the-algorithm-ml/core/config/config_load.py

56 lines
1.7 KiB
Python
Raw Normal View History

import yaml
import string
import getpass
import os
from typing import Type
from tml.core.config.base_config import BaseConfig
def load_config_from_yaml(config_type: Type[BaseConfig], yaml_path: str):
"""
2023-09-12 18:12:05 +05:30
Recommend method to Load and parse a configuration from a YAML file.
This function loads a configuration from a YAML file, parses it, and returns an instance of the
specified config type.
Because we have a shared filesystem the recommended route to running jobs it put modified config
files with the desired parameters somewhere on the filesytem and run jobs pointing to them.
Args:
config_type (Type[BaseConfig]): The Pydantic config class to load.
yaml_path (str): The path to the YAML configuration file.
Returns:
BaseConfig: An instance of the specified config type populated with values from the YAML file.
Example:
Suppose you have a YAML file 'my_config.yaml' containing the following:
```yaml
x: 42
y: "hello"
```
You can load and parse it using this function as follows:
```python
my_config = load_config_from_yaml(MyConfigClass, 'my_config.yaml')
```
Note:
This function performs environment variable substitution in the YAML file. It replaces
occurrences of the format '$VAR' or '${VAR}' with their corresponding environment variable
values. If an environment variable does not exist, the string is left unchanged.
"""
def _substitute(s):
return string.Template(s).safe_substitute(os.environ, USER=getpass.getuser())
with open(yaml_path, "r") as f:
raw_contents = f.read()
obj = yaml.safe_load(_substitute(raw_contents))
return config_type.parse_obj(obj)