cartreader/Cart_Reader/MD.ino
Vincent Pelletier 10061beaf5 MD.ino: Move some globals to getCartInfo_MD locals.
Also, bypass sdBuffer when it was the directory copied to another buffer.
Also, factorise yet another pair of loops copying rom name.
This frees 59 bytes of global ram space.
2022-10-28 05:29:44 +00:00

2618 lines
75 KiB
C++

//******************************************
// SEGA MEGA DRIVE MODULE
//******************************************
// Writes to Sega CD Backup RAM Cart require an extra wire from MRES (B02) to VRES (B27)
#ifdef enable_MD
/******************************************
Variables
*****************************************/
unsigned long sramEnd;
word eepSize;
word addrhi;
word addrlo;
word chksum;
boolean is32x = 0;
//***********************************************
// EEPROM SAVE TYPES
// 1 = Acclaim Type 1 [24C02]
// 2 = Acclaim Type 2 [24C02/24C16/24C65]
// 3 = Capcom/SEGA [24C01]
// 4 = EA [24C01]
// 5 = Codemasters [24C08/24C16/24C65]
//***********************************************
byte eepType;
//*********************************************************
// SERIAL EEPROM LOOKUP TABLE
// Format = {chksum, eepType | eepSize}
// chksum is located in ROM at 0x18E (0xC7)
// eepType and eepSize are combined to conserve memory
//*********************************************************
static const word PROGMEM eepid[] = {
// ACCLAIM TYPE 1
0x5B9F, 0x101, // NBA Jam (J)
0x694F, 0x101, // NBA Jam (UE) (Rev 0)
0xBFA9, 0x101, // NBA Jam (UE) (Rev 1)
// ACCLAIM TYPE 2
0x16B2, 0x102, // Blockbuster World Videogame Championship II (U) [NO HEADER SAVE DATA]
0xCC3F, 0x102, // NBA Jam Tournament Edition (W) (Rev 0) [NO HEADER SAVE DATA]
0x8AE1, 0x102, // NBA Jam Tournament Edition (W) (Rev 1) [NO HEADER SAVE DATA]
0xDB97, 0x102, // NBA Jam Tournament Edition 32X (W)
0x7651, 0x102, // NFL Quarterback Club (W)
0xDFE4, 0x102, // NFL Quarterback Club 32X (W)
0x3DE6, 0x802, // NFL Quarterback Club '96 (UE)
0xCB78, 0x2002, // Frank Thomas Big Hurt Baseball (UE)
0x6DD9, 0x2002, // College Slam (U)
// CAPCOM
0xAD23, 0x83, // Mega Man: The Wily Wars (E)
0xEA80, 0x83, // Rockman Megaworld (J)
// SEGA
0x760F, 0x83, // Evander "Real Deal" Holyfield Boxing (JU)
0x95E7, 0x83, // Greatest Heavyweights of the Ring (E)
0x0000, 0x83, // Greatest Heavyweights of the Ring (J) [BLANK CHECKSUM 0000]
0x7270, 0x83, // Greatest Heavyweights of the Ring (U)
0xBACC, 0x83, // Honoo no Toukyuuji Dodge Danpei (J)
0xB939, 0x83, // MLBPA Sports Talk Baseball (U) [BAD HEADER SAVE DATA]
0x487C, 0x83, // Ninja Burai Densetsu (J)
0x740D, 0x83, // Wonder Boy in Monster World (B)
0x0278, 0x83, // Wonder Boy in Monster World (J)
0x9D79, 0x83, // Wonder Boy in Monster World (UE)
// EA
0x8512, 0x84, // Bill Walsh College Football (UE) [BAD HEADER SAVE DATA]
0xA107, 0x84, // John Madden Football '93 (UE) [NO HEADER SAVE DATA]
0x5807, 0x84, // John Madden Football '93 Championship Edition (U) [NO HEADER SAVE DATA]
0x2799, 0x84, // NHLPA Hockey '93 (UE) (Rev 0) [NO HEADER SAVE DATA]
0xFA57, 0x84, // NHLPA Hockey '93 (UE) (Rev 1) [NO HEADER SAVE DATA]
0x8B9F, 0x84, // Rings of Power (UE) [NO HEADER SAVE DATA]
// CODEMASTERS
0x7E65, 0x405, // Brian Lara Cricket (E) [NO HEADER SAVE DATA]
0x9A5C, 0x2005, // Brian Lara Cricket 96 (E) (Rev 1.0) [NO HEADER SAVE DATA]
0xC4EE, 0x2005, // Brian Lara Cricket 96 (E) (Rev 1.1) [NO HEADER SAVE DATA]
0x7E50, 0x805, // Micro Machines 2 (E) (J-Cart) [NO HEADER SAVE DATA]
0x165E, 0x805, // Micro Machines '96 (E) (J-Cart) (Rev 1.0/1.1) [NO HEADER SAVE DATA]
0x168B, 0x405, // Micro Machines Military (E) (J-Cart) [NO HEADER SAVE DATA]
0x12C1, 0x2005, // Shane Warne Cricket (E) [NO HEADER SAVE DATA]
};
byte eepcount = (sizeof(eepid) / sizeof(eepid[0])) / 2;
word eepdata;
// CD BACKUP RAM
unsigned long bramSize = 0;
// REALTEC MAPPER
boolean realtec = 0;
#define DEFAULT_VALUE_segaSram16bit 0
int segaSram16bit = DEFAULT_VALUE_segaSram16bit;
//*****************************************
// SONIC & KNUCKLES LOCK-ON MODE VARIABLES
// SnKmode :
// 0 = Not Sonic & Knuckles
// 1 = Only Sonic & Knucles
// 2 = Sonic & Knucles + Sonic1
// 3 = Sonic & Knucles + Sonic2
// 4 = Sonic & Knucles + Sonic3
// 5 = Sonic & Knucles + Other game
//*****************************************
static byte SnKmode = 0;
static unsigned long cartSizeLockon;
static unsigned long cartSizeSonic2 = 262144;
static word chksumLockon;
static word chksumSonic2 = 0x0635;
/******************************************
Configuration
*****************************************/
#ifdef use_md_conf
void mdLoadConf() {
if (myFile.open("mdconf.txt", O_READ)) {
char line[64];
int n;
int i;
while ((n = myFile.fgets(line, sizeof(line) - 1)) > 0) {
// preprocess
for (i = 0; i < n; i++) {
if (line[i] == ';') {
// comments
line[i] = '\0';
n = i;
break;
} else if (line[i] == '\n' || line[i] == '\r') {
// EOL
line[n] = '\0';
n = i;
break;
}
}
//print_Msg(F("read line: "));
//println_Msg(line);
if (line[0] == '[') {
char* name;
char* value;
i = 1;
name = line + i;
for (; i < sizeof(line); i++) {
if (line[i] == ']') {
line[i] = '\0';
i++;
break;
}
}
if (line[i] != '\0') {
for (; i < sizeof(line); i++) {
if (line[i] != ' ') {
value = line + i;
i++;
break;
}
}
for (; i < sizeof(line) && line[i] != '\0'; i++) {
if (line[i] == ' ') {
line[i] = '\0';
break;
}
}
}
//print_Msg(F("read name: "));
//println_Msg(name);
//print_Msg(F("value: "));
//println_Msg(value);
if (!strcmp("segaSram16bit", name)) {
// Retrode compatible setting
// [segaSram16bit] 1 ; 0=no, 1=yes, 2=y+large
// 0: Output each byte once. Not supported by most emulators.
// 1: Duplicate each byte. Usable by Kega Fusion.
// 2: Duplicate each byte. Pad with 0xFF so that the file size is 64KB.
segaSram16bit = atoi(value);
if (segaSram16bit != 0 && segaSram16bit != 1 && segaSram16bit != 2) {
segaSram16bit = DEFAULT_VALUE_segaSram16bit;
}
print_Msg(F("segaSram16bit: "));
println_Msg(segaSram16bit);
}
}
}
myFile.close();
}
}
#endif
/******************************************
Menu
*****************************************/
// MD menu items
static const char MDMenuItem1[] PROGMEM = "Game Cartridge";
static const char MDMenuItem2[] PROGMEM = "SegaCD RamCart";
static const char MDMenuItem3[] PROGMEM = "Flash Repro";
//static const char MDMenuItem4[] PROGMEM = "Reset"; (stored in common strings array)
static const char* const menuOptionsMD[] PROGMEM = { MDMenuItem1, MDMenuItem2, MDMenuItem3, string_reset2 };
// Cart menu items
static const char MDCartMenuItem1[] PROGMEM = "Read Rom";
static const char MDCartMenuItem2[] PROGMEM = "Read Sram";
static const char MDCartMenuItem3[] PROGMEM = "Write Sram";
static const char MDCartMenuItem4[] PROGMEM = "Read EEPROM";
static const char MDCartMenuItem5[] PROGMEM = "Write EEPROM";
static const char MDCartMenuItem6[] PROGMEM = "Cycle cart";
//static const char MDCartMenuItem7[] PROGMEM = "Reset"; (stored in common strings array)
static const char* const menuOptionsMDCart[] PROGMEM = { MDCartMenuItem1, MDCartMenuItem2, MDCartMenuItem3, MDCartMenuItem4, MDCartMenuItem5, MDCartMenuItem6, string_reset2 };
// Sega CD Ram Backup Cartridge menu items
static const char SCDMenuItem1[] PROGMEM = "Read Backup RAM";
static const char SCDMenuItem2[] PROGMEM = "Write Backup RAM";
//static const char SCDMenuItem3[] PROGMEM = "Reset"; (stored in common strings array)
static const char* const menuOptionsSCD[] PROGMEM = { SCDMenuItem1, SCDMenuItem2, string_reset2 };
// Sega start menu
void mdMenu() {
// create menu with title and 4 options to choose from
unsigned char mdDev;
// Copy menuOptions out of progmem
convertPgm(menuOptionsMD, 4);
mdDev = question_box(F("Select MD device"), menuOptions, 4, 0);
// wait for user choice to come back from the question box menu
switch (mdDev) {
case 0:
display_Clear();
display_Update();
setup_MD();
mode = mode_MD_Cart;
break;
case 1:
display_Clear();
display_Update();
setup_MD();
mode = mode_SEGA_CD;
break;
#ifdef enable_FLASH
case 2:
display_Clear();
display_Update();
setup_MD();
mode = mode_MD_Cart;
// Change working dir to root
filePath[0] = '\0';
sd.chdir("/");
fileBrowser(F("Select file"));
display_Clear();
// Setting CS(PH3) LOW
PORTH &= ~(1 << 3);
// ID flash
resetFlash_MD();
idFlash_MD();
resetFlash_MD();
print_Msg(F("Flash ID: "));
println_Msg(flashid_str);
if (flashid == 0xC2F1) {
println_Msg(F("MX29F1610 detected"));
flashSize = 2097152;
} else {
print_Error(F("Error: Unknown flashrom"), true);
}
display_Update();
eraseFlash_MD();
resetFlash_MD();
blankcheck_MD();
write29F1610_MD();
resetFlash_MD();
delay(1000);
resetFlash_MD();
delay(1000);
verifyFlash_MD();
// Set CS(PH3) HIGH
PORTH |= (1 << 3);
println_Msg(F(""));
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
break;
#endif
case 3:
resetArduino();
break;
}
}
void mdCartMenu() {
// create menu with title and 6 options to choose from
unsigned char mainMenu;
// Copy menuOptions out of progmem
convertPgm(menuOptionsMDCart, 7);
mainMenu = question_box(F("MEGA DRIVE Reader"), menuOptions, 7, 0);
// wait for user choice to come back from the question box menu
switch (mainMenu) {
case 0:
display_Clear();
// common ROM read fail state: no cart inserted - tends to report impossibly large cartSize
// largest known game so far is supposedly "Paprium" at 10MB, so cap sanity check at 16MB
if (cartSize != 0 && cartSize <= 16777216) {
// Change working dir to root
sd.chdir("/");
if (realtec) {
readRealtec_MD();
} else {
readROM_MD();
}
} else {
print_Error(F("Cart has no ROM"), false);
}
#ifdef global_log
save_log();
#endif
break;
case 1:
display_Clear();
// Does cartridge have SRAM
if ((saveType == 1) || (saveType == 2) || (saveType == 3)) {
// Change working dir to root
sd.chdir("/");
println_Msg(F("Reading Sram..."));
display_Update();
enableSram_MD(1);
readSram_MD();
enableSram_MD(0);
} else {
print_Error(F("Cart has no Sram"), false);
}
break;
case 2:
display_Clear();
// Does cartridge have SRAM
if ((saveType == 1) || (saveType == 2) || (saveType == 3)) {
// Change working dir to root
sd.chdir("/");
// Launch file browser
fileBrowser(F("Select srm file"));
display_Clear();
enableSram_MD(1);
writeSram_MD();
writeErrors = verifySram_MD();
enableSram_MD(0);
if (writeErrors == 0) {
println_Msg(F("Sram verified OK"));
display_Update();
} else {
print_STR(error_STR, 0);
print_Msg(writeErrors);
print_STR(_bytes_STR, 1);
print_Error(did_not_verify_STR, false);
}
} else {
print_Error(F("Cart has no Sram"), false);
}
break;
case 3:
display_Clear();
if (saveType == 4)
readEEP_MD();
else {
print_Error(F("Cart has no EEPROM"), false);
}
break;
case 4:
display_Clear();
if (saveType == 4) {
// Launch file browser
fileBrowser(F("Select eep file"));
display_Clear();
writeEEP_MD();
} else {
print_Error(F("Cart has no EEPROM"), false);
}
break;
case 5:
// For multi-game carts
// Set reset pin to output (PH0)
DDRH |= (1 << 0);
// Switch RST(PH0) to LOW
PORTH &= ~(1 << 0);
display_Clear();
print_Msg(F("Resetting..."));
display_Update();
delay(3000); // wait 3 secs to switch to next game
resetArduino();
break;
case 6:
// Reset
resetArduino();
break;
}
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
}
void segaCDMenu() {
// create menu with title and 3 options to choose from
unsigned char scdMenu;
// Copy menuOptions out of progmem
convertPgm(menuOptionsSCD, 3);
scdMenu = question_box(F("SEGA CD RAM"), menuOptions, 3, 0);
// wait for user choice to come back from the question box menu
switch (scdMenu) {
case 0:
display_Clear();
if (bramSize > 0)
readBram_MD();
else {
print_Error(F("Not CD Backup RAM Cart"), false);
}
break;
case 1:
display_Clear();
if (bramSize > 0) {
// Launch file browser
fileBrowser(F("Select brm file"));
display_Clear();
writeBram_MD();
} else {
print_Error(F("Not CD Backup RAM Cart"), false);
}
break;
case 2:
// Reset
asm volatile(" jmp 0");
break;
}
println_Msg(F(""));
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
}
/******************************************
Setup
*****************************************/
void setup_MD() {
#ifdef use_md_conf
mdLoadConf();
#endif
// Set Address Pins to Output
//A0-A7
DDRF = 0xFF;
//A8-A15
DDRK = 0xFF;
//A16-A23
DDRL = 0xFF;
// Set Control Pins to Output RST(PH0) CLK(PH1) CS(PH3) WRH(PH4) WRL(PH5) OE(PH6)
DDRH |= (1 << 0) | (1 << 1) | (1 << 3) | (1 << 4) | (1 << 5) | (1 << 6);
// Set TIME(PJ0) to Output
DDRJ |= (1 << 0);
// Set Data Pins (D0-D15) to Input
DDRC = 0x00;
DDRA = 0x00;
// Setting RST(PH0) CLK(PH1) CS(PH3) WRH(PH4) WRL(PH5) OE(PH6) HIGH
PORTH |= (1 << 0) | (1 << 1) | (1 << 3) | (1 << 4) | (1 << 5) | (1 << 6);
// Setting TIME(PJ0) HIGH
PORTJ |= (1 << 0);
delay(200);
// Print all the info
getCartInfo_MD();
}
/******************************************
I/O Functions
*****************************************/
/******************************************
Low level functions
*****************************************/
void writeWord_MD(unsigned long myAddress, word myData) {
PORTF = myAddress & 0xFF;
PORTK = (myAddress >> 8) & 0xFF;
PORTL = (myAddress >> 16) & 0xFF;
PORTC = myData;
PORTA = (myData >> 8) & 0xFF;
// Arduino running at 16Mhz -> one nop = 62.5ns
// Wait till output is stable
__asm__("nop\n\t"
"nop\n\t");
// Switch WR(PH5) to LOW
PORTH &= ~(1 << 5);
// Setting CS(PH3) LOW
PORTH &= ~(1 << 3);
// Leave WR low for at least 200ns
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
// Setting CS(PH3) HIGH
PORTH |= (1 << 3);
// Switch WR(PH5) to HIGH
PORTH |= (1 << 5);
// Leave WR high for at least 50ns
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
}
word readWord_MD(unsigned long myAddress) {
PORTF = myAddress & 0xFF;
PORTK = (myAddress >> 8) & 0xFF;
PORTL = (myAddress >> 16) & 0xFF;
// Arduino running at 16Mhz -> one nop = 62.5ns
NOP;
// Setting CS(PH3) LOW
PORTH &= ~(1 << 3);
// Setting OE(PH6) LOW
PORTH &= ~(1 << 6);
// most MD ROMs are 200ns, comparable to SNES > use similar access delay of 6 x 62.5 = 375ns
NOP;
NOP;
NOP;
NOP;
NOP;
NOP;
// Read
word tempWord = ((PINA & 0xFF) << 8) | (PINC & 0xFF);
// Setting CS(PH3) HIGH
PORTH |= (1 << 3);
// Setting OE(PH6) HIGH
PORTH |= (1 << 6);
// these 6x nop delays have been here before, unknown what they mean
NOP;
NOP;
NOP;
NOP;
NOP;
NOP;
return tempWord;
}
void writeFlash_MD(unsigned long myAddress, word myData) {
PORTF = myAddress & 0xFF;
PORTK = (myAddress >> 8) & 0xFF;
PORTL = (myAddress >> 16) & 0xFF;
PORTC = myData;
PORTA = (myData >> 8) & 0xFF;
// Arduino running at 16Mhz -> one nop = 62.5ns
// Wait till output is stable
__asm__("nop\n\t");
// Switch WE(PH5) to LOW
PORTH &= ~(1 << 5);
// Leave WE low for at least 60ns
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
// Switch WE(PH5)to HIGH
PORTH |= (1 << 5);
// Leave WE high for at least 50ns
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
}
word readFlash_MD(unsigned long myAddress) {
PORTF = myAddress & 0xFF;
PORTK = (myAddress >> 8) & 0xFF;
PORTL = (myAddress >> 16) & 0xFF;
// Arduino running at 16Mhz -> one nop = 62.5ns
__asm__("nop\n\t");
// Setting OE(PH6) LOW
PORTH &= ~(1 << 6);
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
// Read
word tempWord = ((PINA & 0xFF) << 8) | (PINC & 0xFF);
__asm__("nop\n\t");
// Setting OE(PH6) HIGH
PORTH |= (1 << 6);
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
return tempWord;
}
// Switch data pins to write
void dataOut_MD() {
DDRC = 0xFF;
DDRA = 0xFF;
}
// Switch data pins to read
void dataIn_MD() {
DDRC = 0x00;
DDRA = 0x00;
}
/******************************************
MEGA DRIVE functions
*****************************************/
byte copyToRomName_MD(char *output, const byte *input, byte length) {
byte myLength = 0;
for (byte i = 0; i < 48; i++) {
if (
(
(input[i] >= '0' && input[i] <= '9') ||
(input[i] >= 'A' && input[i] <= 'z')
) && myLength < length
) {
output[myLength++] = input[i];
}
}
return myLength;
}
void getCartInfo_MD() {
// Set control
dataIn_MD();
cartSize = ((long(readWord_MD(0xD2)) << 16) | readWord_MD(0xD3)) + 1;
if ((readWord_MD(0x104 / 2) == 0x2033) && (readWord_MD(0x106 / 2) == 0x3258))
is32x = 1;
else
is32x = 0;
// Cart Checksum
chksum = readWord_MD(0xC7);
// Zero Wing Check
if (cartSize == 0x80000) {
switch (chksum) {
case 0xD07D: //Zero Wing (J) 8Mbit
cartSize = 0x100000; //1MB instead of 512KB
chksum = 0xF204;
break;
}
}
// Super Street Fighter 2 Check
if (cartSize == 0x400000) {
switch (chksum) {
case 0xCE25: // Super Street Fighter 2 (J) 40Mbit
case 0xE41D: // Super Street Fighter 2 (E) 40Mbit
case 0xE017: // Super Street Fighter 2 (U) 40Mbit
cartSize = 0x500000;
break;
}
}
// Sonic & Knuckles Check
SnKmode = 0;
if (chksum == 0xDFB3) {
char id[15];
// Get ID
for (byte c = 0; c < 14; c += 2) {
// split word
word myWord = readWord_MD((0x180 + c) / 2);
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
id[c] = hiByte;
id[c + 1] = loByte;
}
//Sonic & Knuckles ID:GM MK-1563 -00
if (!strcmp("GM MK-1563 -00", id)) {
char labelLockon[17];
// Get labelLockon
for (byte c = 0; c < 16; c += 2) {
// split word
word myWord = readWord_MD((0x200100 + c) / 2);
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
labelLockon[c] = hiByte;
labelLockon[c + 1] = loByte;
}
// check Lock-on game presence
if (!(strcmp("SEGA MEGA DRIVE ", labelLockon) & strcmp("SEGA GENESIS ", labelLockon))) {
char idLockon[15];
// Lock-on cart checksum
chksumLockon = readWord_MD(0x1000C7);
// Lock-on cart size
cartSizeLockon = ((long(readWord_MD(0x1000D2)) << 16) | readWord_MD(0x1000D3)) + 1;
// Get IdLockon
for (byte c = 0; c < 14; c += 2) {
// split word
word myWord = readWord_MD((0x200180 + c) / 2);
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
idLockon[c] = hiByte;
idLockon[c + 1] = loByte;
}
if (!(strncmp("GM 00001009-0", idLockon, 13) & strncmp("GM 00004049-0", idLockon, 13))) {
//Sonic1 ID:GM 00001009-0? or GM 00004049-0?
SnKmode = 2;
} else if (!(strcmp("GM 00001051-00", idLockon) & strcmp("GM 00001051-01", idLockon) & strcmp("GM 00001051-02", idLockon))) {
//Sonic2 ID:GM 00001051-00 or GM 00001051-01 or GM 00001051-02
SnKmode = 3;
// Prepare Sonic2 Banks
writeSSF2Map(0x509878, 1); // 0xA130F1
} else if (!strcmp("GM MK-1079 -00", idLockon)) {
//Sonic3 ID:GM MK-1079 -00
SnKmode = 4;
} else {
//Other game
SnKmode = 5;
}
} else {
SnKmode = 1;
}
}
}
// Serial EEPROM Check
for (int i = 0; i < eepcount; i++) {
int index = i * 2;
word eepcheck = pgm_read_word(eepid + index);
if (eepcheck == chksum) {
eepdata = pgm_read_word(eepid + index + 1);
eepType = eepdata & 0x7;
eepSize = eepdata & 0xFFF8;
saveType = 4; // SERIAL EEPROM
break;
}
}
// Greatest Heavyweights of the Ring (J) has blank chksum 0x0000
// Other non-save carts might have the same blank chksum
// Check header for Serial EEPROM Data
if (chksum == 0x0000) {
if (readWord_MD(0xD9) != 0xE840) { // NOT SERIAL EEPROM
eepType = 0;
eepSize = 0;
saveType = 0;
}
}
// Codemasters EEPROM Check
// Codemasters used the same incorrect header across multiple carts
// Carts with checksum 0x165E or 0x168B could be EEPROM or non-EEPROM
// Check the first DWORD in ROM (0x444E4C44) to identify the EEPROM carts
if ((chksum == 0x165E) || (chksum == 0x168B)) {
if (readWord_MD(0x00) != 0x444E) { // NOT SERIAL EEPROM
eepType = 0;
eepSize = 0;
saveType = 0;
}
}
// CD Backup RAM Cart Check
// 4 = 128KB (2045 Blocks) Sega CD Backup RAM Cart
// 6 = 512KB (8189 Blocks) Ultra CD Backup RAM Cart (Aftermarket)
word bramCheck = readWord_MD(0x00);
if ((((bramCheck & 0xFF) == 0x04) && ((chksum & 0xFF) == 0x04))
|| (((bramCheck & 0xFF) == 0x06) && ((chksum & 0xFF) == 0x06))) {
unsigned long p = 1 << (bramCheck & 0xFF);
bramSize = p * 0x2000L;
}
if (saveType != 4) { // NOT SERIAL EEPROM
// Check if cart has sram
saveType = 0;
sramSize = 0;
// FIXED CODE FOR SRAM/FRAM/PARALLEL EEPROM
// 0x5241F820 SRAM (ODD BYTES/EVEN BYTES)
// 0x5241F840 PARALLEL EEPROM - READ AS SRAM
// 0x5241E020 SRAM (BOTH BYTES)
if (readWord_MD(0xD8) == 0x5241) {
word sramType = readWord_MD(0xD9);
if ((sramType == 0xF820) || (sramType == 0xF840)) { // SRAM/FRAM ODD/EVEN BYTES
// Get sram start and end
sramBase = ((long(readWord_MD(0xDA)) << 16) | readWord_MD(0xDB));
sramEnd = ((long(readWord_MD(0xDC)) << 16) | readWord_MD(0xDD));
if (sramBase == 0x20000020 && sramEnd == 0x00010020) { // Fix for Psy-o-blade
sramBase = 0x200001;
sramEnd = 0x203fff;
}
// Check alignment of sram
if ((sramBase == 0x200001) || (sramBase == 0x300001)) { // ADDED 0x300001 FOR HARDBALL '95 (U)
// low byte
saveType = 1; // ODD
sramSize = (sramEnd - sramBase + 2) / 2;
// Right shift sram base address so [A21] is set to high 0x200000 = 0b001[0]00000000000000000000
sramBase = sramBase >> 1;
} else if (sramBase == 0x200000) {
// high byte
saveType = 2; // EVEN
sramSize = (sramEnd - sramBase + 1) / 2;
// Right shift sram base address so [A21] is set to high 0x200000 = 0b001[0]00000000000000000000
sramBase = sramBase / 2;
} else {
print_Msg(("sramType: "));
print_Msg_PaddedHex16(sramType);
println_Msg(F(""));
print_Msg(("sramBase: "));
print_Msg_PaddedHex32(sramBase);
println_Msg(F(""));
print_Msg(("sramEnd: "));
print_Msg_PaddedHex32(sramEnd);
println_Msg(F(""));
print_Error(F("Unknown Sram Base"), true);
}
} else if (sramType == 0xE020) { // SRAM BOTH BYTES
// Get sram start and end
sramBase = ((long(readWord_MD(0xDA)) << 16) | readWord_MD(0xDB));
sramEnd = ((long(readWord_MD(0xDC)) << 16) | readWord_MD(0xDD));
if (sramBase == 0x200001) {
saveType = 3; // BOTH
sramSize = sramEnd - sramBase + 2;
sramBase = sramBase >> 1;
} else if (sramBase == 0x200000) {
saveType = 3; // BOTH
sramSize = sramEnd - sramBase + 1;
sramBase = sramBase >> 1;
} else {
print_Msg(("sramType: "));
print_Msg_PaddedHex16(sramType);
println_Msg(F(""));
print_Msg(("sramBase: "));
print_Msg_PaddedHex32(sramBase);
println_Msg(F(""));
print_Msg(("sramEnd: "));
print_Msg_PaddedHex32(sramEnd);
println_Msg(F(""));
print_Error(F("Unknown Sram Base"), true);
}
}
} else {
// SRAM CARTS WITH BAD/MISSING HEADER SAVE DATA
switch (chksum) {
case 0xC2DB: // Winter Challenge (UE)
saveType = 1; // ODD
sramBase = 0x200001;
sramEnd = 0x200FFF;
break;
case 0xD7B6: // Buck Rogers: Countdown to Doomsday (UE)
case 0xFE3E: // NBA Live '98 (U)
case 0xFDAD: // NFL '94 starring Joe Montana (U)
case 0x632E: // PGA Tour Golf (UE) (Rev 1)
case 0xD2BA: // PGA Tour Golf (UE) (Rev 2)
case 0x44FE: // Super Hydlide (J)
saveType = 1; // ODD
sramBase = 0x200001;
sramEnd = 0x203FFF;
break;
case 0xDB5E: // Might & Magic: Gates to Another World (UE) (Rev 1)
case 0x3428: // Starflight (UE) (Rev 0)
case 0x43EE: // Starflight (UE) (Rev 1)
saveType = 3; // BOTH
sramBase = 0x200001;
sramEnd = 0x207FFF;
break;
case 0xBF72: // College Football USA '96 (U)
case 0x72EF: // FIFA Soccer '97 (UE)
case 0xD723: // Hardball III (U)
case 0x06C1: // Madden NFL '98 (U)
case 0xDB17: // NHL '96 (UE)
case 0x5B3A: // NHL '98 (U)
case 0x2CF2: // NFL Sports Talk Football '93 starring Joe Montana (UE)
case 0xE9B1: // Summer Challenge (U)
case 0xEEE8: // Test Drive II: The Duel (U)
saveType = 1; // ODD
sramBase = 0x200001;
sramEnd = 0x20FFFF;
break;
}
if (saveType == 1) {
sramSize = (sramEnd - sramBase + 2) / 2;
sramBase = sramBase >> 1;
} else if (saveType == 3) {
sramSize = sramEnd - sramBase + 2;
sramBase = sramBase >> 1;
}
}
}
// Get name
for (byte c = 0; c < 48; c += 2) {
// split word
word myWord = readWord_MD((0x150 + c) / 2);
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
romName[copyToRomName_MD(romName, sdBuffer, sizeof(romName) - 1)] = 0;
//Get Lock-on cart name
if (SnKmode >= 2) {
char romNameLockon[12];
//Change romName
strcpy(romName, "SnK_");
for (byte c = 0; c < 48; c += 2) {
// split word
word myWord = readWord_MD((0x200150 + c) / 2);
byte loByte = myWord & 0xFF;
byte hiByte = myWord >> 8;
// write to buffer
sdBuffer[c] = hiByte;
sdBuffer[c + 1] = loByte;
}
romNameLockon[copyToRomName_MD(romNameLockon, sdBuffer, sizeof(romNameLockon) - 1)] = 0;
switch (SnKmode) {
case 2: strcat(romName, "SONIC1"); break;
case 3: strcat(romName, "SONIC2"); break;
case 4: strcat(romName, "SONIC3"); break;
case 5: strcat(romName, romNameLockon); break;
}
}
// Realtec Mapper Check
word realtecCheck1 = readWord_MD(0x3F080); // 0x7E100 "SEGA" (BootROM starts at 0x7E000)
word realtecCheck2 = readWord_MD(0x3F081);
if ((realtecCheck1 == 0x5345) && (realtecCheck2 == 0x4741)) {
realtec = 1;
strcpy(romName, "Realtec");
cartSize = 0x80000;
}
display_Clear();
println_Msg(F("Cart Info"));
println_Msg(F(" "));
print_Msg(F("Name: "));
println_Msg(romName);
if (bramCheck != 0x00FF) {
print_Msg(F("bramCheck: "));
print_Msg_PaddedHex16(bramCheck);
println_Msg(F(""));
}
if (bramSize > 0) {
print_Msg(F("bramSize(KB): "));
println_Msg(bramSize >> 10);
}
print_Msg(F("Size: "));
print_Msg(cartSize * 8 / 1024 / 1024);
switch (SnKmode) {
case 2:
case 4:
case 5:
print_Msg(F("+"));
print_Msg(cartSizeLockon * 8 / 1024 / 1024);
break;
case 3:
print_Msg(F("+"));
print_Msg(cartSizeLockon * 8 / 1024 / 1024);
print_Msg(F("+"));
print_Msg(cartSizeSonic2 * 8 / 1024 / 1024);
break;
}
println_Msg(F(" MBit"));
print_Msg(F("ChkS: "));
print_Msg_PaddedHexByte((chksum >> 8));
print_Msg_PaddedHexByte((chksum & 0x00ff));
switch (SnKmode) {
case 2:
case 4:
case 5:
print_Msg(F("+"));
print_Msg_PaddedHexByte((chksumLockon >> 8));
print_Msg_PaddedHexByte((chksumLockon & 0x00ff));
break;
case 3:
print_Msg(F("+"));
print_Msg_PaddedHexByte((chksumLockon >> 8));
print_Msg_PaddedHexByte((chksumLockon & 0x00ff));
print_Msg(F("+"));
print_Msg_PaddedHexByte((chksumSonic2 >> 8));
print_Msg_PaddedHexByte((chksumSonic2 & 0x00ff));
break;
}
println_Msg(F(""));
if (saveType == 4) {
print_Msg(F("Serial EEPROM: "));
print_Msg(eepSize * 8 / 1024);
println_Msg(F(" KBit"));
} else {
print_Msg(F("Sram: "));
if (sramSize > 0) {
print_Msg(sramSize * 8 / 1024);
println_Msg(F(" KBit"));
} else
println_Msg(F("None"));
}
println_Msg(F(" "));
// Wait for user input
#if (defined(enable_LCD) || defined(enable_OLED))
// Prints string out of the common strings array either with or without newline
print_STR(press_button_STR, 1);
display_Update();
wait();
#endif
}
void writeSSF2Map(unsigned long myAddress, word myData) {
dataOut_MD();
// Set TIME(PJ0) HIGH
PORTJ |= (1 << 0);
// 0x50987E * 2 = 0xA130FD Bank 6 (0x300000-0x37FFFF)
// 0x50987F * 2 = 0xA130FF Bank 7 (0x380000-0x3FFFFF)
PORTL = (myAddress >> 16) & 0xFF;
PORTK = (myAddress >> 8) & 0xFF;
PORTF = myAddress & 0xFF;
PORTC = myData;
PORTA = (myData >> 8) & 0xFF;
// Arduino running at 16Mhz -> one nop = 62.5ns
// Wait till output is stable
__asm__("nop\n\t"
"nop\n\t");
// Strobe TIME(PJ0) LOW to latch the data
PORTJ &= ~(1 << 0);
// Switch WR(PH5) to LOW
PORTH &= ~(1 << 5);
// Leave WR low for at least 200ns
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
// Switch WR(PH5) to HIGH
PORTH |= (1 << 5);
// Set TIME(PJ0) HIGH
PORTJ |= (1 << 0);
dataIn_MD();
}
// Read rom and save to the SD card
void readROM_MD() {
// Checksum
uint16_t calcCKS = 0;
uint16_t calcCKSLockon = 0;
uint16_t calcCKSSonic2 = 0;
// Set control
dataIn_MD();
// Get name, add extension and convert to char array for sd lib
strcpy(fileName, romName);
strcat(fileName, ".BIN");
// create a new folder
EEPROM_readAnything(0, foldern);
sprintf(folder, "MD/ROM/%s/%d", romName, foldern);
sd.mkdir(folder, true);
sd.chdir(folder);
display_Clear();
print_STR(saving_to_STR, 0);
print_Msg(folder);
println_Msg(F("/..."));
display_Update();
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(sd_error_STR, true);
}
byte buffer[1024] = { 0 };
// get current time
// unsigned long startTime = millis();
// Phantasy Star/Beyond Oasis with 74HC74 and 74HC139 switch ROM/SRAM at address 0x200000
if (0x200000 < cartSize && cartSize < 0x400000) {
enableSram_MD(0);
}
// Prepare SSF2 Banks
if (cartSize > 0x400000) {
writeSSF2Map(0x50987E, 6); // 0xA130FD
writeSSF2Map(0x50987F, 7); // 0xA130FF
}
byte offsetSSF2Bank = 0;
word d = 0;
//Initialize progress bar
uint32_t processedProgressBar = 0;
uint32_t totalProgressBar = (uint32_t)(cartSize);
if (SnKmode >= 2) totalProgressBar += (uint32_t)cartSizeLockon;
if (SnKmode == 3) totalProgressBar += (uint32_t)cartSizeSonic2;
draw_progressbar(0, totalProgressBar);
for (unsigned long currBuffer = 0; currBuffer < cartSize / 2; currBuffer += 512) {
// Blink led
if (currBuffer % 16384 == 0)
blinkLED();
if ((currBuffer == 0x200000) && (cartSize > 0x400000)) {
writeSSF2Map(0x50987E, 8); // 0xA130FD
offsetSSF2Bank = 1;
} else if ((currBuffer == 0x240000) && (cartSize > 0x400000)) {
writeSSF2Map(0x50987F, 9); // 0xA130FF
offsetSSF2Bank = 1;
}
d = 0;
for (int currWord = 0; currWord < 512; currWord++) {
unsigned long myAddress = currBuffer + currWord - (offsetSSF2Bank * 0x80000);
PORTF = myAddress & 0xFF;
PORTK = (myAddress >> 8) & 0xFF;
PORTL = (myAddress >> 16) & 0xFF;
// Arduino running at 16Mhz -> one nop = 62.5ns
NOP;
// Setting CS(PH3) LOW
PORTH &= ~(1 << 3);
// Setting OE(PH6) LOW
PORTH &= ~(1 << 6);
// most MD ROMs are 200ns, comparable to SNES > use similar access delay of 6 x 62.5 = 375ns
NOP;
NOP;
NOP;
NOP;
NOP;
NOP;
// Read
buffer[d] = PINA;
buffer[d + 1] = PINC;
// Setting CS(PH3) HIGH
PORTH |= (1 << 3);
// Setting OE(PH6) HIGH
PORTH |= (1 << 6);
// Skip first 256 words
if (((currBuffer == 0) && (currWord >= 256)) || (currBuffer > 0)) {
calcCKS += ((buffer[d] << 8) | buffer[d + 1]);
}
d += 2;
}
myFile.write(buffer, 1024);
// update progress bar
processedProgressBar += 1024;
draw_progressbar(processedProgressBar, totalProgressBar);
}
if (SnKmode >= 2) {
for (unsigned long currBuffer = 0; currBuffer < cartSizeLockon / 2; currBuffer += 512) {
// Blink led
if (currBuffer % 16384 == 0)
blinkLED();
d = 0;
for (int currWord = 0; currWord < 512; currWord++) {
unsigned long myAddress = currBuffer + currWord + cartSize / 2;
PORTF = myAddress & 0xFF;
PORTK = (myAddress >> 8) & 0xFF;
PORTL = (myAddress >> 16) & 0xFF;
// Arduino running at 16Mhz -> one nop = 62.5ns
NOP;
// Setting CS(PH3) LOW
PORTH &= ~(1 << 3);
// Setting OE(PH6) LOW
PORTH &= ~(1 << 6);
// most MD ROMs are 200ns, comparable to SNES > use similar access delay of 6 x 62.5 = 375ns
NOP;
NOP;
NOP;
NOP;
NOP;
NOP;
// Read
buffer[d] = PINA;
buffer[d + 1] = PINC;
// Setting CS(PH3) HIGH
PORTH |= (1 << 3);
// Setting OE(PH6) HIGH
PORTH |= (1 << 6);
// Skip first 256 words
if (((currBuffer == 0) && (currWord >= 256)) || (currBuffer > 0)) {
calcCKSLockon += ((buffer[d] << 8) | buffer[d + 1]);
}
d += 2;
}
myFile.write(buffer, 1024);
// update progress bar
processedProgressBar += 1024;
draw_progressbar(processedProgressBar, totalProgressBar);
}
}
if (SnKmode == 3) {
for (unsigned long currBuffer = 0; currBuffer < cartSizeSonic2 / 2; currBuffer += 512) {
// Blink led
if (currBuffer % 16384 == 0)
blinkLED();
d = 0;
for (int currWord = 0; currWord < 512; currWord++) {
unsigned long myAddress = currBuffer + currWord + (cartSize + cartSizeLockon) / 2;
PORTF = myAddress & 0xFF;
PORTK = (myAddress >> 8) & 0xFF;
PORTL = (myAddress >> 16) & 0xFF;
// Arduino running at 16Mhz -> one nop = 62.5ns
NOP;
// Setting CS(PH3) LOW
PORTH &= ~(1 << 3);
// Setting OE(PH6) LOW
PORTH &= ~(1 << 6);
// most MD ROMs are 200ns, comparable to SNES > use similar access delay of 6 x 62.5 = 375ns
NOP;
NOP;
NOP;
NOP;
NOP;
NOP;
// Read
buffer[d] = PINA;
buffer[d + 1] = PINC;
// Setting CS(PH3) HIGH
PORTH |= (1 << 3);
// Setting OE(PH6) HIGH
PORTH |= (1 << 6);
calcCKSSonic2 += ((buffer[d] << 8) | buffer[d + 1]);
d += 2;
}
myFile.write(buffer, 1024);
// update progress bar
processedProgressBar += 1024;
draw_progressbar(processedProgressBar, totalProgressBar);
}
}
// Close the file:
myFile.close();
// Reset SSF2 Banks
if (cartSize > 0x400000) {
writeSSF2Map(0x50987E, 6); // 0xA130FD
writeSSF2Map(0x50987F, 7); // 0xA130FF
}
// print elapsed time
//print_Msg(F("Time elapsed: "));
//print_Msg((millis() - startTime) / 1000);
//println_Msg(F("s"));
//display_Update();
// Calculate internal checksum
print_Msg(F("Internal checksum..."));
display_Update();
if (chksum == calcCKS) {
println_Msg(F("OK"));
display_Update();
} else {
println_Msg(F("Error"));
char calcsumStr[5];
sprintf(calcsumStr, "%04X", calcCKS);
println_Msg(calcsumStr);
print_Error(F(""), false);
display_Update();
}
// Calculate and compare CRC32 with nointro
if (is32x)
//database, crcString, renamerom, offset
compareCRC("32x.txt", 0, 1, 0);
else
compareCRC("md.txt", 0, 1, 0);
// More checksums
if (SnKmode >= 2) {
if (chksumLockon == calcCKSLockon) {
println_Msg(F("Checksum2 OK"));
display_Update();
} else {
print_Msg(F("Checksum2 Error: "));
char calcsumStr[5];
sprintf(calcsumStr, "%04X", calcCKSLockon);
println_Msg(calcsumStr);
print_Error(F(""), false);
display_Update();
}
}
if (SnKmode == 3) {
if (chksumSonic2 == calcCKSSonic2) {
println_Msg(F("Checksum3 OK"));
display_Update();
} else {
print_Msg(F("Checksum3 Error: "));
char calcsumStr[5];
sprintf(calcsumStr, "%04X", calcCKSSonic2);
println_Msg(calcsumStr);
print_Error(F(""), false);
display_Update();
}
}
}
/******************************************
SRAM functions
*****************************************/
// Sonic 3 sram enable
void enableSram_MD(boolean enableSram) {
dataOut_MD();
// Set D0 to either 1(enable SRAM) or 0(enable ROM)
PORTC = enableSram;
// Strobe TIME(PJ0) LOW to latch the data
PORTJ &= ~(1 << 0);
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
// Set TIME(PJ0) HIGH
PORTJ |= (1 << 0);
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
dataIn_MD();
}
// Write sram to cartridge
void writeSram_MD() {
dataOut_MD();
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
println_Msg(F("Writing..."));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
// Write to the lower byte
if (saveType == 1) {
for (unsigned long currByte = sramBase; currByte < sramBase + sramSize; currByte++) {
if (segaSram16bit > 0) {
// skip high byte
myFile.read();
}
word data = myFile.read() & 0xFF;
writeWord_MD(currByte, data);
}
}
// Write to the upper byte
else if (saveType == 2) {
for (unsigned long currByte = sramBase; currByte < sramBase + sramSize; currByte++) {
word data = (myFile.read() << 8) & 0xFF00;
writeWord_MD(currByte, data);
if (segaSram16bit > 0) {
// skip low byte
myFile.read();
}
}
}
// Write to both bytes
else if (saveType == 3) {
for (unsigned long currByte = sramBase; currByte < sramBase + sramSize; currByte++) {
word data = (myFile.read() << 8) & 0xFF00;
data |= (myFile.read() & 0xFF);
writeWord_MD(currByte, data);
}
} else
print_Error(F("Unknown save type"), false);
// Close the file:
myFile.close();
print_STR(done_STR, 1);
display_Update();
} else {
print_Error(sd_error_STR, true);
}
dataIn_MD();
}
// Read sram and save to the SD card
void readSram_MD() {
dataIn_MD();
// Get name, add extension and convert to char array for sd lib
strcpy(fileName, romName);
strcat(fileName, ".srm");
// create a new folder for the save file
EEPROM_readAnything(0, foldern);
sprintf(folder, "MD/SAVE/%s/%d", romName, foldern);
sd.mkdir(folder, true);
sd.chdir(folder);
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(sd_error_STR, true);
}
for (unsigned long currBuffer = sramBase; currBuffer < sramBase + sramSize; currBuffer += 256) {
for (int currWord = 0; currWord < 256; currWord++) {
word myWord = readWord_MD(currBuffer + currWord);
if (saveType == 2) {
// Only use the upper byte
if (segaSram16bit > 0) {
sdBuffer[(currWord * 2) + 0] = ((myWord >> 8) & 0xFF);
sdBuffer[(currWord * 2) + 1] = ((myWord >> 8) & 0xFF);
} else {
sdBuffer[currWord] = ((myWord >> 8) & 0xFF);
}
} else if (saveType == 1) {
// Only use the lower byte
if (segaSram16bit > 0) {
sdBuffer[(currWord * 2) + 0] = (myWord & 0xFF);
sdBuffer[(currWord * 2) + 1] = (myWord & 0xFF);
} else {
sdBuffer[currWord] = (myWord & 0xFF);
}
} else if (saveType == 3) { // BOTH
sdBuffer[currWord * 2] = ((myWord >> 8) & 0xFF);
sdBuffer[(currWord * 2) + 1] = (myWord & 0xFF);
}
}
if (saveType == 3 || segaSram16bit > 0)
myFile.write(sdBuffer, 512);
else
myFile.write(sdBuffer, 256);
}
if (segaSram16bit == 2) {
// pad to 64KB
for (int i = 0; i < 512; i++) {
sdBuffer[i] = 0xFF;
}
unsigned long padsize = (1UL << 16) - (sramSize << 1);
unsigned long padblockcount = padsize >> 9; // number of 512 byte blocks
for (unsigned long i = 0; i < padblockcount; i++) {
myFile.write(sdBuffer, 512);
}
}
// Close the file:
myFile.close();
print_Msg(F("Saved to "));
print_Msg(folder);
println_Msg(F("/"));
display_Update();
}
unsigned long verifySram_MD() {
dataIn_MD();
writeErrors = 0;
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
for (unsigned long currBuffer = sramBase; currBuffer < sramBase + sramSize; currBuffer += 256) {
for (int currWord = 0; currWord < 256; currWord++) {
word myWord = readWord_MD(currBuffer + currWord);
if (saveType == 2) {
// Only use the upper byte
sdBuffer[currWord * 2] = ((myWord >> 8) & 0xFF);
} else if (saveType == 1) {
// Only use the lower byte
sdBuffer[currWord * 2] = (myWord & 0xFF);
} else if (saveType == 3) { // BOTH
sdBuffer[(currWord * 2) + 0] = ((myWord >> 8) & 0xFF);
sdBuffer[(currWord * 2) + 1] = (myWord & 0xFF);
}
}
int step = saveType == 3 ? 1 : 2;
// Check sdBuffer content against file on sd card
for (int i = 0; i < 512; i += step) {
if (saveType == 1 && segaSram16bit > 0) {
// skip high byte
myFile.read();
}
byte b = myFile.read();
if (saveType == 2 && segaSram16bit > 0) {
// skip low byte
myFile.read();
}
if (b != sdBuffer[i]) {
writeErrors++;
}
}
}
// Close the file:
myFile.close();
} else {
print_Error(sd_error_STR, true);
}
// Return 0 if verified ok, or number of errors
return writeErrors;
}
#ifdef enable_FLASH
//******************************************
// Flashrom Functions
//******************************************
void resetFlash_MD() {
// Set data pins to output
dataOut_MD();
// Reset command sequence
writeFlash_MD(0x5555, 0xaa);
writeFlash_MD(0x2aaa, 0x55);
writeFlash_MD(0x5555, 0xf0);
// Set data pins to input again
dataIn_MD();
}
void write29F1610_MD() {
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
print_STR(flashing_file_STR, 0);
print_Msg(filePath);
println_Msg(F("..."));
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
// Get rom size from file
fileSize = myFile.fileSize();
if (fileSize > flashSize) {
print_Error(file_too_big_STR, true);
}
// Set data pins to output
dataOut_MD();
// Fill sdBuffer with 1 page at a time then write it repeat until all bytes are written
int d = 0;
for (unsigned long currByte = 0; currByte < fileSize / 2; currByte += 64) {
myFile.read(sdBuffer, 128);
// Blink led
if (currByte % 4096 == 0) {
blinkLED();
}
// Write command sequence
writeFlash_MD(0x5555, 0xaa);
writeFlash_MD(0x2aaa, 0x55);
writeFlash_MD(0x5555, 0xa0);
// Write one full page at a time
for (byte c = 0; c < 64; c++) {
word currWord = ((sdBuffer[d] & 0xFF) << 8) | (sdBuffer[d + 1] & 0xFF);
writeFlash_MD(currByte + c, currWord);
d += 2;
}
d = 0;
// Check if write is complete
delayMicroseconds(100);
busyCheck_MD();
}
// Set data pins to input again
dataIn_MD();
// Close the file:
myFile.close();
} else {
print_STR(open_file_STR, 1);
display_Update();
}
}
void idFlash_MD() {
// Set data pins to output
dataOut_MD();
// ID command sequence
writeFlash_MD(0x5555, 0xaa);
writeFlash_MD(0x2aaa, 0x55);
writeFlash_MD(0x5555, 0x90);
// Set data pins to input again
dataIn_MD();
// Read the two id bytes into a string
flashid = (readFlash_MD(0) & 0xFF) << 8;
flashid |= readFlash_MD(1) & 0xFF;
sprintf(flashid_str, "%04X", flashid);
}
byte readStatusReg_MD() {
// Set data pins to output
dataOut_MD();
// Status reg command sequence
writeFlash_MD(0x5555, 0xaa);
writeFlash_MD(0x2aaa, 0x55);
writeFlash_MD(0x5555, 0x70);
// Set data pins to input again
dataIn_MD();
// Read the status register
byte statusReg = readFlash_MD(0);
return statusReg;
}
void eraseFlash_MD() {
// Set data pins to output
dataOut_MD();
// Erase command sequence
writeFlash_MD(0x5555, 0xaa);
writeFlash_MD(0x2aaa, 0x55);
writeFlash_MD(0x5555, 0x80);
writeFlash_MD(0x5555, 0xaa);
writeFlash_MD(0x2aaa, 0x55);
writeFlash_MD(0x5555, 0x10);
// Set data pins to input again
dataIn_MD();
busyCheck_MD();
}
void blankcheck_MD() {
blank = 1;
for (unsigned long currByte = 0; currByte < flashSize / 2; currByte++) {
if (readFlash_MD(currByte) != 0xFFFF) {
currByte = flashSize / 2;
blank = 0;
}
if (currByte % 4096 == 0) {
blinkLED();
}
}
if (!blank) {
print_Error(F("Error: Not blank"), false);
}
}
void verifyFlash_MD() {
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
// Get rom size from file
fileSize = myFile.fileSize();
if (fileSize > flashSize) {
print_Error(file_too_big_STR, true);
}
blank = 0;
word d = 0;
for (unsigned long currByte = 0; currByte < fileSize / 2; currByte += 256) {
if (currByte % 4096 == 0) {
blinkLED();
}
//fill sdBuffer
myFile.read(sdBuffer, 512);
for (int c = 0; c < 256; c++) {
word currWord = ((sdBuffer[d] << 8) | sdBuffer[d + 1]);
if (readFlash_MD(currByte + c) != currWord) {
blank++;
}
d += 2;
}
d = 0;
}
if (blank == 0) {
println_Msg(F("Flashrom verified OK"));
display_Update();
} else {
print_STR(error_STR, 0);
print_Msg(blank);
print_STR(_bytes_STR, 1);
print_Error(did_not_verify_STR, false);
}
// Close the file:
myFile.close();
} else {
print_STR(open_file_STR, 1);
display_Update();
}
}
#endif
// Delay between write operations based on status register
void busyCheck_MD() {
// Set data pins to input
dataIn_MD();
// Read the status register
word statusReg = readFlash_MD(0);
while ((statusReg | 0xFF7F) != 0xFFFF) {
statusReg = readFlash_MD(0);
}
// Set data pins to output
dataOut_MD();
}
//******************************************
// EEPROM Functions
//******************************************
void EepromInit(byte eepmode) { // Acclaim Type 2
PORTF = 0x00; // ADDR A0-A7
PORTK = 0x00; // ADDR A8-A15
PORTL = 0x10; // ADDR A16-A23
PORTA = 0x00; // DATA D8-D15
PORTH |= (1 << 0); // /RES HIGH
PORTC = eepmode; // EEPROM Switch: 0 = Enable (Read EEPROM), 1 = Disable (Read ROM)
PORTH &= ~(1 << 3); // CE LOW
PORTH &= ~(1 << 4) & ~(1 << 5); // /UDSW + /LDSW LOW
PORTH |= (1 << 6); // OE HIGH
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
PORTH |= (1 << 4) | (1 << 5); // /UDSW + /LDSW HIGH
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
}
void writeWord_SDA(unsigned long myAddress, word myData) { /* D0 goes to /SDA when only /LWR is asserted */
PORTF = myAddress & 0xFF;
PORTK = (myAddress >> 8) & 0xFF;
PORTL = (myAddress >> 16) & 0xFF;
PORTC = myData;
PORTH &= ~(1 << 3); // CE LOW
PORTH &= ~(1 << 5); // /LDSW LOW
PORTH |= (1 << 4); // /UDSW HIGH
PORTH |= (1 << 6); // OE HIGH
if (eepSize > 0x100)
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
else
delayMicroseconds(100);
PORTH |= (1 << 5); // /LDSW HIGH
if (eepSize > 0x100)
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
else
delayMicroseconds(100);
}
void writeWord_SCL(unsigned long myAddress, word myData) { /* D0 goes to /SCL when only /UWR is asserted */
PORTF = myAddress & 0xFF;
PORTK = (myAddress >> 8) & 0xFF;
PORTL = (myAddress >> 16) & 0xFF;
PORTC = myData;
PORTH &= ~(1 << 3); // CE LOW
PORTH &= ~(1 << 4); // /UDSW LOW
PORTH |= (1 << 5); // /LDSW HIGH
PORTH |= (1 << 6); // OE HIGH
if (eepSize > 0x100)
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
else
delayMicroseconds(100);
PORTH |= (1 << 4); // /UDSW HIGH
if (eepSize > 0x100)
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
else
delayMicroseconds(100);
}
void writeWord_CM(unsigned long myAddress, word myData) { // Codemasters
PORTF = myAddress & 0xFF;
PORTK = (myAddress >> 8) & 0xFF;
PORTL = (myAddress >> 16) & 0xFF;
PORTC = myData;
PORTA = (myData >> 8) & 0xFF;
// Arduino running at 16Mhz -> one nop = 62.5ns
// Wait till output is stable
__asm__("nop\n\t"
"nop\n\t");
// Switch WR(PH4) to LOW
PORTH &= ~(1 << 4);
// Setting CS(PH3) LOW
PORTH &= ~(1 << 3);
// Pulse CLK(PH1)
PORTH ^= (1 << 1);
// Leave WR low for at least 200ns
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
// Pulse CLK(PH1)
PORTH ^= (1 << 1);
// Setting CS(PH3) HIGH
PORTH |= (1 << 3);
// Switch WR(PH4) to HIGH
PORTH |= (1 << 4);
// Leave WR high for at least 50ns
__asm__("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t");
}
// EEPROM COMMANDS
void EepromStart() {
if (eepType == 2) { // Acclaim Type 2
writeWord_SDA(0x100000, 0x00); // sda low
writeWord_SCL(0x100000, 0x00); // scl low
writeWord_SDA(0x100000, 0x01); // sda high
writeWord_SCL(0x100000, 0x01); // scl high
writeWord_SDA(0x100000, 0x00); // sda low
writeWord_SCL(0x100000, 0x00); // scl low
} else if (eepType == 4) { // EA
writeWord_MD(0x100000, 0x00); // sda low, scl low
writeWord_MD(0x100000, 0xC0); // sda, scl high
writeWord_MD(0x100000, 0x40); // sda low, scl high
writeWord_MD(0x100000, 0x00); // START
} else if (eepType == 5) { // Codemasters
writeWord_CM(0x180000, 0x00); // sda low, scl low
writeWord_CM(0x180000, 0x02); // sda low, scl high
writeWord_CM(0x180000, 0x03); // sda, scl high
writeWord_CM(0x180000, 0x02); // sda low, scl high
writeWord_CM(0x180000, 0x00); // START
} else {
writeWord_MD(0x100000, 0x00); // sda low, scl low
writeWord_MD(0x100000, 0x03); // sda, scl high
writeWord_MD(0x100000, 0x02); // sda low, scl high
writeWord_MD(0x100000, 0x00); // START
}
}
void EepromSet0() {
if (eepType == 2) { // Acclaim Type 2
writeWord_SDA(0x100000, 0x00); // sda low
writeWord_SCL(0x100000, 0x01); // scl high
writeWord_SDA(0x100000, 0x00); // sda low
writeWord_SCL(0x100000, 0x00); // scl low
} else if (eepType == 4) { // EA
writeWord_MD(0x100000, 0x00); // sda low, scl low
writeWord_MD(0x100000, 0x40); // sda low, scl high // 0
writeWord_MD(0x100000, 0x00); // sda low, scl low
} else if (eepType == 5) { // Codemasters
writeWord_CM(0x180000, 0x00); // sda low, scl low
writeWord_CM(0x180000, 0x02); // sda low, scl high // 0
writeWord_CM(0x180000, 0x00); // sda low, scl low
} else {
writeWord_MD(0x100000, 0x00); // sda low, scl low
writeWord_MD(0x100000, 0x02); // sda low, scl high // 0
writeWord_MD(0x100000, 0x00); // sda low, scl low
}
}
void EepromSet1() {
if (eepType == 2) { // Acclaim Type 2
writeWord_SDA(0x100000, 0x01); // sda high
writeWord_SCL(0x100000, 0x01); // scl high
writeWord_SDA(0x100000, 0x01); // sda high
writeWord_SCL(0x100000, 0x00); // scl low
} else if (eepType == 4) { // EA
writeWord_MD(0x100000, 0x80); // sda high, scl low
writeWord_MD(0x100000, 0xC0); // sda high, scl high // 1
writeWord_MD(0x100000, 0x80); // sda high, scl low
writeWord_MD(0x100000, 0x00); // sda low, scl low
} else if (eepType == 5) { // Codemasters
writeWord_CM(0x180000, 0x01); // sda high, scl low
writeWord_CM(0x180000, 0x03); // sda high, scl high // 1
writeWord_CM(0x180000, 0x01); // sda high, scl low
writeWord_CM(0x180000, 0x00); // sda low, scl low
} else {
writeWord_MD(0x100000, 0x01); // sda high, scl low
writeWord_MD(0x100000, 0x03); // sda high, scl high // 1
writeWord_MD(0x100000, 0x01); // sda high, scl low
writeWord_MD(0x100000, 0x00); // sda low, scl low
}
}
void EepromDevice() { // 24C02+
EepromSet1();
EepromSet0();
EepromSet1();
EepromSet0();
}
void EepromSetDeviceAddress(word addrhi) { // 24C02+
for (int i = 0; i < 3; i++) {
if ((addrhi >> 2) & 0x1) // Bit is HIGH
EepromSet1();
else // Bit is LOW
EepromSet0();
addrhi <<= 1; // rotate to the next bit
}
}
void EepromStatus() { // ACK
byte eepStatus = 1;
if (eepType == 1) { // Acclaim Type 1
writeWord_MD(0x100000, 0x01); // sda high, scl low
writeWord_MD(0x100000, 0x03); // sda high, scl high
do {
dataIn_MD();
eepStatus = ((readWord_MD(0x100000) >> 1) & 0x1);
dataOut_MD();
delayMicroseconds(4);
} while (eepStatus == 1);
writeWord_MD(0x100000, 0x01); // sda high, scl low
} else if (eepType == 2) { // Acclaim Type 2
writeWord_SDA(0x100000, 0x01); // sda high
writeWord_SCL(0x100000, 0x01); // scl high
do {
dataIn_MD();
eepStatus = (readWord_MD(0x100000) & 0x1);
dataOut_MD();
delayMicroseconds(4);
} while (eepStatus == 1);
writeWord_SCL(0x100000, 0x00); // scl low
} else if (eepType == 3) { // Capcom/Sega
writeWord_MD(0x100000, 0x01); // sda high, scl low
writeWord_MD(0x100000, 0x03); // sda high, scl high
do {
dataIn_MD();
eepStatus = (readWord_MD(0x100000) & 0x1);
dataOut_MD();
delayMicroseconds(4);
} while (eepStatus == 1);
writeWord_MD(0x100000, 0x01); // sda high, scl low
} else if (eepType == 4) { // EA
writeWord_MD(0x100000, 0x80); // sda high, scl low
writeWord_MD(0x100000, 0xC0); // sda high, scl high
do {
dataIn_MD();
eepStatus = ((readWord_MD(0x100000) >> 7) & 0x1);
dataOut_MD();
delayMicroseconds(4);
} while (eepStatus == 1);
writeWord_MD(0x100000, 0x80); // sda high, scl low
} else if (eepType == 5) { // Codemasters
writeWord_CM(0x180000, 0x01); // sda high, scl low
writeWord_CM(0x180000, 0x03); // sda high, scl high
do {
dataIn_MD();
eepStatus = ((readWord_MD(0x1C0000) >> 7) & 0x1);
dataOut_MD();
delayMicroseconds(4);
} while (eepStatus == 1);
writeWord_CM(0x180000, 0x01); // sda high, scl low
}
}
void EepromReadMode() {
EepromSet1(); // READ
EepromStatus(); // ACK
}
void EepromWriteMode() {
EepromSet0(); // WRITE
EepromStatus(); // ACK
}
void EepromReadData() {
if (eepType == 1) { // Acclaim Type 1
for (int i = 0; i < 8; i++) {
writeWord_MD(0x100000, 0x03); // sda high, scl high
dataIn_MD();
eepbit[i] = ((readWord_MD(0x100000) >> 1) & 0x1); // Read 0x100000 with Mask 0x1 (bit 1)
dataOut_MD();
writeWord_MD(0x100000, 0x01); // sda high, scl low
}
} else if (eepType == 2) { // Acclaim Type 2
for (int i = 0; i < 8; i++) {
writeWord_SDA(0x100000, 0x01); // sda high
writeWord_SCL(0x100000, 0x01); // scl high
dataIn_MD();
eepbit[i] = (readWord_MD(0x100000) & 0x1); // Read 0x100000 with Mask 0x1 (bit 0)
dataOut_MD();
writeWord_SDA(0x100000, 0x01); // sda high
writeWord_SCL(0x100000, 0x00); // scl low
}
} else if (eepType == 3) { // Capcom/Sega
for (int i = 0; i < 8; i++) {
writeWord_MD(0x100000, 0x03); // sda high, scl high
dataIn_MD();
eepbit[i] = (readWord_MD(0x100000) & 0x1); // Read 0x100000 with Mask 0x1 (bit 0)
dataOut_MD();
writeWord_MD(0x100000, 0x01); // sda high, scl low
}
} else if (eepType == 4) { // EA
for (int i = 0; i < 8; i++) {
writeWord_MD(0x100000, 0xC0); // sda high, scl high
dataIn_MD();
eepbit[i] = ((readWord_MD(0x100000) >> 7) & 0x1); // Read 0x100000 with Mask (bit 7)
dataOut_MD();
writeWord_MD(0x100000, 0x80); // sda high, scl low
}
} else if (eepType == 5) { // Codemasters
for (int i = 0; i < 8; i++) {
writeWord_CM(0x180000, 0x03); // sda high, scl high
dataIn_MD();
eepbit[i] = ((readWord_MD(0x1C0000) >> 7) & 0x1); // Read 0x1C0000 with Mask 0x1 (bit 7)
dataOut_MD();
writeWord_CM(0x180000, 0x01); // sda high, scl low
}
}
}
void EepromWriteData(byte data) {
for (int i = 0; i < 8; i++) {
if ((data >> 7) & 0x1) // Bit is HIGH
EepromSet1();
else // Bit is LOW
EepromSet0();
data <<= 1; // rotate to the next bit
}
EepromStatus(); // ACK
}
void EepromFinish() {
if (eepType == 2) { // Acclaim Type 2
writeWord_SDA(0x100000, 0x00); // sda low
writeWord_SCL(0x100000, 0x00); // scl low
writeWord_SDA(0x100000, 0x01); // sda high
writeWord_SCL(0x100000, 0x00); // scl low
writeWord_SDA(0x100000, 0x01); // sda high
writeWord_SCL(0x100000, 0x01); // scl high
writeWord_SDA(0x100000, 0x01); // sda high
writeWord_SCL(0x100000, 0x00); // scl low
writeWord_SDA(0x100000, 0x00); // sda low
writeWord_SCL(0x100000, 0x00); // scl low
} else if (eepType == 4) { // EA
writeWord_MD(0x100000, 0x00); // sda low, scl low
writeWord_MD(0x100000, 0x80); // sda high, scl low
writeWord_MD(0x100000, 0xC0); // sda high, scl high
writeWord_MD(0x100000, 0x80); // sda high, scl low
writeWord_MD(0x100000, 0x00); // sda low, scl low
} else if (eepType == 5) { // Codemasters
writeWord_CM(0x180000, 0x00); // sda low, scl low
writeWord_CM(0x180000, 0x01); // sda high, scl low
writeWord_CM(0x180000, 0x03); // sda high, scl high
writeWord_CM(0x180000, 0x01); // sda high, scl low
writeWord_CM(0x180000, 0x00); // sda low, scl low
} else {
writeWord_MD(0x100000, 0x00); // sda low, scl low
writeWord_MD(0x100000, 0x01); // sda high, scl low
writeWord_MD(0x100000, 0x03); // sda high, scl high
writeWord_MD(0x100000, 0x01); // sda high, scl low
writeWord_MD(0x100000, 0x00); // sda low, scl low
}
}
void EepromStop() {
if (eepType == 2) { // Acclaim Type 2
writeWord_SDA(0x100000, 0x00); // sda low
writeWord_SCL(0x100000, 0x01); // scl high
writeWord_SDA(0x100000, 0x01); // sda high
writeWord_SCL(0x100000, 0x01); // scl high
writeWord_SDA(0x100000, 0x01); // sda high
writeWord_SCL(0x100000, 0x00); // scl low
writeWord_SDA(0x100000, 0x00); // sda low
writeWord_SCL(0x100000, 0x00); // scl low // STOP
} else if (eepType == 4) { // EA
writeWord_MD(0x100000, 0x00); // sda, scl low
writeWord_MD(0x100000, 0x40); // sda low, scl high
writeWord_MD(0x100000, 0xC0); // sda, scl high
writeWord_MD(0x100000, 0x80); // sda high, scl low
writeWord_MD(0x100000, 0x00); // STOP
} else if (eepType == 5) { // Codemasters
writeWord_CM(0x180000, 0x00); // sda low, scl low
writeWord_CM(0x180000, 0x02); // sda low, scl high
writeWord_CM(0x180000, 0x03); // sda, scl high
writeWord_CM(0x180000, 0x01); // sda high, scl low
writeWord_CM(0x180000, 0x00); // STOP
} else {
writeWord_MD(0x100000, 0x00); // sda, scl low
writeWord_MD(0x100000, 0x02); // sda low, scl high
writeWord_MD(0x100000, 0x03); // sda, scl high
writeWord_MD(0x100000, 0x01); // sda high, scl low
writeWord_MD(0x100000, 0x00); // STOP
}
}
void EepromSetAddress(word address) {
if (eepSize > 0x80) { // 24C02+
for (int i = 0; i < 8; i++) {
if ((address >> 7) & 0x1) // Bit is HIGH
EepromSet1();
else // Bit is LOW
EepromSet0();
address <<= 1; // rotate to the next bit
}
EepromStatus(); // ACK
} else { // 24C01
for (int i = 0; i < 7; i++) {
if ((address >> 6) & 0x1) // Bit is HIGH
EepromSet1();
else // Bit is LOW
EepromSet0();
address <<= 1; // rotate to the next bit
}
}
}
void readEepromByte(word address) {
addrhi = address >> 8;
addrlo = address & 0xFF;
dataOut_MD();
if (eepType == 2)
EepromInit(0); // Enable EEPROM
EepromStart(); // START
if (eepSize > 0x80) {
EepromDevice(); // DEVICE [1010]
if (eepSize > 0x800) { // MODE 3 [24C65]
EepromSetDeviceAddress(0);
EepromWriteMode();
EepromSetAddress(addrhi); // ADDR [A15..A8]
} else { // MODE 2 [24C02/24C08/24C16]
EepromSetDeviceAddress(addrhi); // ADDR [A10..A8]
EepromWriteMode();
}
}
EepromSetAddress(addrlo);
if (eepSize > 0x80) {
EepromStart(); // START
EepromDevice(); // DEVICE [1010]
if (eepSize > 0x800) // MODE 3 [24C65]
EepromSetDeviceAddress(0);
else // MODE 2 [24C02/24C08/24C16]
EepromSetDeviceAddress(addrhi); // ADDR [A10..A8]
}
EepromReadMode();
EepromReadData();
EepromFinish();
EepromStop(); // STOP
if (eepType == 2)
EepromInit(1); // Disable EEPROM
// OR 8 bits into byte
eeptemp = eepbit[0] << 7 | eepbit[1] << 6 | eepbit[2] << 5 | eepbit[3] << 4 | eepbit[4] << 3 | eepbit[5] << 2 | eepbit[6] << 1 | eepbit[7];
sdBuffer[addrlo] = eeptemp;
}
void writeEepromByte(word address) {
addrhi = address >> 8;
addrlo = address & 0xFF;
eeptemp = sdBuffer[addrlo];
dataOut_MD();
if (eepType == 2)
EepromInit(0); // Enable EEPROM
EepromStart(); // START
if (eepSize > 0x80) {
EepromDevice(); // DEVICE [1010]
if (eepSize > 0x800) { // MODE 3 [24C65]
EepromSetDeviceAddress(0); // [A2-A0] = 000
EepromWriteMode(); // WRITE
EepromSetAddress(addrhi); // ADDR [A15-A8]
} else { // MODE 2 [24C02/24C08/24C16]
EepromSetDeviceAddress(addrhi); // ADDR [A10-A8]
EepromWriteMode(); // WRITE
}
EepromSetAddress(addrlo);
} else { // 24C01
EepromSetAddress(addrlo);
EepromWriteMode(); // WRITE
}
EepromWriteData(eeptemp);
EepromStop(); // STOP
if (eepType == 2)
EepromInit(1); // Disable EEPROM
}
// Read EEPROM and save to the SD card
void readEEP_MD() {
dataIn_MD();
// Get name, add extension and convert to char array for sd lib
strcpy(fileName, romName);
strcat(fileName, ".eep");
// create a new folder for the save file
EEPROM_readAnything(0, foldern);
sd.chdir();
sprintf(folder, "MD/SAVE/%s/%d", romName, foldern);
sd.mkdir(folder, true);
sd.chdir(folder);
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
println_Msg(F("Reading..."));
display_Update();
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(sd_error_STR, true);
}
if (eepSize > 0x100) { // 24C04+
for (word currByte = 0; currByte < eepSize; currByte += 256) {
print_Msg(F("*"));
display_Update();
for (int i = 0; i < 256; i++) {
readEepromByte(currByte + i);
}
myFile.write(sdBuffer, 256);
}
} else { // 24C01/24C02
for (word currByte = 0; currByte < eepSize; currByte++) {
if ((currByte != 0) && ((currByte + 1) % 16 == 0)) {
print_Msg(F("*"));
display_Update();
}
readEepromByte(currByte);
}
myFile.write(sdBuffer, eepSize);
}
// Close the file:
myFile.close();
println_Msg(F(""));
display_Clear();
print_Msg(F("Saved to "));
print_Msg(folder);
display_Update();
}
void writeEEP_MD() {
dataOut_MD();
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
println_Msg(F("Writing..."));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
if (eepSize > 0x100) { // 24C04+
for (word currByte = 0; currByte < eepSize; currByte += 256) {
myFile.read(sdBuffer, 256);
for (int i = 0; i < 256; i++) {
writeEepromByte(currByte + i);
delay(50); // DELAY NEEDED
}
print_Msg(F("."));
display_Update();
}
} else { // 24C01/24C02
myFile.read(sdBuffer, eepSize);
for (word currByte = 0; currByte < eepSize; currByte++) {
writeEepromByte(currByte);
print_Msg(F("."));
if ((currByte != 0) && ((currByte + 1) % 64 == 0))
println_Msg(F(""));
display_Update(); // ON SERIAL = delay(100)
}
}
// Close the file:
myFile.close();
println_Msg(F(""));
display_Clear();
print_STR(done_STR, 1);
display_Update();
} else {
print_Error(sd_error_STR, true);
}
dataIn_MD();
}
//******************************************
// CD Backup RAM Functions
//******************************************
void readBram_MD() {
dataIn_MD();
// Get name, add extension and convert to char array for sd lib
strcpy(fileName, "Cart.brm");
// create a new folder for the save file
EEPROM_readAnything(0, foldern);
sd.chdir();
sprintf(folder, "MD/RAM/%d", foldern);
sd.mkdir(folder, true);
sd.chdir(folder);
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
println_Msg(F("Reading..."));
display_Update();
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(sd_error_STR, true);
}
for (unsigned long currByte = 0; currByte < bramSize; currByte += 512) {
for (int i = 0; i < 512; i++) {
sdBuffer[i] = readWord_MD(0x300000 + currByte + i);
}
myFile.write(sdBuffer, 512);
}
// Close the file:
myFile.close();
println_Msg(F(""));
display_Clear();
print_Msg(F("Saved to "));
print_Msg(folder);
display_Update();
}
void writeBram_MD() {
dataOut_MD();
// Create filepath
sprintf(filePath, "%s/%s", filePath, fileName);
println_Msg(F("Writing..."));
println_Msg(filePath);
display_Update();
// Open file on sd card
if (myFile.open(filePath, O_READ)) {
// 0x700000-0x7FFFFF: Writes by /LWR latch D0; 1=RAM write enabled, 0=disabled
writeWord_MD(0x380000, 1); // Enable BRAM Writes
for (unsigned long currByte = 0; currByte < bramSize; currByte += 512) {
myFile.read(sdBuffer, 512);
for (int i = 0; i < 512; i++) {
writeWord_MD(0x300000 + currByte + i, sdBuffer[i]);
}
}
writeWord_MD(0x380000, 0); // Disable BRAM Writes
// Close the file:
myFile.close();
println_Msg(F(""));
display_Clear();
print_STR(done_STR, 1);
display_Update();
} else {
print_Error(sd_error_STR, true);
}
dataIn_MD();
}
//******************************************
// Realtec Mapper Functions
//******************************************
void writeRealtec(unsigned long address, byte value) { // Realtec 0x404000 (UPPER)/0x400000 (LOWER)
dataOut_MD();
PORTF = address & 0xFF; // 0x00 ADDR A0-A7
PORTK = (address >> 8) & 0xFF; // ADDR A8-A15
PORTL = (address >> 16) & 0xFF; //0x20 ADDR A16-A23
PORTA = 0x00; // DATA D8-D15
PORTH |= (1 << 0); // /RES HIGH
PORTH |= (1 << 3); // CE HIGH
PORTC = value;
PORTH &= ~(1 << 4) & ~(1 << 5); // /UDSW + /LDSW LOW
PORTH |= (1 << 4) | (1 << 5); // /UDSW + /LDSW HIGH
dataIn_MD();
}
void readRealtec_MD() {
// Set control
dataIn_MD();
// Get name, add extension and convert to char array for sd lib
strcpy(fileName, romName);
strcat(fileName, ".MD");
// create a new folder
EEPROM_readAnything(0, foldern);
sprintf(folder, "MD/ROM/%s/%d", romName, foldern);
sd.mkdir(folder, true);
sd.chdir(folder);
display_Clear();
print_STR(saving_to_STR, 0);
print_Msg(folder);
println_Msg(F("/..."));
display_Update();
// write new folder number back to eeprom
foldern = foldern + 1;
EEPROM_writeAnything(0, foldern);
// Open file on sd card
if (!myFile.open(fileName, O_RDWR | O_CREAT)) {
print_Error(sd_error_STR, true);
}
// Realtec Registers
writeWord_MD(0x201000, 4); // Number of 128K Blocks 0x402000 (0x201000)
writeRealtec(0x200000, 1); // ROM Lower Address 0x400000 (0x200000)
writeRealtec(0x202000, 0); // ROM Upper Address 0x404000 (0x202000)
word d = 0;
for (unsigned long currBuffer = 0; currBuffer < cartSize / 2; currBuffer += 256) {
// Blink led
if (currBuffer % 16384 == 0)
blinkLED();
for (int currWord = 0; currWord < 256; currWord++) {
word myWord = readWord_MD(currBuffer + currWord);
// Split word into two bytes
// Left
sdBuffer[d] = ((myWord >> 8) & 0xFF);
// Right
sdBuffer[d + 1] = (myWord & 0xFF);
d += 2;
}
myFile.write(sdBuffer, 512);
d = 0;
}
// Close the file:
myFile.close();
}
#endif
//******************************************
// End of File
//******************************************