the-algorithm-ml/reader/test_dataset.py

101 lines
2.6 KiB
Python
Raw Normal View History

import multiprocessing as mp
import os
from unittest.mock import patch
import tml.reader.utils as reader_utils
from tml.reader.dataset import Dataset
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import torch
def create_dataset(tmpdir):
2023-09-13 11:22:13 +05:30
"""
Create a mock dataset for testing.
This function creates a mock dataset using PyArrow and Parquet for testing purposes.
Args:
tmpdir: A temporary directory where the dataset will be created.
Returns:
MockDataset: A mock dataset for testing.
"""
table = pa.table(
{
"year": [2020, 2022, 2021, 2022, 2019, 2021],
"n_legs": [2, 2, 4, 4, 5, 100],
}
)
file_path = tmpdir
pq.write_to_dataset(table, root_path=str(file_path))
class MockDataset(Dataset):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._pa_to_batch = reader_utils.create_default_pa_to_batch(self._schema)
def pa_to_batch(self, batch):
return self._pa_to_batch(batch)
return MockDataset(file_pattern=str(file_path / "*"), batch_size=2)
def test_dataset(tmpdir):
2023-09-13 11:22:13 +05:30
"""
Test the created dataset.
This function tests the created mock dataset and checks if it behaves as expected.
Args:
tmpdir: A temporary directory used for testing.
"""
ds = create_dataset(tmpdir)
batch = next(iter(ds.dataloader(remote=False)))
assert batch.batch_size == 2
assert torch.equal(batch.year, torch.Tensor([2020, 2022]))
assert torch.equal(batch.n_legs, torch.Tensor([2, 2]))
@pytest.mark.skipif(
os.environ.get("GITHUB_WORKSPACE") is not None,
reason="Multiprocessing doesn't work on github yet.",
)
def test_distributed_dataset(tmpdir):
2023-09-13 11:22:13 +05:30
"""
Test the distributed dataset.
This function tests the distributed version of the mock dataset using multiprocessing.
Args:
tmpdir: A temporary directory used for testing.
"""
MOCK_ENV = {"TEMP_SLURM_NUM_READERS": "1"}
def _client():
with patch.dict(os.environ, MOCK_ENV):
with patch(
"tml.reader.dataset.env.get_flight_server_addresses", return_value=["grpc://localhost:2222"]
):
ds = create_dataset(tmpdir)
batch = next(iter(ds.dataloader(remote=True)))
assert batch.batch_size == 2
assert torch.equal(batch.year, torch.Tensor([2020, 2022]))
assert torch.equal(batch.n_legs, torch.Tensor([2, 2]))
def _worker():
ds = create_dataset(tmpdir)
ds.serve()
worker = mp.Process(target=_worker)
client = mp.Process(target=_client)
worker.start()
client.start()
client.join()
assert not client.exitcode
worker.kill()
client.kill()