; // loByte
// Pull read(PH6) high
PORTH |= (1 << 6);
// crc32 update
UPDATE_CRC(oldcrc32, buffer[c]);
UPDATE_CRC(oldcrc32, buffer[c + 1]);
}
processedProgressBar += 1024;
draw_progressbar(processedProgressBar, totalProgressBar);
// write out 1024 bytes to file
myFile.write(buffer, 1024);
}
// Close the file:
myFile.close();
// Return checksum
return oldcrc32;
}
#endif
#ifdef OPTION_N64_SAVESUMMARY
// Save an info.txt with information on the dumped rom to the SD card
void savesummary_N64(boolean checkfound, char crcStr[9], unsigned long timeElapsed) {
// Open file on sd card
if (!myFile.open("N64/ROM/n64log.txt", O_RDWR | O_CREAT | O_APPEND)) {
print_FatalError(sd_error_STR);
}
//Write the info
myFile.print(F("Name\t: "));
myFile.println(romName);
myFile.print(F("ID\t: "));
myFile.println(cartID);
myFile.print(F("ROM CRC1: "));
myFile.println(CRC1);
myFile.print(F("ROM CRC2: "));
myFile.println(CRC2);
myFile.print(F("Size\t: "));
myFile.print(cartSize);
myFile.println(F(" MB"));
myFile.print(F("Save\t: "));
switch (saveType) {
case 1:
myFile.println(F("SRAM"));
break;
case 4:
myFile.println(F("FLASH"));
break;
case 5:
myFile.println(F("4K EEPROM"));
break;
case 6:
myFile.println(F("16K EEPROM"));
break;
default:
myFile.println(F("None/Unknown"));
break;
}
myFile.print(F("Version\t: 1."));
myFile.println(romVersion);
myFile.print(F("Saved To: "));
myFile.println(folder);
#ifdef ENABLE_RTC
myFile.print(F("Dumped\t: "));
myFile.println(RTCStamp());
#endif
myFile.print(F("CRC\t: "));
myFile.print(crcStr);
if (checkfound) {
// Dump was a known good rom
// myFile.println(F("Checksum matches"));
myFile.println(" [Match]");
} else {
// myFile.println(F("Checksum not found"));
myFile.println(" [No Match]");
}
myFile.print(F("Time\t: "));
myFile.println(timeElapsed);
myFile.println(FS(FSTRING_SPACE));
// Close the file:
myFile.close();
}
#endif
/******************************************
N64 Repro Flashrom Functions
*****************************************/
void flashRepro_N64() {
unsigned long sectorSize = 0;
byte bufferSize = 0;
// Check flashrom ID's
idFlashrom_N64();
// If the ID is known continue
if (cartSize != 0) {
// Print flashrom name
if ((flashid == 0x227E) && (strcmp(cartID, "2201") == 0)) {
print_Msg(F("Spansion S29GL256N"));
if (cartSize == 64)
println_Msg(F(" x2"));
else
println_Msg("");
} else if ((flashid == 0x227E) && (strcmp(cartID, "2101") == 0)) {
print_Msg(F("Spansion S29GL128N"));
} else if ((flashid == 0x227E) && (strcmp(cartID, "2100") == 0)) {
print_Msg(F("ST M29W128GL"));
} else if ((flashid == 0x22C9) || (flashid == 0x22CB)) {
print_Msg(F("Macronix MX29LV640"));
if (cartSize == 16)
println_Msg(F(" x2"));
else
println_Msg("");
} else if (flashid == 0x8816)
println_Msg(F("Intel 4400L0ZDQ0"));
else if (flashid == 0x7E7E)
println_Msg(F("Fujitsu MSP55LV100S"));
else if ((flashid == 0x227E) && (strcmp(cartID, "2301") == 0))
println_Msg(F("Fujitsu MSP55LV512"));
else if ((flashid == 0x227E) && (strcmp(cartID, "3901") == 0))
println_Msg(F("Intel 512M29EW"));
// Print info
print_Msg(F("ID: "));
print_Msg(flashid_str);
print_Msg(F(" Size: "));
print_Msg(cartSize);
println_Msg(F("MB"));
println_Msg("");
println_Msg(F("This will erase your"));
println_Msg(F("Repro Cartridge."));
println_Msg(F("Attention: Use 3.3V!"));
println_Msg("");
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
} else {
println_Msg(F("Unknown flashrom"));
print_Msg(F("ID: "));
print_Msg(vendorID);
print_Msg(FS(FSTRING_SPACE));
print_Msg(flashid_str);
print_Msg(FS(FSTRING_SPACE));
println_Msg(cartID);
println_Msg(FS(FSTRING_SPACE));
println_Msg(F("Press button for"));
println_Msg(F("manual config"));
println_Msg(F("This will erase your"));
println_Msg(F("Repro Cartridge."));
println_Msg(F("Attention: Use 3.3V!"));
display_Update();
wait();
// clear IDs
sprintf(vendorID, "%s", "CONF");
flashid = 0;
sprintf(flashid_str, "%s", "CONF");
sprintf(cartID, "%s", "CONF");
// Set cartsize manually
unsigned char N64RomMenu;
// Copy menuOptions out of progmem
convertPgm(romOptionsN64, 7);
N64RomMenu = question_box(F("Select flash size"), menuOptions, 7, 0);
// wait for user choice to come back from the question box menu
switch (N64RomMenu) {
case 0:
// 4MB
cartSize = 4;
break;
case 1:
// 8MB
cartSize = 8;
break;
case 2:
// 12MB
cartSize = 12;
break;
case 3:
// 16MB
cartSize = 16;
break;
case 4:
// 32MB
cartSize = 32;
break;
case 5:
// 64MB
cartSize = 64;
break;
case 6:
// 128MB
cartSize = 128;
break;
}
// Set flash buffer manually
unsigned char N64BufferMenu;
// Copy menuOptions out of progmem
convertPgm(bufferOptionsN64, 4);
N64BufferMenu = question_box(F("Select buffer size"), menuOptions, 4, 0);
// wait for user choice to come back from the question box menu
switch (N64BufferMenu) {
case 0:
// no buffer
bufferSize = 0;
break;
case 1:
// 32 byte buffer
bufferSize = 32;
break;
case 2:
// 64 byte buffer
bufferSize = 64;
break;
case 3:
// 128 byte buffer
bufferSize = 128;
break;
}
// Set sector size manually
unsigned char N64SectorMenu;
// Copy menuOptions out of progmem
convertPgm(sectorOptionsN64, 4);
N64SectorMenu = question_box(F("Select sector size"), menuOptions, 4, 0);
// wait for user choice to come back from the question box menu
switch (N64SectorMenu) {
case 0:
// 8KB sectors
sectorSize = 0x2000;
break;
case 1:
// 32KB sectors
sectorSize = 0x8000;
break;
case 2:
// 64KB sectors
sectorSize = 0x10000;
break;
case 3:
// 128KB sectors
sectorSize = 0x20000;
break;
}
}
// Launch file browser
filePath[0] = '\0';
sd.chdir("/");
fileBrowser(F("Select z64 file"));
display_Clear();
display_Update();
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
// Get rom size from file
fileSize = myFile.fileSize();
print_Msg(F("File size: "));
print_Msg(fileSize / 1048576);
println_Msg(F("MB"));
display_Update();
// Compare file size to flashrom size
if ((fileSize / 1048576) > cartSize) {
print_FatalError(file_too_big_STR);
}
// Erase needed sectors
if (flashid == 0x227E) {
// Spansion S29GL256N or Fujitsu MSP55LV512 with 0x20000 sector size and 32 byte buffer
eraseSector_N64(0x20000);
} else if (flashid == 0x7E7E) {
// Fujitsu MSP55LV100S
eraseMSP55LV100_N64();
} else if ((flashid == 0x8813) || (flashid == 0x8816)) {
// Intel 4400L0ZDQ0
eraseIntel4400_N64();
resetIntel4400_N64();
} else if ((flashid == 0x22C9) || (flashid == 0x22CB)) {
// Macronix MX29LV640, C9 is top boot and CB is bottom boot block
eraseSector_N64(0x8000);
} else {
eraseFlashrom_N64();
}
// Check if erase was successful
if (blankcheckFlashrom_N64()) {
// Write flashrom
println_Msg(FS(FSTRING_OK));
print_Msg(F("Writing "));
println_Msg(filePath);
display_Update();
if ((strcmp(cartID, "3901") == 0) && (flashid == 0x227E)) {
// Intel 512M29EW(64MB) with 0x20000 sector size and 128 byte buffer
writeFlashBuffer_N64(0x20000, 128);
} else if ((strcmp(cartID, "2100") == 0) && (flashid == 0x227E)) {
// ST M29W128GH(16MB) with 0x20000 sector size and 64 byte buffer
writeFlashBuffer_N64(0x20000, 64);
} else if (flashid == 0x227E) {
// Spansion S29GL128N/S29GL256N or Fujitsu MSP55LV512 with 0x20000 sector size and 32 byte buffer
writeFlashBuffer_N64(0x20000, 32);
} else if (flashid == 0x7E7E) {
//Fujitsu MSP55LV100S
writeMSP55LV100_N64(0x20000);
} else if ((flashid == 0x22C9) || (flashid == 0x22CB)) {
// Macronix MX29LV640 without buffer and 0x8000 sector size
writeFlashrom_N64(0x8000);
} else if ((flashid == 0x8813) || (flashid == 0x8816)) {
// Intel 4400L0ZDQ0
writeIntel4400_N64();
resetIntel4400_N64();
} else if (sectorSize) {
if (bufferSize) {
writeFlashBuffer_N64(sectorSize, bufferSize);
} else {
writeFlashrom_N64(sectorSize);
}
} else {
print_FatalError(F("sectorSize not set"));
}
// Close the file:
myFile.close();
// Verify
print_STR(verifying_STR, 0);
display_Update();
writeErrors = verifyFlashrom_N64();
if (writeErrors == 0) {
println_Msg(FS(FSTRING_OK));
display_Update();
} else {
print_Msg(writeErrors);
print_Msg(F(" bytes "));
print_Error(did_not_verify_STR);
}
} else {
// Close the file
myFile.close();
print_Error(F("failed"));
}
} else {
print_Error(F("Can't open file"));
}
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
display_Clear();
display_Update();
}
// Reset to read mode
void resetIntel4400_N64() {
for (unsigned long currPartition = 0; currPartition < (cartSize * 0x100000); currPartition += 0x20000) {
setAddress_N64(romBase + currPartition);
writeWord_N64(0xFF);
}
}
// Reset Fujitsu MSP55LV100S
void resetMSP55LV100_N64(unsigned long flashBase) {
// Send reset Command
setAddress_N64(flashBase);
writeWord_N64(0xF0F0);
delay(100);
}
// Common reset command
void resetFlashrom_N64(unsigned long flashBase) {
// Send reset Command
setAddress_N64(flashBase);
writeWord_N64(0xF0);
delay(100);
}
void idFlashrom_N64() {
// Set size to 0 if no ID is found
cartSize = 0;
// Send flashrom ID command
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(romBase + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0x90);
// Read 1 byte vendor ID
setAddress_N64(romBase);
sprintf(vendorID, "%02X", readWord_N64());
// Read 2 bytes flashrom ID
flashid = readWord_N64();
sprintf(flashid_str, "%04X", flashid);
// Read 2 bytes secondary flashrom ID
setAddress_N64(romBase + 0x1C);
sprintf(cartID, "%04X", ((readWord_N64() << 8) | (readWord_N64() & 0xFF)));
// Spansion S29GL256N(32MB/64MB) with either one or two flashrom chips
if ((strcmp(cartID, "2201") == 0) && (flashid == 0x227E)) {
cartSize = 32;
// Reset flashrom
resetFlashrom_N64(romBase);
// Test for second flashrom chip at 0x2000000 (32MB)
setAddress_N64(romBase + 0x2000000 + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(romBase + 0x2000000 + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + 0x2000000 + (0x555 << 1));
writeWord_N64(0x90);
char tempID[5];
setAddress_N64(romBase + 0x2000000);
// Read manufacturer ID
readWord_N64();
// Read flashrom ID
sprintf(tempID, "%04X", readWord_N64());
// Check if second flashrom chip is present
if (strcmp(tempID, "227E") == 0) {
cartSize = 64;
}
resetFlashrom_N64(romBase + 0x2000000);
}
// Macronix MX29LV640(8MB/16MB) with either one or two flashrom chips
else if ((flashid == 0x22C9) || (flashid == 0x22CB)) {
cartSize = 8;
resetFlashrom_N64(romBase + 0x800000);
// Test for second flashrom chip at 0x800000 (8MB)
setAddress_N64(romBase + 0x800000 + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(romBase + 0x800000 + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + 0x800000 + (0x555 << 1));
writeWord_N64(0x90);
char tempID[5];
setAddress_N64(romBase + 0x800000);
// Read manufacturer ID
readWord_N64();
// Read flashrom ID
sprintf(tempID, "%04X", readWord_N64());
// Check if second flashrom chip is present
if ((strcmp(tempID, "22C9") == 0) || (strcmp(tempID, "22CB") == 0)) {
cartSize = 16;
}
resetFlashrom_N64(romBase + 0x800000);
}
// Intel 4400L0ZDQ0 (64MB)
else if (flashid == 0x8816) {
// Found first flashrom chip, set to 32MB
cartSize = 32;
resetIntel4400_N64();
// Test if second half of the flashrom might be hidden
setAddress_N64(romBase + 0x2000000 + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(romBase + 0x2000000 + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + 0x2000000 + (0x555 << 1));
writeWord_N64(0x90);
// Read manufacturer ID
setAddress_N64(romBase + 0x2000000);
readWord_N64();
// Read flashrom ID
sprintf(cartID, "%04X", readWord_N64());
if (strcmp(cartID, "8813") == 0) {
cartSize = 64;
flashid = 0x8813;
strncpy(flashid_str, cartID, 5);
}
resetIntel4400_N64();
// Empty cartID string
cartID[0] = '\0';
}
//Fujitsu MSP55LV512/Spansion S29GL512N (64MB)
else if ((strcmp(cartID, "2301") == 0) && (flashid == 0x227E)) {
cartSize = 64;
// Reset flashrom
resetFlashrom_N64(romBase);
}
// Spansion S29GL128N(16MB) with one flashrom chip
else if ((strcmp(cartID, "2101") == 0) && (flashid == 0x227E)) {
cartSize = 16;
// Reset flashrom
resetFlashrom_N64(romBase);
}
// ST M29W128GL(16MB) with one flashrom chip
else if ((strcmp(cartID, "2100") == 0) && (flashid == 0x227E)) {
cartSize = 16;
// Reset flashrom
resetFlashrom_N64(romBase);
}
// Intel 512M29EW(64MB) with one flashrom chip
else if ((strcmp(cartID, "3901") == 0) && (flashid == 0x227E)) {
cartSize = 64;
// Reset flashrom
resetFlashrom_N64(romBase);
}
// Unknown 227E type
else if (flashid == 0x227E) {
cartSize = 0;
// Reset flashrom
resetFlashrom_N64(romBase);
}
//Test for Fujitsu MSP55LV100S (64MB)
else {
// Send flashrom ID command
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0xAAAA);
setAddress_N64(romBase + (0x2AA << 1));
writeWord_N64(0x5555);
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0x9090);
setAddress_N64(romBase);
// Read 1 byte vendor ID
readWord_N64();
// Read 2 bytes flashrom ID
sprintf(cartID, "%04X", readWord_N64());
if (strcmp(cartID, "7E7E") == 0) {
resetMSP55LV100_N64(romBase);
cartSize = 64;
flashid = 0x7E7E;
strncpy(flashid_str, cartID, 5);
}
}
if ((flashid == 0x1240) && (strcmp(cartID, "1240") == 0)) {
print_FatalError(F("Please reseat cartridge"));
}
}
// Erase Intel flashrom
void eraseIntel4400_N64() {
unsigned long flashBase = romBase;
print_Msg(F("Erasing..."));
display_Update();
// If the game is smaller than 32Mbit only erase the needed blocks
unsigned long lastBlock = 0x1FFFFFF;
if (fileSize < 0x1FFFFFF)
lastBlock = fileSize;
// Erase 4 blocks with 16kwords each
for (unsigned long currBlock = 0x0; currBlock < 0x1FFFF; currBlock += 0x8000) {
// Unlock block command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x60);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Erase command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x20);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Read the status register
setAddress_N64(flashBase + currBlock);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(flashBase + currBlock);
statusReg = readWord_N64();
}
}
// Erase up to 255 blocks with 64kwords each
for (unsigned long currBlock = 0x20000; currBlock < lastBlock; currBlock += 0x1FFFF) {
// Unlock block command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x60);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Erase command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x20);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Read the status register
setAddress_N64(flashBase + currBlock);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(flashBase + currBlock);
statusReg = readWord_N64();
}
// Blink led
blinkLED();
}
// Check if we should erase the second chip too
if ((cartSize = 64) && (fileSize > 0x2000000)) {
// Switch base address to second chip
flashBase = romBase + 0x2000000;
// 255 blocks with 64kwords each
for (unsigned long currBlock = 0x0; currBlock < 0x1FDFFFF; currBlock += 0x1FFFF) {
// Unlock block command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x60);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Erase command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x20);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Read the status register
setAddress_N64(flashBase + currBlock);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(flashBase + currBlock);
statusReg = readWord_N64();
}
// Blink led
blinkLED();
}
// 4 blocks with 16kword each
for (unsigned long currBlock = 0x1FE0000; currBlock < 0x1FFFFFF; currBlock += 0x8000) {
// Unlock block command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x60);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Erase command
setAddress_N64(flashBase + currBlock);
writeWord_N64(0x20);
setAddress_N64(flashBase + currBlock);
writeWord_N64(0xD0);
// Read the status register
setAddress_N64(flashBase + currBlock);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(flashBase + currBlock);
statusReg = readWord_N64();
}
}
}
}
// Erase Fujutsu MSP55LV100S
void eraseMSP55LV100_N64() {
unsigned long flashBase = romBase;
unsigned long sectorSize = 0x20000;
print_Msg(F("Erasing..."));
display_Update();
for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) {
// Blink led
blinkLED();
// Send Erase Command to first chip
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAAAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x5555);
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0x8080);
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAAAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x5555);
setAddress_N64(romBase + currSector);
writeWord_N64(0x3030);
// Read the status register
setAddress_N64(romBase + currSector);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(romBase + currSector);
statusReg = readWord_N64();
}
// Read the status register
setAddress_N64(romBase + currSector);
statusReg = readWord_N64();
while ((statusReg | 0x7FFF) != 0xFFFF) {
setAddress_N64(romBase + currSector);
statusReg = readWord_N64();
}
}
}
// Common chip erase command
void eraseFlashrom_N64() {
print_Msg(F("Chip erase..."));
display_Update();
// Send Erase Command
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(romBase + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0x80);
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(romBase + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + (0x555 << 1));
writeWord_N64(0x10);
// Read the status register
setAddress_N64(romBase);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(romBase);
statusReg = readWord_N64();
// Blink led
blinkLED();
delay(500);
}
}
// Common sector erase command
void eraseSector_N64(unsigned long sectorSize) {
unsigned long flashBase = romBase;
print_Msg(F("Sector erase..."));
display_Update();
for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) {
// Blink led
blinkLED();
// Spansion S29GL256N(32MB/64MB) with two flashrom chips
if ((currSector == 0x2000000) && (strcmp(cartID, "2201") == 0) && (flashid == 0x227E)) {
// Change to second chip
flashBase = romBase + 0x2000000;
}
// Macronix MX29LV640(8MB/16MB) with two flashrom chips
else if ((currSector == 0x800000) && ((flashid == 0x22C9) || (flashid == 0x22CB))) {
flashBase = romBase + 0x800000;
}
// Send Erase Command
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0x80);
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x55);
setAddress_N64(romBase + currSector);
writeWord_N64(0x30);
// Read the status register
setAddress_N64(romBase + currSector);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(romBase + currSector);
statusReg = readWord_N64();
}
}
}
boolean blankcheckFlashrom_N64() {
for (unsigned long currByte = romBase; currByte < romBase + fileSize; currByte += 512) {
// Blink led
if (currByte % 131072 == 0)
blinkLED();
// Set the address
setAddress_N64(currByte);
for (int c = 0; c < 512; c += 2) {
if (readWord_N64() != 0xFFFF) {
return 0;
}
}
}
return 1;
}
// Write Intel flashrom
void writeIntel4400_N64() {
for (unsigned long currSector = 0; currSector < fileSize; currSector += 131072) {
// Blink led
blinkLED();
// Write to flashrom
for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) {
// Fill SD buffer
myFile.read(sdBuffer, 512);
// Write 32 words at a time
for (int currWriteBuffer = 0; currWriteBuffer < 512; currWriteBuffer += 64) {
// Buffered program command
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
writeWord_N64(0xE8);
// Check Status register
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
statusReg = readWord_N64();
}
// Write word count (minus 1)
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
writeWord_N64(0x1F);
// Write buffer
for (byte currByte = 0; currByte < 64; currByte += 2) {
// Join two bytes into one word
word currWord = ((sdBuffer[currWriteBuffer + currByte] & 0xFF) << 8) | (sdBuffer[currWriteBuffer + currByte + 1] & 0xFF);
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + currByte);
writeWord_N64(currWord);
}
// Write Buffer to Flash
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 62);
writeWord_N64(0xD0);
// Read the status register at last written address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 62);
statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != 0xFFFF) {
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 62);
statusReg = readWord_N64();
}
}
}
}
}
// Write Fujitsu MSP55LV100S flashrom consisting out of two MSP55LV512 flashroms one used for the high byte the other for the low byte
void writeMSP55LV100_N64(unsigned long sectorSize) {
unsigned long flashBase = romBase;
for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) {
// Blink led
blinkLED();
// Write to flashrom
for (unsigned long currSdBuffer = 0; currSdBuffer < sectorSize; currSdBuffer += 512) {
// Fill SD buffer
myFile.read(sdBuffer, 512);
// Write 32 bytes at a time
for (int currWriteBuffer = 0; currWriteBuffer < 512; currWriteBuffer += 32) {
// 2 unlock commands
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAAAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x5555);
// Write buffer load command at sector address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
writeWord_N64(0x2525);
// Write word count (minus 1) at sector address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
writeWord_N64(0x0F0F);
// Define variable before loop so we can use it later when reading the status register
word currWord;
for (byte currByte = 0; currByte < 32; currByte += 2) {
// Join two bytes into one word
currWord = ((sdBuffer[currWriteBuffer + currByte] & 0xFF) << 8) | (sdBuffer[currWriteBuffer + currByte + 1] & 0xFF);
// Load Buffer Words
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + currByte);
writeWord_N64(currWord);
}
// Write Buffer to Flash
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 30);
writeWord_N64(0x2929);
// Read the status register at last written address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 30);
word statusReg = readWord_N64();
while ((statusReg | 0x7F7F) != (currWord | 0x7F7F)) {
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + 30);
statusReg = readWord_N64();
}
}
}
}
}
// Write Spansion S29GL256N flashrom using the 32 byte write buffer
void writeFlashBuffer_N64(unsigned long sectorSize, byte bufferSize) {
unsigned long flashBase = romBase;
for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) {
// Blink led
blinkLED();
// Spansion S29GL256N(32MB/64MB) with two flashrom chips
if ((currSector == 0x2000000) && (strcmp(cartID, "2201") == 0)) {
flashBase = romBase + 0x2000000;
}
// Write to flashrom
for (unsigned long currSdBuffer = 0; currSdBuffer < sectorSize; currSdBuffer += 512) {
// Fill SD buffer
myFile.read(sdBuffer, 512);
// Write 32 bytes at a time
for (int currWriteBuffer = 0; currWriteBuffer < 512; currWriteBuffer += bufferSize) {
// 2 unlock commands
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x55);
// Write buffer load command at sector address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
writeWord_N64(0x25);
// Write word count (minus 1) at sector address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer);
writeWord_N64((bufferSize / 2) - 1);
// Define variable before loop so we can use it later when reading the status register
word currWord = 0;
for (byte currByte = 0; currByte < bufferSize; currByte += 2) {
// Join two bytes into one word
currWord = ((sdBuffer[currWriteBuffer + currByte] & 0xFF) << 8) | (sdBuffer[currWriteBuffer + currByte + 1] & 0xFF);
// Load Buffer Words
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + currByte);
writeWord_N64(currWord);
}
// Write Buffer to Flash
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + bufferSize - 2);
writeWord_N64(0x29);
// Read the status register at last written address
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + bufferSize - 2);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != (currWord | 0xFF7F)) {
setAddress_N64(romBase + currSector + currSdBuffer + currWriteBuffer + bufferSize - 2);
statusReg = readWord_N64();
}
}
}
}
}
// Write MX29LV640 flashrom without write buffer
void writeFlashrom_N64(unsigned long sectorSize) {
unsigned long flashBase = romBase;
for (unsigned long currSector = 0; currSector < fileSize; currSector += sectorSize) {
// Blink led
blinkLED();
// Macronix MX29LV640(8MB/16MB) with two flashrom chips
if (currSector == 0x800000) {
flashBase = romBase + 0x800000;
}
// Write to flashrom
for (unsigned long currSdBuffer = 0; currSdBuffer < sectorSize; currSdBuffer += 512) {
// Fill SD buffer
myFile.read(sdBuffer, 512);
for (int currByte = 0; currByte < 512; currByte += 2) {
// Join two bytes into one word
word currWord = ((sdBuffer[currByte] & 0xFF) << 8) | (sdBuffer[currByte + 1] & 0xFF);
// 2 unlock commands
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xAA);
setAddress_N64(flashBase + (0x2AA << 1));
writeWord_N64(0x55);
// Program command
setAddress_N64(flashBase + (0x555 << 1));
writeWord_N64(0xA0);
// Write word
setAddress_N64(romBase + currSector + currSdBuffer + currByte);
writeWord_N64(currWord);
// Read the status register
setAddress_N64(romBase + currSector + currSdBuffer + currByte);
word statusReg = readWord_N64();
while ((statusReg | 0xFF7F) != (currWord | 0xFF7F)) {
setAddress_N64(romBase + currSector + currSdBuffer + currByte);
statusReg = readWord_N64();
}
}
}
}
}
unsigned long verifyFlashrom_N64() {
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
writeErrors = 0;
for (unsigned long currSector = 0; currSector < fileSize; currSector += 131072) {
// Blink led
blinkLED();
for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) {
// Fill SD buffer
myFile.read(sdBuffer, 512);
for (int currByte = 0; currByte < 512; currByte += 2) {
// Join two bytes into one word
word currWord = ((sdBuffer[currByte] & 0xFF) << 8) | (sdBuffer[currByte + 1] & 0xFF);
// Read flash
setAddress_N64(romBase + currSector + currSdBuffer + currByte);
// Compare both
if (readWord_N64() != currWord) {
writeErrors++;
// Abord if too many errors
if (writeErrors > 20) {
print_Msg(F("More than "));
// Close the file:
myFile.close();
return writeErrors;
}
}
}
}
}
// Close the file:
myFile.close();
return writeErrors;
} else {
print_STR(open_file_STR, 1);
display_Update();
return 9999;
}
}
/******************************************
N64 Gameshark Flash Functions
*****************************************/
void flashGameshark_N64() {
// Check flashrom ID's
unlockGSAddressRanges();
idGameshark_N64();
// Check for SST 29LE010 (0808)/SST 28LF040 (0404)/AMTEL AT29LV010A (3535)/SST 29EE010 (0707)
// !!!! This has been confirmed to allow reading of v1.02, v1.04-v1.09, v2.0-2.21, v3.0-3.3 !!!!
// !!!! All referenced eeproms/flashroms are confirmed as being writable with this process. !!!!
// !!!! !!!!
// !!!! PROCEED AT YOUR OWN RISK !!!!
// !!!! !!!!
// !!!! SST 29EE010 may have a 5V requirement for writing however dumping works at 3V. As such it is not !!!!
// !!!! advised to write to a cart with this chip until further testing can be completed. !!!!
if (flashid == 0x0808 || flashid == 0x0404 || flashid == 0x3535 || flashid == 0x0707) {
backupGameshark_N64();
println_Msg("");
println_Msg(F("This will erase your"));
println_Msg(F("Gameshark cartridge"));
println_Msg(F("Attention: Use 3.3V!"));
println_Msg(F("Power OFF if Unsure!"));
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
// Launch file browser
filePath[0] = '\0';
sd.chdir("/");
fileBrowser(F("Select z64 file"));
display_Update();
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
// Get rom size from file
fileSize = myFile.fileSize();
display_Clear();
print_Msg(F("File size: "));
print_Msg(fileSize / 1024);
println_Msg(F(" KB"));
display_Update();
// Compare file size to flashrom size for 1 Mbit eeproms
if (fileSize > 262144 && (flashid == 0x0808 || flashid == 0x3535 || flashid == 0x0707)) {
print_FatalError(file_too_big_STR);
}
// Compare file size to flashrom size for 1 Mbit eeproms
if (fileSize > 1048576 && flashid == 0x0404) {
print_FatalError(file_too_big_STR);
}
// SST 29LE010, chip erase not needed as this eeprom automaticly erases during the write cycle
eraseGameshark_N64();
blankCheck_N64();
// Write flashrom
print_Msg(F("Writing "));
println_Msg(filePath);
display_Update();
writeGameshark_N64();
// Close the file:
myFile.close();
// Verify
print_STR(verifying_STR, 0);
display_Update();
writeErrors = verifyGameshark_N64();
if (writeErrors == 0) {
display_Clear();
display_Update();
println_Msg(F("Verfied OK"));
println_Msg(FS(FSTRING_EMPTY));
println_Msg(F("Turn Cart Reader off now"));
display_Update();
while (1)
;
} else {
display_Clear();
display_Update();
println_Msg(F("Verification Failed"));
println_Msg(writeErrors);
print_Msg(F(" bytes "));
print_Error(did_not_verify_STR);
}
} else {
print_Error(F("Can't open file"));
}
}
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
display_Clear();
display_Update();
}
void unlockGSAddressRanges() {
// This enables using the 0x1EEx_xxxx, 0x1EFx_xxxx, and 0x1ECx_xxxx address ranges, necessary for writing to all supported chips
setAddress_N64(0x10400400);
writeWord_N64(0x1E);
writeWord_N64(0x1E);
}
//Test for SST 29LE010 or SST 28LF040 (0404) or AMTEL AT29LV010A (3535) or SST 29EE010 (0707)
void idGameshark_N64() {
flashid = 0x0;
//Send flashrom ID command
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0xAAAA);
setAddress_N64(0x1EE05554);
writeWord_N64(0x5555);
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0x9090);
setAddress_N64(0x1EC00000);
// Read 1 byte vendor ID
readWord_N64();
// Read 2 bytes flashrom ID
flashid = readWord_N64();
if (flashid == 0x0808 || flashid == 0x3535 || flashid == 0x0707) {
flashSize = 262144;
} else if (flashid == 0x0404) {
//Set SST 28LF040 flashrom size
flashSize = 1048574;
} else {
println_Msg(F("Check cart connection"));
println_Msg(F("Unknown Flash ID"));
sprintf(flashid_str, "%04X", flashid);
print_STR(press_button_STR, 1);
display_Update();
wait();
mainMenu();
}
sprintf(flashid_str, "%04X", flashid);
// Reset flashrom
resetGameshark_N64();
}
void resetGameshark_N64() {
if (flashid == 0x0808 || flashid == 0x3535 || flashid == 0x0707) {
// Send reset command for SST 29LE010 / AMTEL AT29LV010A / SST 29EE010
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0xAAAA);
setAddress_N64(0x1EE05554);
writeWord_N64(0x5555);
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0xF0F0);
delay(100);
} else if (flashid == 0x0404) {
// Send reset command for SST 28LF040
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0xAAAA);
setAddress_N64(0x1EE05554);
writeWord_N64(0x5555);
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0xFFFF);
delay(300);
}
}
// Read rom and save to the SD card
void backupGameshark_N64() {
// create a new folder
EEPROM_readAnything(0, foldern);
sprintf(fileName, "GS%d", foldern);
strcat(fileName, ".z64");
sd.mkdir("N64/ROM/Gameshark", true);
sd.chdir("N64/ROM/Gameshark");
display_Clear();
print_Msg(F("Saving "));
print_Msg(fileName);
println_Msg(F("..."));
display_Update();
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_FatalError(sd_error_STR);
}
for (unsigned long currByte = romBase + 0xEC00000; currByte < (romBase + 0xEC00000 + flashSize); currByte += 512) {
// Blink led
if (currByte % 16384 == 0)
blinkLED();
// Set the address for the next 512 bytes
setAddress_N64(currByte);
for (int c = 0; c < 512; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
myFile.write(sdBuffer, 512);
}
// Close the file:
myFile.close();
}
void eraseGameshark_N64() {
println_Msg(F("Erasing..."));
display_Update();
// Send chip erase to SST 29LE010 / AMTEL AT29LV010A / SST 29EE010
if (flashid == 0x0808 || flashid == 0x3535 || flashid == 0x0707) {
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0xAAAA);
setAddress_N64(0x1EE05554);
writeWord_N64(0x5555);
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0x8080);
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0xAAAA);
setAddress_N64(0x1EE05554);
writeWord_N64(0x5555);
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0x1010);
delay(20);
}
if (flashid == 0x0404) {
//Unprotect flash
setAddress_N64(0x1EF03044);
readWord_N64();
setAddress_N64(0x1EE03040);
readWord_N64();
setAddress_N64(0x1EE03044);
readWord_N64();
setAddress_N64(0x1EE00830);
readWord_N64();
setAddress_N64(0x1EF00834);
readWord_N64();
setAddress_N64(0x1EF00830);
readWord_N64();
setAddress_N64(0x1EE00834);
readWord_N64();
delay(1000);
//Erase flash
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0xAAAA);
setAddress_N64(0x1EE05554);
writeWord_N64(0x5555);
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0x3030);
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0x3030);
delay(1000);
}
}
void blankCheck_N64() {
// Blankcheck
println_Msg(F("Blankcheck..."));
display_Update();
for (unsigned long currSector = 0; currSector < flashSize; currSector += 131072) {
// Blink led
blinkLED();
for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) {
for (int currByte = 0; currByte < 512; currByte += 2) {
// Read flash
setAddress_N64(romBase + 0xEC00000 + currSector + currSdBuffer + currByte);
// Compare both
if (readWord_N64() != 0xFFFF) {
println_Msg(F("Not empty"));
print_FatalError(F("Erase failed"));
}
}
}
}
}
void writeGameshark_N64() {
// Write Gameshark with 2x SST 29LE010 / AMTEL AT29LV010A / SST 29EE010 Eeproms
if (flashid == 0x0808 || flashid == 0x3535 || flashid == 0x0707) {
// Each 29LE010 has 1024 pages, each 128 bytes in size
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(fileSize);
draw_progressbar(0, totalProgressBar);
myFile.seek(0);
for (unsigned long currPage = 0; currPage < fileSize / 2; currPage += 128) {
// Fill SD buffer with twice the amount since we flash 2 chips
myFile.read(sdBuffer, 256);
//Send page write command to both flashroms
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0xAAAA);
setAddress_N64(0x1EE05554);
writeWord_N64(0x5555);
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0xA0A0);
// Write 1 page each, one flashrom gets the low byte, the other the high byte.
for (unsigned long currByte = 0; currByte < 256; currByte += 2) {
// Set address
setAddress_N64(romBase + 0xEC00000 + (currPage * 2) + currByte);
// Join two bytes into one word
word currWord = ((sdBuffer[currByte] & 0xFF) << 8) | (sdBuffer[currByte + 1] & 0xFF);
// Send byte data
writeWord_N64(currWord);
}
processedProgressBar += 256;
draw_progressbar(processedProgressBar, totalProgressBar);
blinkLED();
delay(30);
}
}
if (flashid == 0x0404) {
// Write Gameshark with 2x SST 28LF040
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(fileSize);
draw_progressbar(0, totalProgressBar);
myFile.seek(0);
for (unsigned long currSector = 0; currSector < fileSize; currSector += 16384) {
for (unsigned long currSdBuffer = 0; currSdBuffer < 16384; currSdBuffer += 256) {
// Fill SD buffer
myFile.read(sdBuffer, 256);
for (unsigned long currByte = 0; currByte < 256; currByte += 2) {
// Send byte program command
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0xAAAA);
setAddress_N64(0x1EE05554);
writeWord_N64(0x5555);
setAddress_N64(0x1EF0AAA8);
writeWord_N64(0x1010);
// Set address
setAddress_N64(romBase + 0xEC00000 + currSector + currSdBuffer + currByte);
// Join two bytes into one word
word currWord = ((sdBuffer[currByte] & 0xFF) << 8) | (sdBuffer[currByte + 1] & 0xFF);
// Send byte data
writeWord_N64(currWord);
delayMicroseconds(60);
}
processedProgressBar += 256;
draw_progressbar(processedProgressBar, totalProgressBar);
blinkLED();
}
}
//Protect flash
setAddress_N64(0x1EF03044);
readWord_N64();
setAddress_N64(0x1EE03040);
readWord_N64();
setAddress_N64(0x1EE03044);
readWord_N64();
setAddress_N64(0x1EE00830);
readWord_N64();
setAddress_N64(0x1EF00834);
readWord_N64();
setAddress_N64(0x1EF00830);
readWord_N64();
setAddress_N64(0x1EE00814);
readWord_N64();
delay(1000);
}
}
unsigned long verifyGameshark_N64() {
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(fileSize);
println_Msg(FS(FSTRING_EMPTY));
draw_progressbar(0, totalProgressBar);
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
writeErrors = 0;
for (unsigned long currSector = 0; currSector < fileSize; currSector += 131072) {
for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) {
// Fill SD buffer
myFile.read(sdBuffer, 512);
for (int currByte = 0; currByte < 512; currByte += 2) {
// Join two bytes into one word
word currWord = ((sdBuffer[currByte] & 0xFF) << 8) | (sdBuffer[currByte + 1] & 0xFF);
// Read flash
setAddress_N64(romBase + 0xEC00000 + currSector + currSdBuffer + currByte);
// Compare both
if (readWord_N64() != currWord) {
writeErrors++;
}
}
processedProgressBar += 512;
draw_progressbar(processedProgressBar, totalProgressBar);
blinkLED();
}
}
// Close the file:
myFile.close();
return writeErrors;
} else {
print_STR(open_file_STR, 1);
display_Update();
return 9999;
}
}
/******************************************
XPLORER 64 Functions
*****************************************/
void flashXplorer_N64() {
// Check flashrom ID's
idXplorer_N64();
if (flashid == 0x0808) {
backupXplorer_N64();
println_Msg("");
println_Msg(F("This will erase your"));
println_Msg(F("Xplorer64 cartridge"));
println_Msg(F("Attention: Use 3.3V!"));
println_Msg(F("Power OFF if Unsure!"));
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
// Launch file browser
filePath[0] = '\0';
sd.chdir("/");
fileBrowser(F("Select XP64 rom file"));
display_Update();
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
// Get rom size from file
fileSize = myFile.fileSize();
display_Clear();
print_Msg(F("File size: "));
print_Msg(fileSize / 1024);
println_Msg(F(" KB"));
display_Update();
// Compare file size to flashrom size
if (fileSize > 262144) {
print_FatalError(file_too_big_STR);
}
// SST 29LE010, chip erase not needed as this eeprom automaticly erases during the write cycle
eraseXplorer_N64();
blankCheck_XP64();
// Write flashrom
display_Clear();
print_Msg(F("Writing "));
println_Msg(filePath);
display_Update();
writeXplorer_N64();
// Close the file:
myFile.close();
// Verify
print_STR(verifying_STR, 0);
display_Update();
writeErrors = verifyXplorer_N64();
if (writeErrors == 0) {
display_Clear();
display_Update();
println_Msg(F("Verfied OK"));
println_Msg(FS(FSTRING_EMPTY));
println_Msg(F("Turn Cart Reader off now"));
display_Update();
while (1);
} else {
display_Clear();
display_Update();
println_Msg(F("Verification Failed"));
println_Msg(writeErrors);
print_Msg(F(" bytes "));
print_Error(did_not_verify_STR);
}
} else {
print_Error(F("Can't open file"));
}
}
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
display_Clear();
display_Update();
}
//Test for SST 29LE010
void idXplorer_N64() {
flashid = 0x0;
//Send flashrom ID command
oddXPaddrWrite(0x1040AAAA, 0xAAAA);
evenXPaddrWrite(0x10405555, 0x5555);
oddXPaddrWrite(0x1040AAAA, 0x9090);
setAddress_N64(0x10760000);
readWord_N64();
setAddress_N64(0x10400D88);
flashid = readWord_N64();
setAddress_N64(0x10740000);
readWord_N64();
if (flashid != 0x0808) {
println_Msg(F("Check cart connection"));
println_Msg(F("Unknown Flash ID"));
sprintf(flashid_str, "%04X", flashid);
print_STR(press_button_STR, 1);
display_Update();
wait();
mainMenu();
}
sprintf(flashid_str, "%04X", flashid);
// Reset flashrom
resetXplorer_N64();
}
void resetXplorer_N64() {
// Send reset command for SST 29LE010
oddXPaddrWrite(0x1040AAAA, 0xAAAA);
evenXPaddrWrite(0x10405555, 0x5555);
oddXPaddrWrite(0x1040AAAA, 0xF0F0);
delay(100);
}
// Read rom and save to the SD card
void backupXplorer_N64() {
// create a new folder
EEPROM_readAnything(0, foldern);
sprintf(fileName, "XP64-%d", foldern);
strcat(fileName, ".z64");
sd.mkdir("N64/ROM/XPLORER64", true);
sd.chdir("N64/ROM/XPLORER64");
display_Clear();
print_Msg(F("Saving "));
print_Msg(fileName);
println_Msg(F("..."));
display_Update();
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_FatalError(sd_error_STR);
}
for (unsigned long currByte = 0x10400000; currByte <= 0x1043FFFF; currByte += 512) {
// Blink led
if (currByte % 16384 == 0)
blinkLED();
// Set the address for the next 512 bytes
setAddress_N64(currByte);
for (int c = 0; c < 512; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
myFile.write(sdBuffer, 512);
}
// Close the file:
myFile.close();
println_Msg(F("Done."));
}
unsigned long unscramble(unsigned long addr) {
unsigned long result = (((addr >> 4) & 0x001) | ((addr >> 8) & 0x002) |
((~addr >> 9) & 0x004) | ((addr >> 3) & 0x008) |
((addr >> 6) & 0x010) | ((addr >> 2) & 0x020) |
((~addr << 5) & 0x0C0) | ((~addr << 8) & 0x100) |
((~addr << 6) & 0x200) | ((~addr << 2) & 0x400) |
((addr << 6) & 0x800) | (addr & 0x1F000));
return result;
}
unsigned long scramble(unsigned long addr) {
unsigned long result = (((~addr >> 8) & 0x001) | ((~addr >> 5) & 0x006) |
((~addr >> 6) & 0x008) | ((addr << 4) & 0x010) |
((addr >> 6) & 0x020) | ((addr << 3) & 0x040) |
((addr << 2) & 0x080) | ((~addr >> 2) & 0x100) |
((addr << 8) & 0x200) | ((addr << 6) & 0x400) |
((~addr << 9) & 0x800) | (addr & 0x1F000));
return result;
}
void oddXPaddrWrite(unsigned long addr, word data) {
unsigned long oddAddr = (0x10400000 + ((unscramble((addr & 0xFFFFF) / 2) - 1) * 2));
setAddress_N64(0x10770000);
readWord_N64();
readWord_N64();
setAddress_N64(oddAddr);
writeWord_N64(data);
writeWord_N64(data);
setAddress_N64(0x10740000);
readWord_N64();
readWord_N64();
}
void evenXPaddrWrite(unsigned long addr, word data) {
unsigned long evenAddr = (0x10400000 + (unscramble((addr & 0xFFFFF) / 2) * 2));
setAddress_N64(0x10760000);
readWord_N64();
readWord_N64();
setAddress_N64(evenAddr);
writeWord_N64(data);
writeWord_N64(data);
setAddress_N64(0x10740000);
readWord_N64();
readWord_N64();
}
void eraseXplorer_N64() {
println_Msg(F("Erasing..."));
display_Update();
// Send chip erase to SST 29LE010
oddXPaddrWrite(0x1040AAAA, 0xAAAA);
evenXPaddrWrite(0x10405555, 0x5555);
oddXPaddrWrite(0x1040AAAA, 0x8080);
oddXPaddrWrite(0x1040AAAA, 0xAAAA);
evenXPaddrWrite(0x10405555, 0x5555);
oddXPaddrWrite(0x1040AAAA,0x1010);
delay(20);
}
void blankCheck_XP64() {
// Blankcheck
println_Msg(F("Blankcheck..."));
display_Update();
for (unsigned long currSector = 0; currSector < 262144; currSector += 131072) {
// Blink led
blinkLED();
for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) {
for (int currByte = 0; currByte < 512; currByte += 2) {
// Read flash
setAddress_N64(0x10400000 + currSector + currSdBuffer + currByte);
// Compare both
if (readWord_N64() != 0xFFFF) {
println_Msg(F("Not empty"));
print_FatalError(F("Erase failed"));
}
}
}
}
}
void writeXplorer_N64() {
// Write Xplorer64 with 2x SST 29LE010
// Each 29LE010 has 1024 pages, each 128 bytes in size
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(fileSize);
draw_progressbar(0, totalProgressBar);
for (unsigned long currPage = 0; currPage < fileSize / 2; currPage += 128) {
// Fill SD buffer with data in the order it will be expected by the CPLD
for (unsigned long i = 0; i < 256; i += 2) {
unsigned long unscrambled_address = (unscramble(((currPage*2) + i) / 2) * 2);
myFile.seek(unscrambled_address);
myFile.read(&sdBuffer[i], 1);
myFile.seek(unscrambled_address + 1);
myFile.read(&sdBuffer[i + 1], 1);
}
//Send page write command to both flashroms
oddXPaddrWrite(0x1040AAAA, 0xAAAA);
evenXPaddrWrite(0x10405555, 0x5555);
oddXPaddrWrite(0x1040AAAA, 0xA0A0);
// Write 1 page each, one flashrom gets the low byte, the other the high byte.
for (unsigned long currByte = 0; currByte < 256; currByte += 2) {
// Join two bytes into one word
word currWord = ((sdBuffer[currByte] & 0xFF) << 8) | (sdBuffer[currByte + 1] & 0xFF);
// Set address
if ((((currByte/2) >> 4) & 0x1) == 0) {
evenXPaddrWrite(0x10400000 + (currPage*2) + currByte, currWord);
} else {
oddXPaddrWrite(0x10400000 + (currPage*2) + currByte, currWord);
}
}
processedProgressBar += 256;
draw_progressbar(processedProgressBar, totalProgressBar);
blinkLED();
}
}
unsigned long verifyXplorer_N64() {
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(262144);
println_Msg(FS(FSTRING_EMPTY));
draw_progressbar(0, totalProgressBar);
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
myFile.seek(0);
writeErrors = 0;
for (unsigned long currSector = 0; currSector < 262144; currSector += 131072) {
for (unsigned long currSdBuffer = 0; currSdBuffer < 131072; currSdBuffer += 512) {
// Fill SD buffer
myFile.read(sdBuffer, 512);
for (int currByte = 0; currByte < 512; currByte += 2) {
// Join two bytes into one word
word currWord = ((sdBuffer[currByte] & 0xFF) << 8) | (sdBuffer[currByte + 1] & 0xFF);
// Read flash
setAddress_N64(romBase + 0x400000 + currSector + currSdBuffer + currByte);
// Compare both
if (readWord_N64() != currWord) {
writeErrors++;
}
}
processedProgressBar += 512;
draw_progressbar(processedProgressBar, totalProgressBar);
blinkLED();
}
}
// Close the file:
myFile.close();
return writeErrors;
} else {
print_STR(open_file_STR, 1);
display_Update();
return 9999;
}
}
#endif
//******************************************
// End of File
//******************************************