sanni 6bcdc9526c V20 Changed N64 timing a bit
Hopefully I didn't break anything :x
2017-01-29 19:00:12 +01:00

2068 lines
53 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//******************************************
// NINTENDO 64
//******************************************
/******************************************
Defines
*****************************************/
// These two macros toggle the eepDataPin/ControllerDataPin between input and output
// External 1K pull-up resistor from eepDataPin to VCC required
// 0x10 = 00010000 -> Port H Pin 4
#define N64_HIGH DDRH &= ~0x10
#define N64_LOW DDRH |= 0x10
// Read the current state(0/1) of the eepDataPin
#define N64_QUERY (PINH & 0x10)
/******************************************
Variables
*****************************************/
// Received N64 Eeprom data bits, 1 page
bool tempBits[65];
int eepPages;
// Savetype
byte saveType;
// N64 Controller
// 256 bits of received Controller data
char N64_raw_dump[257];
// Array that holds one Controller Pak block of 32 bytes
byte myBlock[33];
String rawStr = ""; // above char array read into a string
struct {
char stick_x;
char stick_y;
}
N64_status;
//stings that hold the buttons
String button = "N/A";
String lastbutton = "N/A";
// Rom base address
unsigned long romBase = 0x10000000;
unsigned long sramBase = 0x08000000;
// Flashram type
byte flashramType = 1;
boolean MN63F81MPN = false;
/******************************************
Menu
*****************************************/
// N64 controller menu items
const char N64ContMenuItem1[] PROGMEM = "Test Controller";
const char N64ContMenuItem2[] PROGMEM = "Read ControllerPak";
const char N64ContMenuItem3[] PROGMEM = "Write ControllerPak";
const char N64ContMenuItem4[] PROGMEM = "Reset";
const char* const menuOptionsN64Controller[] PROGMEM = {N64ContMenuItem1, N64ContMenuItem2, N64ContMenuItem3, N64ContMenuItem4};
// N64 cart menu items
const char N64CartMenuItem1[] PROGMEM = "Read Rom";
const char N64CartMenuItem2[] PROGMEM = "Read Save";
const char N64CartMenuItem3[] PROGMEM = "Write Save";
const char N64CartMenuItem4[] PROGMEM = "Reset";
const char* const menuOptionsN64Cart[] PROGMEM = {N64CartMenuItem1, N64CartMenuItem2, N64CartMenuItem3, N64CartMenuItem4};
// N64 CRC32 error menu items
const char N64CRCMenuItem1[] PROGMEM = "Recalc CRC";
const char N64CRCMenuItem2[] PROGMEM = "Redump";
const char N64CRCMenuItem3[] PROGMEM = "Ignore";
const char N64CRCMenuItem4[] PROGMEM = "Reset";
const char* const menuOptionsN64CRC[] PROGMEM = {N64CRCMenuItem1, N64CRCMenuItem2, N64CRCMenuItem3, N64CRCMenuItem4};
// N64 Controller Menu
void n64ControllerMenu() {
// create menu with title and 4 options to choose from
unsigned char mainMenu;
// Copy menuOptions out of progmem
convertPgm(menuOptionsN64Controller, 4);
mainMenu = question_box("N64 Controller", menuOptions, 4, 0);
// wait for user choice to come back from the question box menu
switch (mainMenu)
{
case 0:
display_Clear();
display_Update();
readController();
break;
case 1:
display_Clear();
display_Update();
readMPK();
println_Msg(F(""));
println_Msg(F("Press Button."));
display_Update();
wait();
break;
case 2:
display_Clear();
display_Update();
// Change to root
filePath[0] = '\0';
sd.chdir("/");
// Launch file browser
fileBrowser("Select mpk file");
display_Clear();
display_Update();
writeMPK();
verifyMPK();
println_Msg(F(""));
println_Msg(F("Press Button."));
display_Update();
wait();
break;
case 3:
asm volatile (" jmp 0");
break;
}
}
// N64 Cartridge Menu
void n64CartMenu() {
// create menu with title and 4 options to choose from
unsigned char mainMenu;
// Copy menuOptions out of progmem
convertPgm(menuOptionsN64Cart, 4);
mainMenu = question_box("N64 Cart Reader", menuOptions, 4, 0);
// wait for user choice to come back from the question box menu
switch (mainMenu)
{
case 0:
sd.chdir("/");
display_Clear();
println_Msg(F("Reading Rom..."));
display_Update();
readRom_N64();
break;
case 1:
sd.chdir("/");
display_Clear();
if (saveType == 1) {
println_Msg(F("Reading Sram..."));
display_Update();
readSram(32768, 1);
}
else if (saveType == 4) {
getFramType();
println_Msg(F("Reading Flashram..."));
display_Update();
readFram(flashramType);
}
else if ((saveType == 5) || (saveType == 6)) {
println_Msg(F("Reading Eep..."));
display_Update();
readEeprom();
}
else {
print_Error(F("Savetype Error"), false);
}
println_Msg(F(""));
println_Msg(F("Press Button..."));
display_Update();
wait();
break;
case 2:
filePath[0] = '\0';
sd.chdir("/");
if (saveType == 1) {
// Launch file browser
fileBrowser("Select sra file");
display_Clear();
writeSram(32768);
writeErrors = verifySram(32768, 1);
if (writeErrors == 0) {
println_Msg(F("Sram verified OK"));
display_Update();
}
else {
print_Msg(F("Error: "));
print_Msg(writeErrors);
println_Msg(F(" bytes "));
print_Error(F("did not verify."), false);
}
}
else if (saveType == 4) {
// Launch file browser
fileBrowser("Select fla file");
display_Clear();
getFramType();
writeFram(flashramType);
print_Msg(F("Verifying..."));
display_Update();
writeErrors = verifyFram(flashramType);
if (writeErrors == 0) {
println_Msg(F("OK"));
display_Update();
}
else {
println_Msg("");
print_Msg(F("Error: "));
print_Msg(writeErrors);
println_Msg(F(" bytes "));
print_Error(F("did not verify."), false);
}
}
else if ((saveType == 5) || (saveType == 6)) {
// Launch file browser
fileBrowser("Select eep file");
display_Clear();
writeEeprom();
writeErrors = verifyEeprom();
if (writeErrors == 0) {
println_Msg(F("Eeprom verified OK"));
display_Update();
}
else {
print_Msg(F("Error: "));
print_Msg(writeErrors);
println_Msg(F(" bytes "));
print_Error(F("did not verify."), false);
}
}
else {
print_Error(F("Savetype Error"), false);
}
println_Msg(F("Press Button..."));
display_Update();
wait();
break;
case 3:
asm volatile (" jmp 0");
break;
}
}
/******************************************
Setup
*****************************************/
void setup_N64_Controller() {
// Output a low signal
PORTH &= ~(1 << 4);
// Set Controller Data Pin(PH4) to Input
DDRH &= ~(1 << 4);
}
void setup_N64_Cart() {
// Set Address Pins to Output
//A0-A7
DDRF = 0xFF;
//A8-A15
DDRK = 0xFF;
// Set Control Pins to Output WR(PH5) RD(PH6) aleL(PC0) aleH(PC1)
DDRH |= (1 << 5) | (1 << 6);
DDRC |= (1 << 0) | (1 << 1);
// Output a high signal on all pins, pins are active low therefore everything is disabled now
PORTH |= (1 << 5) | (1 << 6);
PORTC |= (1 << 0) | (1 << 1);
// Set Eeprom Clock Pin(PH1) to Output
DDRH |= (1 << 1);
// Output a high signal
PORTH |= (1 << 1);
// Set Eeprom Data Pin(PH4) to Input
DDRH &= ~(1 << 4);
// Activate Internal Pullup Resistors
//PORTH |= (1 << 4);
// Wait until all is stable
delay(500);
// Print start page
getCartInfo_N64();
if (cartSize != 0) {
println_Msg(F("N64 Cartridge Info"));
println_Msg(F(""));
printName();
print_Msg(F("ID: "));
print_Msg(cartID);
print_Msg(F(" Size: "));
print_Msg(cartSize);
println_Msg(F("MB"));
print_Msg(F("Save: "));
switch (saveType) {
case 1:
println_Msg(F("Sram"));
break;
case 4:
println_Msg(F("Flashram"));
break;
case 5:
println_Msg(F("4K Eeprom"));
eepPages = 64;
break;
case 6:
println_Msg(F("16K Eeprom"));
eepPages = 256;
break;
default:
println_Msg(F("unknown"));
break;
}
print_Msg(F("Version: 1."));
println_Msg(romVersion);
// Wait for user input
println_Msg(F(" "));
println_Msg(F("Press Button..."));
display_Update();
wait();
}
else {
println_Msg(F("GAMEPAK ERROR"));
println_Msg("");
printName();
print_Msg(F("ID: "));
println_Msg(cartID);
println_Msg("");
display_Update();
print_Error(F("Cartridge unknown"), true);
}
}
/******************************************
Low level functions
*****************************************/
// Switch Cartridge address/data pins to write
void adOut_N64() {
//A0-A7
DDRF = 0xFF;
//A8-A15
DDRK = 0xFF;
}
// Switch Cartridge address/data pins to read
void adIn_N64() {
//A0-A7
DDRF = 0x00;
//A8-A15
DDRK = 0x00;
}
// Set Cartridge address
void setAddress_N64(unsigned long myAddress) {
// Split address into two words
word myAdrLowOut = myAddress & 0xFFFF;
word myAdrHighOut = myAddress >> 16;
// Set address pins to output
adOut_N64();
// Switch WR(PH5) RD(PH6) ale_L(PC0) ale_H(PC1) to high (since the pins are active low)
PORTH |= (1 << 5) | (1 << 6);
PORTC |= (1 << 0) | (1 << 1);
// Output high part to address pins
PORTF = myAdrHighOut & 0xFF;
PORTK = (myAdrHighOut >> 8) & 0xFF;
// Leave ale_H high for additional 120ns
__asm__("nop\n\t""nop\n\t");
// Pull ale_H(PC1) low
PORTC &= ~(1 << 1);
// Leave address pins stable for a little bit
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
// Output low part to address pins
PORTF = myAdrLowOut & 0xFF;
PORTK = (myAdrLowOut >> 8) & 0xFF;
// Leave ale_L high for ~180ns
__asm__("nop\n\t""nop\n\t""nop\n\t");
// Pull ale_L(PC0) low
PORTC &= ~(1 << 0);
// Leave address pins stable for a little bit
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
// Set data pins to input
adIn_N64();
// Wait ~600ns just to be sure address is set
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
}
// Read one word out of the cartridge
word readWord_N64() {
// Pull read(PH6) low
PORTH &= ~(1 << 6);
// Wait ~300ns
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
// Join bytes from PINF and PINK into a word
word tempWord = ( ( PINK & 0xFF ) << 8 ) | ( PINF & 0xFF );
// Pull read(PH6) high
PORTH |= (1 << 6);
return tempWord;
}
// Write one word to data pins of the cartridge
void writeWord_N64(word myWord) {
// Set address pins to output
adOut_N64();
// Output word to AD0-AD15
PORTF = myWord & 0xFF;
PORTK = (myWord >> 8) & 0xFF;
// Wait ~62.5ns
__asm__("nop\n\t");
// Pull write(PH5) low
PORTH &= ~(1 << 5);
// Wait ~310ns
__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t""nop\n\t");
// Pull write(PH5) high
PORTH |= (1 << 5);
// Wait ~125ns
__asm__("nop\n\t""nop\n\t");
// Set data pins to input
adIn_N64();
}
/******************************************
N64 Controller CRC Functions
*****************************************/
static word addrCRC(word address) {
// CRC table
word xor_table[16] = { 0x0, 0x0, 0x0, 0x0, 0x0, 0x15, 0x1F, 0x0B, 0x16, 0x19, 0x07, 0x0E, 0x1C, 0x0D, 0x1A, 0x01 };
word crc = 0;
// Make sure we have a valid address
address &= ~0x1F;
// Go through each bit in the address, and if set, xor the right value into the output
for (int i = 15; i >= 5; i--) {
// Is this bit set?
if ( ((address >> i) & 0x1)) {
crc ^= xor_table[i];
}
}
// Just in case
crc &= 0x1F;
// Create a new address with the CRC appended
return address | crc;
}
static byte dataCRC(byte * data) {
byte ret = 0;
for (byte i = 0; i <= 32; i++) {
for (byte j = 7; j >= 0; j--) {
int tmp = 0;
if (ret & 0x80) {
tmp = 0x85;
}
ret <<= 1;
if ( i < 32 ) {
if (data[i] & (0x01 << j)) {
ret |= 0x1;
}
}
ret ^= tmp;
}
}
return ret;
}
/******************************************
N64 Controller Protocol Functions
*****************************************/
void N64_send(unsigned char *buffer, char length) {
// Send these bytes
char bits;
bool bit;
// This routine is very carefully timed by examining the assembly output.
// Do not change any statements, it could throw the timings off
//
// We get 16 cycles per microsecond, which should be plenty, but we need to
// be conservative. Most assembly ops take 1 cycle, but a few take 2
//
// I use manually constructed for-loops out of gotos so I have more control
// over the outputted assembly. I can insert nops where it was impossible
// with a for loop
asm volatile (";Starting outer for loop");
outer_loop:
{
asm volatile (";Starting inner for loop");
bits = 8;
inner_loop:
{
// Starting a bit, set the line low
asm volatile (";Setting line to low");
N64_LOW; // 1 op, 2 cycles
asm volatile (";branching");
if (*buffer >> 7) {
asm volatile (";Bit is a 1");
// 1 bit
// remain low for 1us, then go high for 3us
// nop block 1
asm volatile ("nop\nnop\nnop\nnop\nnop\n");
asm volatile (";Setting line to high");
N64_HIGH;
// nop block 2
// we'll wait only 2us to sync up with both conditions
// at the bottom of the if statement
asm volatile ("nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
);
}
else {
asm volatile (";Bit is a 0");
// 0 bit
// remain low for 3us, then go high for 1us
// nop block 3
asm volatile ("nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\n");
asm volatile (";Setting line to high");
N64_HIGH;
// wait for 1us
asm volatile ("; end of conditional branch, need to wait 1us more before next bit");
}
// end of the if, the line is high and needs to remain
// high for exactly 16 more cycles, regardless of the previous
// branch path
asm volatile (";finishing inner loop body");
--bits;
if (bits != 0) {
// nop block 4
// this block is why a for loop was impossible
asm volatile ("nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\n");
// rotate bits
asm volatile (";rotating out bits");
*buffer <<= 1;
goto inner_loop;
} // fall out of inner loop
}
asm volatile (";continuing outer loop");
// In this case: the inner loop exits and the outer loop iterates,
// there are /exactly/ 16 cycles taken up by the necessary operations.
// So no nops are needed here (that was lucky!)
--length;
if (length != 0) {
++buffer;
goto outer_loop;
} // fall out of outer loop
}
}
void N64_stop() {
// send a single stop (1) bit
// nop block 5
asm volatile ("nop\nnop\nnop\nnop\n");
N64_LOW;
// wait 1 us, 16 cycles, then raise the line
// 16-2=14
// nop block 6
asm volatile ("nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\n");
N64_HIGH;
}
void N64_get(word bitcount) {
// listen for the expected bitcount/8 bytes of data back from the controller and
// blast it out to the N64_raw_dump array, one bit per byte for extra speed.
asm volatile (";Starting to listen");
unsigned char timeout;
char *bitbin = N64_raw_dump;
// Again, using gotos here to make the assembly more predictable and
// optimization easier (please don't kill me)
read_loop:
timeout = 0x3f;
// wait for line to go low
while (N64_QUERY) {
if (!--timeout)
return;
}
// wait approx 2us and poll the line
asm volatile (
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
"nop\nnop\nnop\nnop\nnop\n"
);
*bitbin = N64_QUERY;
++bitbin;
--bitcount;
if (bitcount == 0)
return;
// wait for line to go high again
// it may already be high, so this should just drop through
timeout = 0x3f;
while (!N64_QUERY) {
if (!--timeout)
return;
}
goto read_loop;
}
/******************************************
N64 Controller Functions
*****************************************/
void get_button()
{
// Command to send to the gamecube
// The last bit is rumble, flip it to rumble
// yes this does need to be inside the loop, the
// array gets mutilated when it goes through N64_send
unsigned char command[] = {
0x01
};
// don't want interrupts getting in the way
noInterrupts();
// send those 3 bytes
N64_send(command, 1);
N64_stop();
// read in 32bits of data and dump it to N64_raw_dump
N64_get(32);
// end of time sensitive code
interrupts();
// The get_N64_status function sloppily dumps its data 1 bit per byte
// into the get_status_extended char array. It's our job to go through
// that and put each piece neatly into the struct N64_status
int i;
memset(&N64_status, 0, sizeof(N64_status));
// bits: joystick x value
// These are 8 bit values centered at 0x80 (128)
for (i = 0; i < 8; i++) {
N64_status.stick_x |= N64_raw_dump[16 + i] ? (0x80 >> i) : 0;
}
for (i = 0; i < 8; i++) {
N64_status.stick_y |= N64_raw_dump[24 + i] ? (0x80 >> i) : 0;
}
// read char array N64_raw_dump into string rawStr
rawStr = "";
for (i = 0; i < 16; i++) {
rawStr = rawStr + String(N64_raw_dump[i], DEC);
}
// Buttons (A,B,Z,S,DU,DD,DL,DR,0,0,L,R,CU,CD,CL,CR)
if (rawStr.substring(0, 16) == "0000000000000000") {
lastbutton = button;
button = "Press a button";
}
else
{
for (int i = 0; i < 16; i++)
{
// seems to be 16, 8 or 4 depending on what pin is used
if (N64_raw_dump[i] == 16)
{
switch (i)
{
case 7:
button = "D-Right";
break;
case 6:
button = "D-Left";
break;
case 5:
button = "D-Down";
break;
case 4:
button = "D-Up";
break;
case 3:
button = "START";
break;
case 2:
button = "Z";
break;
case 1:
button = "B";
break;
case 0:
button = "A";
break;
case 15:
button = "C-Right";
break;
case 14:
button = "C-Left";
break;
case 13:
button = "C-Down";
break;
case 12:
button = "C-Up";
break;
case 11:
button = "R";
break;
case 10:
button = "L";
break;
}
}
}
}
}
void readController() {
bool quit = 1;
while (quit) {
display_Clear();
// Get Button and analog stick
get_button();
println_Msg(F("Controller Test"));
println_Msg("");
println_Msg(button);
println_Msg("");
String stickx = String("X: " + String(N64_status.stick_x, DEC) + " ");
println_Msg(stickx);
String sticky = String("Y: " + String(N64_status.stick_y, DEC) + " ");
println_Msg(sticky);
println_Msg("");
println_Msg(F("Press START to quit"));
display_Update();
delay(100);
if (button == "START") {
quit = 0;
}
}
}
/******************************************
N64 Controller Pak Functions
(connected via Controller)
*****************************************/
// read 32bytes from controller pak
void readBlock(word myAddress) {
// Calculate the address CRC
word myAddressCRC = addrCRC(myAddress);
// Read Controller Pak command
unsigned char command[] = {0x02};
// Address Command
unsigned char addressHigh[] = {(unsigned char)(myAddressCRC >> 8)};
unsigned char addressLow[] = {(unsigned char)(myAddressCRC & 0xff)};
// don't want interrupts getting in the way
noInterrupts();
// send those 3 bytes
N64_send(command, 1);
N64_send(addressHigh, 1);
N64_send(addressLow, 1);
N64_stop();
// read in data
N64_get(256);
// end of time sensitive code
interrupts();
// Empty N64_raw_dump into myBlock
for (word i = 0; i < 256; i += 8) {
boolean byteFlipped[9];
// Flip byte order
byteFlipped[0] = N64_raw_dump[i + 7];
byteFlipped[1] = N64_raw_dump[i + 6];
byteFlipped[2] = N64_raw_dump[i + 5];
byteFlipped[3] = N64_raw_dump[i + 4];
byteFlipped[4] = N64_raw_dump[i + 3];
byteFlipped[5] = N64_raw_dump[i + 2];
byteFlipped[6] = N64_raw_dump[i + 1];
byteFlipped[7] = N64_raw_dump[i + 0];
// Join bits into one byte
unsigned char myByte = 0;
for (byte j = 0; j < 8; ++j) {
if (byteFlipped[j]) {
myByte |= 1 << j;
}
}
// Save byte into block array
myBlock[i / 8] = myByte;
}
}
// reads the MPK file to the sd card
void readMPK() {
// Change to root
sd.chdir("/");
// Change to MPK directory
sd.chdir("MPK");
// Get name, add extension and convert to char array for sd lib
EEPROM_readAnything(0, foldern);
sprintf(fileName, "%d", foldern);
strcat(fileName, ".mpk");
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
//open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(F("Can't open file on SD"), true);
}
println_Msg(F("Please wait..."));
display_Update();
// Controller paks, which all have 32kB of space, are mapped between 0x0000 0x7FFF
for (word i = 0x0000; i < 0x8000; i += 32) {
// Read one block of the Controller Pak into array myBlock
readBlock(i);
// Write block to SD card
for (byte j = 0; j < 32; j++) {
myFile.write(myBlock[j]);
}
}
// Close the file:
myFile.close();
print_Msg(F("Saved as /MPK/"));
println_Msg(fileName);
display_Update();
}
void writeMPK() {
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
println_Msg(F("Writing..."));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (word myAddress = 0x0000; myAddress < 0x8000; myAddress += 32) {
// Read 32 bytes into SD buffer
myFile.read(sdBuffer, 32);
// Calculate the address CRC
word myAddressCRC = addrCRC(myAddress);
// Write Controller Pak command
unsigned char command[] = {0x03};
// Address Command
unsigned char addressHigh[] = {(unsigned char)(myAddressCRC >> 8)};
unsigned char addressLow[] = {(unsigned char)(myAddressCRC & 0xff)};
// don't want interrupts getting in the way
noInterrupts();
// Send write command
N64_send(command, 1);
// Send block number
N64_send(addressHigh, 1);
N64_send(addressLow, 1);
// Send data to write
N64_send(sdBuffer, 32);
// Send stop
N64_stop();
// Enable interrupts
interrupts();
}
// Close the file:
myFile.close();
println_Msg(F("Done"));
display_Update();
}
else {
print_Error(F("Can't create file on SD"), true);
}
}
// verifies if write was successful
void verifyMPK() {
writeErrors = 0;
println_Msg(F("Verifying..."));
display_Update();
//open file on sd card
if (!myFile.open(filePath, O_RDWR | O_CREAT)) {
print_Error(F("Can't create file on SD"), true);
}
// Controller paks, which all have 32kB of space, are mapped between 0x0000 0x7FFF
for (word i = 0x0000; i < 0x8000; i += 32) {
// Read one block of the Controller Pak into array myBlock
readBlock(i);
// Check against file on SD card
for (byte j = 0; j < 32; j++) {
if (myFile.read() != myBlock[j]) {
writeErrors++;
}
}
}
// Close the file:
myFile.close();
if (writeErrors == 0) {
println_Msg(F("OK"));
display_Update();
}
else {
print_Msg(F("Error: "));
print_Msg(writeErrors);
println_Msg(F(" bytes "));
print_Error(F("did not verify."), false);
}
}
/******************************************
N64 Cartridge functions
*****************************************/
// CRC32 lookup table
static const uint32_t crc_32_tab[] PROGMEM = { /* CRC polynomial 0xedb88320 */
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};
// Calculate dumped rom's CRC32
inline uint32_t updateCRC32(uint8_t ch, uint32_t crc) {
uint32_t idx = ((crc) ^ (ch)) & 0xff;
uint32_t tab_value = pgm_read_dword(crc_32_tab + idx);
return tab_value ^ ((crc) >> 8);
}
// Read rom from sd
uint32_t crc32() {
if (myFile.open(fileName, O_READ)) {
uint32_t oldcrc32 = 0xFFFFFFFF;
for (unsigned long currByte = 0; currByte < cartSize * 2048; currByte++) {
myFile.read(sdBuffer, 512);
for (int c = 0; c < 512; c++) {
oldcrc32 = updateCRC32(sdBuffer[c], oldcrc32);
}
}
// Close the file:
myFile.close();
return ~oldcrc32;
}
else {
print_Error(F("File not found"), true);
}
}
// look-up the calculated crc in the file n64.txt on sd card
boolean searchCRC(char crcStr[9]) {
boolean result = 0;
char tempStr2[2];
char tempStr1[9];
char tempStr[5];
// Change to root dir
sd.chdir("/");
if (myFile.open("n64.txt", O_READ)) {
// Loop through file
while (myFile.available()) {
// Read 8 bytes into String, do it one at a time so byte order doesn't get mixed up
sprintf(tempStr1, "%c", myFile.read());
for (byte i = 0; i < 7; i++) {
sprintf(tempStr2, "%c", myFile.read());
strcat(tempStr1, tempStr2);
}
// Check if string is a match
if (strcmp(tempStr1, crcStr) == 0) {
// Skip the , in the file
myFile.seekSet(myFile.curPosition() + 1);
// Read 4 bytes into String, do it one at a time so byte order doesn't get mixed up
sprintf(tempStr, "%c", myFile.read());
for (byte i = 0; i < 3; i++) {
sprintf(tempStr2, "%c", myFile.read());
strcat(tempStr, tempStr2);
}
if (strcmp(tempStr, cartID) == 0) {
result = 1;
break;
}
else {
result = 0;
break;
}
}
// If no match, empty string, advance by 12 and try again
else {
myFile.seekSet(myFile.curPosition() + 12);
}
}
// Close the file:
myFile.close();
return result;
}
else {
print_Error(F("N64.txt missing"), true);
}
}
// look-up cart id in file n64.txt on sd card
void getCartInfo_N64() {
char tempStr2[2];
char tempStr[5];
char sizeStr[3];
char saveStr[2];
// cart not in list
cartSize = 0;
saveType = 0;
// Read cart id
idCart();
if (myFile.open("n64.txt", O_READ)) {
// Skip over the first crc
myFile.seekSet(myFile.curPosition() + 9);
// Loop through file
while (myFile.available()) {
// Read 4 bytes into String, do it one at a time so byte order doesn't get mixed up
sprintf(tempStr, "%c", myFile.read());
for (byte i = 0; i < 3; i++) {
sprintf(tempStr2, "%c", myFile.read());
strcat(tempStr, tempStr2);
}
// Check if string is a match
if (strcmp(tempStr, cartID) == 0) {
// Skip the , in the file
myFile.seekSet(myFile.curPosition() + 1);
// Read the next ascii character and subtract 48 to convert to decimal
cartSize = myFile.read() - 48;
// Remove leading 0 for single digit cart sizes
if (cartSize != 0) {
cartSize = cartSize * 10 + myFile.read() - 48;
}
else {
cartSize = myFile.read() - 48;
}
// Skip the , in the file
myFile.seekSet(myFile.curPosition() + 1);
// Read the next ascii character and subtract 48 to convert to decimal
saveType = myFile.read() - 48;
}
// If no match, empty string, advance by 16 and try again
else {
myFile.seekSet(myFile.curPosition() + 16);
}
}
// Close the file:
myFile.close();
}
else {
print_Error(F("N64.txt missing"), true);
}
}
// Read rom ID
void idCart() {
// Set address
setAddress_N64(romBase + 0x3A);
// Split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// First letter is always N or C
cartID[0] = loByte;
// Split word
myWord = readWord_N64();
loByte = myWord & 0xFF;
hiByte = myWord >> 8;
// Game ID
cartID[1] = char(hiByte);
cartID[2] = char(loByte);
// Split word
myWord = readWord_N64();
loByte = myWord & 0xFF;
hiByte = myWord >> 8;
// Country Code
cartID[3] = char(hiByte);
// Get rom version
romVersion = loByte;
}
// Read name out of rom
void printName() {
// Set the address for the next 512 bytes
setAddress_N64(romBase + 0x20);
// Dump name into 8.3 compatible format
byte myLength = 0;
for (unsigned int i = 0; i < 20; i += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
if (((char(hiByte) >= 48 && char(hiByte) <= 57) || (char(hiByte) >= 65 && char(hiByte) <= 122)) && myLength < 8) {
romName[myLength] = char(hiByte);
myLength++;
}
if (((char(loByte) >= 48 && char(loByte) <= 57) || (char(loByte) >= 65 && char(loByte) <= 122)) && myLength < 8) {
romName[myLength] = char(loByte);
myLength++;
}
}
print_Msg(F("Name: "));
println_Msg(romName);
display_Update();
}
/******************************************
Eeprom functions
*****************************************/
// Send a clock pulse of 2us length, 50% duty, 500kHz
void pulseClock_N64(unsigned int times) {
for (unsigned int i = 0; i < (times * 2); i++) {
// Switch the clock pin to 0 if it's 1 and 0 if it's 1
PORTH ^= (1 << 1);
// without the delay the clock pulse would be 1.5us and 666kHz
//__asm__("nop\n\t""nop\n\t""nop\n\t""nop\n\t"));
}
}
// Send one byte of data to eeprom
void sendData(byte data) {
for (byte i = 0; i < 8; i++) {
// pull data line low
N64_LOW;
// if current bit is 1, pull high after ~1us, 2 cycles
if (data >> 7) {
pulseClock_N64(2);
N64_HIGH;
pulseClock_N64(6);
}
// if current bit is 0 pull high after ~3us, 6 cycles
else {
pulseClock_N64(6);
N64_HIGH;
pulseClock_N64(2);
}
// rotate to the next bit
data <<= 1;
}
}
// Send stop bit to eeprom
void sendStop() {
N64_LOW;
pulseClock_N64(2);
N64_HIGH;
pulseClock_N64(4);
}
// Capture 8 bytes in 64 bits into bit array tempBits
void readData() {
for (byte i = 0; i < 64; i++) {
// pulse clock until we get response from eeprom
while (N64_QUERY) {
pulseClock_N64(1);
}
// Skip over the 1us low part of a high bit
pulseClock_N64(3);
// Read bit
tempBits[i] = N64_QUERY;
// wait for line to go high again
while (!N64_QUERY) {
pulseClock_N64(1);
}
}
}
// Write Eeprom to cartridge
void writeEeprom() {
if ((saveType == 5) || (saveType == 6)) {
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
println_Msg(F("Writing..."));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (byte i = 0; i < (eepPages / 64); i++) {
myFile.read(sdBuffer, 512);
for (byte pageNumber = 0; pageNumber < 64; pageNumber++) {
// Disable interrupts for more uniform clock pulses
noInterrupts();
// Wait ~50ms between page writes or eeprom will have write errors
pulseClock_N64(26000);
// Send write command
sendData(0x05);
// Send page number
sendData(pageNumber + (i * 64));
// Send data to write
for (byte j = 0; j < 8; j++) {
sendData(sdBuffer[(pageNumber * 8) + j]);
}
sendStop();
interrupts();
}
}
// Close the file:
myFile.close();
println_Msg(F("Done"));
display_Update();
}
else {
print_Error(F("SD Error"), true);
}
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Dump Eeprom to SD
void readEeprom() {
if ((saveType == 5) || (saveType == 6)) {
// Wait 0.6ms
pulseClock_N64(300);
// Get name, add extension and convert to char array for sd lib
strcpy(fileName, romName);
strcat(fileName, ".eep");
// create a new folder for the save file
EEPROM_readAnything(0, foldern);
sprintf(folder, "SAVE/%s/%d", romName, foldern);
sd.mkdir(folder, true);
sd.chdir(folder);
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(F("Can't create file on SD"), true);
}
for (byte i = 0; i < (eepPages / 64); i++) {
for (byte pageNumber = 0; pageNumber < 64; pageNumber++) {
// Disable interrupts for more uniform clock pulses
noInterrupts();
// Send read command
sendData(0x04);
// Send Page number
sendData(pageNumber + (i * 64));
// Send stop bit
sendStop();
// read data
readData();
sendStop();
interrupts();
// OR 8 bits into one byte for a total of 8 bytes
for (byte j = 0; j < 64; j += 8) {
sdBuffer[(pageNumber * 8) + (j / 8)] = tempBits[0 + j] << 7 | tempBits[1 + j] << 6 | tempBits[2 + j] << 5 | tempBits[3 + j] << 4 | tempBits[4 + j] << 3 | tempBits[5 + j] << 2 | tempBits[6 + j] << 1 | tempBits[7 + j];
}
// Wait ~0.6ms between pages or eeprom will lock up
pulseClock_N64(300);
}
// Write 64 pages at once to the SD card
myFile.write(sdBuffer, 512);
}
// Close the file:
myFile.close();
print_Msg(F("Saved to SAVE/"));
print_Msg(romName);
print_Msg(F("/"));
print_Msg(foldern - 1);
print_Msg(F("/"));
println_Msg(fileName);
display_Update();
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Check if a write succeeded, returns 0 if all is ok and number of errors if not
unsigned long verifyEeprom() {
if ((saveType == 5) || (saveType == 6)) {
writeErrors = 0;
// Wait 0.6ms
pulseClock_N64(300);
print_Msg(F("Verifying against "));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (byte i = 0; i < (eepPages / 64); i++) {
for (byte pageNumber = 0; pageNumber < 64; pageNumber++) {
// Disable interrupts for more uniform clock pulses
noInterrupts();
// Send read command
sendData(0x04);
// Send Page number
sendData(pageNumber + (i * 64));
// Send stop bit
sendStop();
// read data
readData();
sendStop();
interrupts();
// OR 8 bits into one byte for a total of 8 bytes
for (byte j = 0; j < 64; j += 8) {
sdBuffer[(pageNumber * 8) + (j / 8)] = tempBits[0 + j] << 7 | tempBits[1 + j] << 6 | tempBits[2 + j] << 5 | tempBits[3 + j] << 4 | tempBits[4 + j] << 3 | tempBits[5 + j] << 2 | tempBits[6 + j] << 1 | tempBits[7 + j];
}
// Wait ~0.6ms between pages or eeprom will lock up
pulseClock_N64(300);
}
// Check sdBuffer content against file on sd card
for (int c = 0; c < 512; c++) {
if (myFile.read() != sdBuffer[c]) {
writeErrors++;
}
}
}
// Close the file:
myFile.close();
}
else {
// SD Error
writeErrors = 999999;
print_Error(F("SD Error"), true);
}
// Return 0 if verified ok, or number of errors
return writeErrors;
}
else {
print_Error(F("Savetype Error"), true);
}
}
/******************************************
SRAM functions
*****************************************/
// Write sram to cartridge
void writeSram(unsigned long sramSize) {
if (saveType == 1) {
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
println_Msg(F("Writing..."));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (unsigned long currByte = sramBase; currByte < (sramBase + sramSize); currByte += 512) {
// Read save from SD into buffer
myFile.read(sdBuffer, 512);
// Set the address for the next 512 bytes
setAddress_N64(currByte);
for (int c = 0; c < 512; c += 2) {
// Join bytes to word
word myWord = ( ( sdBuffer[c] & 0xFF ) << 8 ) | ( sdBuffer[c + 1] & 0xFF );
// Write word
writeWord_N64(myWord);
}
}
// Close the file:
myFile.close();
println_Msg(F("Done"));
display_Update();
}
else {
print_Error(F("SD Error"), true);
}
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Read sram and save to the SD card
void readSram(unsigned long sramSize, byte flashramType) {
int offset = 512;
int bufferSize = 512;
if (flashramType == 2) {
offset = 64;
bufferSize = 128;
}
// Get name, add extension and convert to char array for sd lib
strcpy(fileName, romName);
if (saveType == 4) {
strcat(fileName, ".fla");
}
else if (saveType == 1) {
strcat(fileName, ".sra");
}
else {
print_Error(F("Savetype Error"), true);
}
// create a new folder for the save file
EEPROM_readAnything(0, foldern);
sprintf(folder, "SAVE/%s/%d", romName, foldern);
sd.mkdir(folder, true);
sd.chdir(folder);
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(F("SD Error"), true);
}
for (unsigned long currByte = sramBase; currByte < (sramBase + (sramSize / flashramType)); currByte += offset) {
// Set the address
setAddress_N64(currByte);
for (int c = 0; c < bufferSize; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
myFile.write(sdBuffer, bufferSize);
}
// Close the file:
myFile.close();
print_Msg(F("Saved to SAVE/"));
print_Msg(romName);
print_Msg(F("/"));
print_Msg(foldern - 1);
print_Msg(F("/"));
println_Msg(fileName);
display_Update();
}
unsigned long verifySram(unsigned long sramSize, byte flashramType) {
writeErrors = 0;
int offset = 512;
int bufferSize = 512;
if (flashramType == 2) {
offset = 64;
bufferSize = 128;
}
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (unsigned long currByte = sramBase; currByte < (sramBase + (sramSize / flashramType)); currByte += offset) {
// Set the address
setAddress_N64(currByte);
for (int c = 0; c < bufferSize; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
// Check sdBuffer content against file on sd card
for (int i = 0; i < bufferSize; i++) {
if (myFile.read() != sdBuffer[i]) {
writeErrors++;
}
}
}
// Close the file:
myFile.close();
}
else {
print_Error(F("SD Error"), true);
}
// Return 0 if verified ok, or number of errors
return writeErrors;
}
/******************************************
Flashram functions
*****************************************/
// Send a command to the flashram command register
void sendFramCmd (unsigned long myCommand) {
// Split command into two words
word myComLowOut = myCommand & 0xFFFF;
word myComHighOut = myCommand >> 16;
// Set address to command register
setAddress_N64(0x08010000);
// Send command
writeWord_N64(myComHighOut);
writeWord_N64(myComLowOut);
}
// Init fram
void initFram() {
// FRAM_EXECUTE_CMD
sendFramCmd(0xD2000000);
delay(10);
// FRAM_EXECUTE_CMD
sendFramCmd(0xD2000000);
delay(10);
//FRAM_STATUS_MODE_CMD
sendFramCmd(0xE1000000);
delay(10);
}
void writeFram(byte flashramType) {
if (saveType == 4) {
// Erase fram
eraseFram();
// Check if empty
if (blankcheck_N64(flashramType) == 0) {
println_Msg(F("OK"));
display_Update();
}
else {
println_Msg("FAILED");
print_Error(F("Flash is not blank"), true);
}
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
print_Msg(F("Writing "));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
// Init fram
initFram();
// Write all 8 fram banks
print_Msg(F("Bank "));
for (byte bank = 0; bank < 8; bank++) {
print_Msg(bank);
print_Msg(F(" "));
display_Update();
// Write one bank of 128*128 bytes
for (byte offset = 0; offset < 128; offset++) {
// Read save from SD into buffer
myFile.read(sdBuffer, 128);
// FRAM_WRITE_MODE_CMD
sendFramCmd(0xB4000000);
delay(1);
// Set the address for the next 128 bytes
setAddress_N64(0x08000000);
// Send 128 bytes, 64 words
for (byte c = 0; c < 128; c += 2) {
// Join two bytes into one word
word myWord = ( ( sdBuffer[c] & 0xFF ) << 8 ) | ( sdBuffer[c + 1] & 0xFF );
// Write word
writeWord_N64(myWord);
}
// Delay between each "DMA"
delay(1);
//FRAM_WRITE_OFFSET_CMD + offset
sendFramCmd((0xA5000000 | (((bank * 128) + offset) & 0xFFFF)));
delay(1);
// FRAM_EXECUTE_CMD
sendFramCmd(0xD2000000);
while (waitForFram(flashramType)) {
delay(1);
}
}
// Delay between banks
delay(20);
}
// Close the file:
myFile.close();
}
else {
print_Error(F("SD Error"), true);
}
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Delete all 8 flashram banks
void eraseFram() {
if (saveType == 4) {
print_Msg(F("Erasing..."));
display_Update();
// Init fram
initFram();
// Erase fram
// 0x4B00007F 0x4B0000FF 0x4B00017F 0x4B0001FF 0x4B00027F 0x4B0002FF 0x4B00037F 0x4B0003FF
for (unsigned long bank = 0x4B00007F; bank < 0x4B00047F; bank += 0x80) {
sendFramCmd(bank);
delay(10);
// FRAM_ERASE_MODE_CMD
sendFramCmd(0x78000000);
delay(10);
// FRAM_EXECUTE_CMD
sendFramCmd(0xD2000000);
while (waitForFram(flashramType)) {
delay(1);
}
}
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Read flashram
void readFram(byte flashramType) {
if (saveType == 4) {
// Put flashram into read mode
// FRAM_READ_MODE_CMD
sendFramCmd(0xF0000000);
// Read Flashram
readSram(131072, flashramType);
}
else {
print_Error(F("Savetype Error"), true);
}
}
// Verify flashram
unsigned long verifyFram(byte flashramType) {
// Put flashram into read mode
// FRAM_READ_MODE_CMD
sendFramCmd(0xF0000000);
writeErrors = verifySram(131072, flashramType);
return writeErrors;
}
// Blankcheck flashram
unsigned long blankcheck_N64(byte flashramType) {
writeErrors = 0;
int offset = 512;
int bufferSize = 512;
if (flashramType == 2) {
offset = 64;
bufferSize = 128;
}
// Put flashram into read mode
// FRAM_READ_MODE_CMD
sendFramCmd(0xF0000000);
// Read Flashram
for (unsigned long currByte = sramBase; currByte < (sramBase + (131072 / flashramType)); currByte += offset) {
// Set the address for the next 512 bytes
setAddress_N64(currByte);
for (int c = 0; c < bufferSize; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
// Check sdBuffer content against file on sd card
for (int i = 0; i < bufferSize; i++) {
if (0xFF != sdBuffer[i]) {
writeErrors++;
}
}
}
// Return 0 if verified ok, or number of errors
return writeErrors;
}
// Wait until current operation is done
byte waitForFram(byte flashramType) {
byte framStatus = 0;
byte statusMXL1100[] = {0x11, 0x11, 0x80, 0x01, 0x00, 0xC2, 0x00, 0x1E};
byte statusMXL1101[] = {0x11, 0x11, 0x80, 0x01, 0x00, 0xC2, 0x00, 0x1D};
byte statusMN63F81[] = {0x11, 0x11, 0x80, 0x01, 0x00, 0x32, 0x00, 0xF1};
// FRAM_STATUS_MODE_CMD
sendFramCmd(0xE1000000);
delay(1);
// Set address to Fram status register
setAddress_N64(0x08000000);
// Read Status
for (byte c = 0; c < 8; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
if (flashramType == 2) {
for (byte c = 0; c < 8; c++) {
if (statusMXL1100[c] != sdBuffer[c]) {
framStatus = 1;
}
}
}
else if (flashramType == 1) {
//MX29L1101
if (MN63F81MPN == false) {
for (byte c = 0; c < 8; c++) {
if (statusMXL1101[c] != sdBuffer[c]) {
framStatus = 1;
}
}
}
//MN63F81MPN
else if (MN63F81MPN == true) {
for (byte c = 0; c < 8; c++) {
if (statusMN63F81[c] != sdBuffer[c]) {
framStatus = 1;
}
}
}
}
return framStatus;
}
// Get flashram type
void getFramType() {
// FRAM_STATUS_MODE_CMD
sendFramCmd(0xE1000000);
delay(10);
// Set address to Fram status register
setAddress_N64(0x08000000);
// Read Status
for (byte c = 0; c < 8; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
//MX29L1100
if (sdBuffer[7] == 0x1e ) {
flashramType = 2;
println_Msg(F("Type: MX29L1100"));
display_Update();
}
//MX29L1101
else if (sdBuffer[7] == 0x1d ) {
flashramType = 1;
MN63F81MPN = false;
println_Msg(F("Type: MX29L1101"));
display_Update();
}
//MN63F81MPN
else if (sdBuffer[7] == 0xf1 ) {
flashramType = 1;
MN63F81MPN = true;
println_Msg(F("Type: MN63F81MPN"));
display_Update();
}
// Type unknown
else {
for (byte c = 0; c < 8; c++) {
print_Msg(sdBuffer[c], HEX);
print_Msg(F(", "));
}
print_Error(F("Flashram unknown"), true);
}
}
/******************************************
Rom functions
*****************************************/
// Read rom and save to the SD card
void readRom_N64() {
// Get name, add extension and convert to char array for sd lib
strcpy(fileName, romName);
strcat(fileName, ".Z64");
// create a new folder
EEPROM_readAnything(0, foldern);
sprintf(folder, "ROM/%s/%d", romName, foldern);
sd.mkdir(folder, true);
sd.chdir(folder);
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
readn64rom:
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(F("SD Error"), true);
}
for (unsigned long currByte = romBase; currByte < (romBase + (cartSize * 1024 * 1024)); currByte += 512) {
// Blink led
if (currByte % 16384 == 0)
PORTB ^= (1 << 4);
// Set the address for the next 512 bytes
setAddress_N64(currByte);
for (int c = 0; c < 512; c += 2) {
// split word
word myWord = readWord_N64();
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
myFile.write(sdBuffer, 512);
}
// Close the file:
myFile.close();
print_Msg(F("Saved to ROM/"));
print_Msg(romName);
print_Msg(F("/"));
print_Msg(foldern - 1);
print_Msg(F("/"));
println_Msg(fileName);
display_Update();
calcn64crc:
// Calculate Checksum and convert to string
println_Msg(F("Calculating CRC.."));
display_Update();
char crcStr[9];
sprintf(crcStr, "%08lx", crc32());
// Print checksum
println_Msg(crcStr);
display_Update();
// Search n64.txt for crc
if (searchCRC(crcStr)) {
// Dump was a known good rom
println_Msg(F("Checksum matches"));
println_Msg(F(""));
println_Msg(F("Press Button..."));
display_Update();
wait();
}
else {
// Dump was bad or unknown
rgb.setColor(255, 0, 0);
// N64 CRC32 error Menu
unsigned char CRCMenu;
// Copy menuOptions out of progmem
convertPgm(menuOptionsN64CRC, 4);
char tempStr3[20];
strcpy(tempStr3, "CRC ERROR ");
strcat(tempStr3, crcStr);
CRCMenu = question_box(tempStr3, menuOptions, 4, 1);
// wait for user choice to come back from the question box menu
switch (CRCMenu)
{
case 0:
// Change to last directory
sd.chdir(folder);
display_Clear();
// Calculate CRC again
rgb.setColor(0, 0, 0);
goto calcn64crc;
break;
case 1:
// Change to last directory
sd.chdir(folder);
// Delete old file
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(F("SD Error"), true);
}
if (!myFile.remove()) {
print_Error(F("Delete Error"), true);
}
// Dump again
display_Clear();
println_Msg(F("Reading Rom..."));
display_Update();
rgb.setColor(0, 0, 0);
goto readn64rom;
break;
case 2:
// Return to N64 menu
break;
case 3:
// Reset
asm volatile (" jmp 0");
break;
}
}
display_Update();
}
//******************************************
// End of File
//******************************************