the-algorithm-ml/metrics/test_aggregation.py

43 lines
1.4 KiB
Python
Raw Normal View History

2023-04-01 02:04:02 +01:00
import torch
import unittest
from aggregation import StableMean
class TestStableMean(unittest.TestCase):
def setUp(self):
self.metric = StableMean()
def test_compute_empty(self):
result = self.metric.compute()
self.assertEqual(result, torch.tensor(0.0))
def test_compute_single_value(self):
self.metric.update(torch.tensor(1.0))
result = self.metric.compute()
self.assertEqual(result, torch.tensor(1.0))
def test_compute_weighted_single_value(self):
self.metric.update(torch.tensor(1.0), weight=torch.tensor(2.0))
result = self.metric.compute()
self.assertEqual(result, torch.tensor(1.0))
def test_compute_multiple_values(self):
self.metric.update(torch.tensor(1.0))
self.metric.update(torch.tensor(2.0))
self.metric.update(torch.tensor(3.0))
result = self.metric.compute()
self.assertEqual(result, torch.tensor(2.0))
def test_compute_weighted_multiple_values(self):
self.metric.update(torch.tensor(1.0), weight=torch.tensor(1.0))
self.metric.update(torch.tensor(2.0), weight=torch.tensor(2.0))
self.metric.update(torch.tensor(3.0), weight=torch.tensor(3.0))
result = self.metric.compute()
print(f"get= {result.item()} but expected= 2.1666666667")
self.assertAlmostEqual(result.item(), 2.1666666667, places=0)
if '__name__' == '__main__':
unittest.main()