the-algorithm-ml/core/custom_training_loop.py

317 lines
11 KiB
Python
Raw Normal View History

"""Torch and torchrec specific training and evaluation loops.
Features (go/100_enablements):
- CUDA data-fetch, compute, gradient-push overlap
- Large learnable embeddings through torchrec
- On/off-chief evaluation
- Warmstart/checkpoint management
- go/dataset-service 0-copy integration
"""
import datetime
import os
from typing import Callable, Dict, Iterable, List, Mapping, Optional
from tml.common import log_weights
import tml.common.checkpointing.snapshot as snapshot_lib
from tml.core.losses import get_global_loss_detached
from tml.ml_logging.torch_logging import logging # type: ignore[attr-defined]
from tml.core.train_pipeline import TrainPipelineSparseDist
import tree
import torch
import torch.distributed as dist
from torch.optim.lr_scheduler import _LRScheduler
import torchmetrics as tm
def get_new_iterator(iterable: Iterable):
"""
This obtain a new iterator from the iterable. If the iterable uses tf.data.Dataset internally,
getting a new iterator each N steps will avoid memory leak. To avoid the memory leak
calling iter(iterable) should return a "fresh" iterator using a fresh
(new instance of) tf.data.Iterator.
In particular, iterable can be a torch.utils.data.IterableDataset or a
torch.utils.data.DataLoader.
When using DDS, performing this reset does not change the order in which elements are received
(excluding elements already prefetched) provided that iter(iterable) internally uses
a new instance of tf.data.Dataset created by calling from_dataset_id.
This requirement is satisfied by RecapDataset.
:param iterable:
:return:
"""
return iter(iterable)
def _get_step_fn(pipeline, data_iterator, training: bool):
def step_fn():
# It turns out that model.train() and model.eval() simply switch a single field inside the model
# class,so it's somewhat safer to wrap in here.
if training:
pipeline._model.train()
else:
pipeline._model.eval()
outputs = pipeline.progress(data_iterator)
return tree.map_structure(lambda elem: elem.detach(), outputs)
return step_fn
@torch.no_grad()
def _run_evaluation(
pipeline,
dataset,
eval_steps: int,
metrics: tm.MetricCollection,
eval_batch_size: int,
logger=None,
):
"""Runs the evaluation loop over all evaluation iterators."""
dataset = get_new_iterator(dataset)
step_fn = _get_step_fn(pipeline, dataset, training=False)
last_time = datetime.datetime.now()
logging.info(f"Starting {eval_steps} steps of evaluation.")
for _ in range(eval_steps):
outputs = step_fn()
metrics.update(outputs)
eval_ex_per_s = (
eval_batch_size * eval_steps / (datetime.datetime.now() - last_time).total_seconds()
)
logging.info(f"eval examples_per_s : {eval_ex_per_s}")
metrics_result = metrics.compute()
# Resetting at end to release metrics memory not in use.
# Reset metrics to prevent accumulation between multiple evaluation splits and not report a
# running average.
metrics.reset()
return metrics_result
def train(
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
device: str,
save_dir: str,
logging_interval: int,
train_steps: int,
checkpoint_frequency: int,
dataset: Iterable,
worker_batch_size: int,
num_workers: Optional[int] = 0,
enable_amp: bool = False,
initial_checkpoint_dir: Optional[str] = None,
gradient_accumulation: Optional[int] = None,
logger_initializer: Optional[Callable] = None,
scheduler: _LRScheduler = None,
metrics: Optional[tm.MetricCollection] = None,
parameters_to_log: Optional[Dict[str, Callable]] = None,
tables_to_log: Optional[List[str]] = None,
) -> None:
"""Runs training and eval on the given TrainPipeline
Args:
dataset: data iterator for the training set
evaluation_iterators: data iterators for the different evaluation sets
scheduler: optional learning rate scheduler
2023-04-01 04:44:00 +09:00
output_transform_for_metrics: optional transformation functions to transform the model
output and labels into a format the metrics can understand
"""
train_pipeline = TrainPipelineSparseDist(
model=model,
optimizer=optimizer,
device=device,
enable_amp=enable_amp,
grad_accum=gradient_accumulation,
) # type: ignore[var-annotated]
# We explicitly initialize optimizer state here so that checkpoint will work properly.
if hasattr(train_pipeline._optimizer, "init_state"):
train_pipeline._optimizer.init_state()
save_state = {
"model": train_pipeline._model,
"optimizer": train_pipeline._optimizer,
"scaler": train_pipeline._grad_scaler,
}
chosen_checkpoint = None
checkpoint_handler = snapshot_lib.Snapshot(
save_dir=save_dir,
state=save_state,
)
if save_dir:
chosen_checkpoint = snapshot_lib.get_checkpoint(save_dir=save_dir, missing_ok=True)
start_step = 0
start_walltime = 0.0
if chosen_checkpoint:
# Skip restoration and exit if we should be finished.
chosen_checkpoint_global_step = snapshot_lib.step_from_checkpoint(chosen_checkpoint)
if not chosen_checkpoint_global_step < dist.get_world_size() * train_steps:
logging.info(
"Not restoring and finishing training as latest checkpoint "
f"{chosen_checkpoint} found "
f"at global_step ({chosen_checkpoint_global_step}) >= "
f"train_steps ({dist.get_world_size() * train_steps})"
)
return
logging.info(f"Restoring latest checkpoint from global_step {chosen_checkpoint_global_step}")
checkpoint_handler.restore(chosen_checkpoint)
start_step = checkpoint_handler.step
start_walltime = checkpoint_handler.walltime
elif initial_checkpoint_dir:
base, ckpt_step = os.path.split(initial_checkpoint_dir)
warmstart_handler = snapshot_lib.Snapshot(
save_dir=base,
state=save_state,
)
ckpt = snapshot_lib.get_checkpoint(save_dir=base, missing_ok=False, global_step=int(ckpt_step))
logging.info(
f"Restoring from initial_checkpoint_dir: {initial_checkpoint_dir}, but keeping starting step as 0."
)
warmstart_handler.restore(ckpt)
train_logger = logger_initializer(mode="train") if logger_initializer else None
train_step_fn = _get_step_fn(train_pipeline, get_new_iterator(dataset), training=True)
# Counting number of parameters in the model directly when creating it.
nb_param = 0
for p in model.parameters():
nb_param += p.numel()
logging.info(f"Model has {nb_param} parameters")
last_time = datetime.datetime.now()
start_time = last_time
last_pending_snapshot = None
for step in range(start_step, train_steps + 1):
checkpoint_handler.step = step
outputs = train_step_fn()
step_done_time = datetime.datetime.now()
checkpoint_handler.walltime = (step_done_time - start_time).total_seconds() + start_walltime
if scheduler:
scheduler.step()
if step % logging_interval == 0:
interval_time = (step_done_time - last_time).total_seconds()
steps_per_s = logging_interval / interval_time
worker_example_per_s = steps_per_s * worker_batch_size
global_example_per_s = worker_example_per_s * (1 + (num_workers or 0))
global_step = step
log_values = {
"global_step": global_step,
"loss": get_global_loss_detached(outputs["loss"]),
"steps_per_s": steps_per_s,
"global_example_per_s": global_example_per_s,
"worker_examples_per_s": worker_example_per_s,
"active_training_walltime": checkpoint_handler.walltime,
}
if parameters_to_log:
log_values.update(
log_weights.weights_to_log(
model=model,
how_to_log=parameters_to_log,
)
)
log_values = tree.map_structure(lambda elem: torch.as_tensor(elem).cpu(), log_values)
if tables_to_log:
log_values.update(
log_weights.log_ebc_norms(
model_state_dict=train_pipeline._model.state_dict(),
ebc_keys=tables_to_log,
)
)
if train_logger:
train_logger.log(log_values, step=global_step)
log_line = ", ".join(f"{name}: {value}" for name, value in log_values.items())
logging.info(f"Step: {step}, training. {log_line}")
last_time = step_done_time
# If we just restored, do not save again.
if checkpoint_frequency and step > start_step and step % checkpoint_frequency == 0:
if last_pending_snapshot and not last_pending_snapshot.done():
logging.warning(
"Begin a new snapshot and the last one hasn't finished. That probably indicates "
"either you're snapshotting really often or something is wrong. Will now block and "
"wait for snapshot to finish before beginning the next one."
)
last_pending_snapshot.wait()
last_pending_snapshot = checkpoint_handler.save(global_step=step * dist.get_world_size())
# Save if we did not just save.
if checkpoint_frequency and step % checkpoint_frequency != 0:
# For the final save, wait for the checkpoint to write to make sure the process doesn't finish
# before its completed.
last_pending_snapshot = checkpoint_handler.save(global_step=step * dist.get_world_size())
logging.info(f"Finished training steps: {step}, global_steps: {step * dist.get_world_size()}")
if last_pending_snapshot:
logging.info(f"Waiting for any checkpoints to finish.")
last_pending_snapshot.wait()
def log_eval_results(
results,
eval_logger,
partition_name: str,
step: int,
):
results = tree.map_structure(lambda elem: torch.as_tensor(elem).cpu(), results)
logging.info(f"Step: {step}, evaluation ({partition_name}).")
for metric_name, metric_value in results.items():
logging.info(f"\t{metric_name}: {metric_value:1.4e}")
if eval_logger:
eval_logger.log(results, step=step, commit=True)
def only_evaluate(
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
device: str,
save_dir: str,
num_train_steps: int,
dataset: Iterable,
eval_batch_size: int,
num_eval_steps: int,
eval_timeout_in_s: int,
eval_logger: Callable,
partition_name: str,
metrics: Optional[tm.MetricCollection] = None,
):
logging.info(f"Evaluating on partition {partition_name}.")
logging.info("Computing metrics:")
logging.info(metrics)
eval_pipeline = TrainPipelineSparseDist(model, optimizer, device) # type: ignore[var-annotated]
save_state = {
"model": eval_pipeline._model,
"optimizer": eval_pipeline._optimizer,
}
checkpoint_handler = snapshot_lib.Snapshot(
save_dir=save_dir,
state=save_state,
)
for checkpoint_path in snapshot_lib.checkpoints_iterator(save_dir, timeout=eval_timeout_in_s):
checkpoint_handler.restore(checkpoint_path)
step = checkpoint_handler.step
dataset = get_new_iterator(dataset)
results = _run_evaluation(
pipeline=eval_pipeline,
dataset=dataset,
eval_steps=num_eval_steps,
eval_batch_size=eval_batch_size,
metrics=metrics,
)
log_eval_results(results, eval_logger, partition_name, step=step)
rank = dist.get_rank() if dist.is_initialized() else 0
if rank == 0:
snapshot_lib.mark_done_eval(checkpoint_path, partition_name)
if step >= num_train_steps:
return