mirror of
https://github.com/twitter/the-algorithm-ml.git
synced 2024-12-24 07:11:49 +01:00
34 lines
1.1 KiB
Python
34 lines
1.1 KiB
Python
|
import pytest
|
||
|
import unittest
|
||
|
|
||
|
from tml.projects.twhin.models.models import TwhinModel, apply_optimizers
|
||
|
from tml.projects.twhin.models.test_models import twhin_model_config, twhin_data_config
|
||
|
from tml.projects.twhin.optimizer import build_optimizer
|
||
|
from tml.model import maybe_shard_model
|
||
|
from tml.common.testing_utils import mock_pg
|
||
|
|
||
|
|
||
|
import torch
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
|
||
|
def test_twhin_optimizer():
|
||
|
model_config = twhin_model_config()
|
||
|
data_config = twhin_data_config()
|
||
|
|
||
|
loss_fn = F.binary_cross_entropy_with_logits
|
||
|
with mock_pg():
|
||
|
model = TwhinModel(model_config, data_config)
|
||
|
apply_optimizers(model, model_config)
|
||
|
model = maybe_shard_model(model, device=torch.device("cpu"))
|
||
|
|
||
|
optimizer, _ = build_optimizer(model, model_config)
|
||
|
|
||
|
# make sure there is one combined fused optimizer and one translation optimizer
|
||
|
assert len(optimizer.optimizers) == 2
|
||
|
fused_opt_tup, _ = optimizer.optimizers
|
||
|
_, fused_opt = fused_opt_tup
|
||
|
|
||
|
# make sure there are two tables for which the fused opt has parameters
|
||
|
assert len(fused_opt.param_groups) == 2
|