Twitter's Recommendation Algorithm - Heavy Ranker and TwHIN embeddings

This commit is contained in:
twitter-team
2023-03-31 13:05:14 -05:00
commit 78c3235eee
111 changed files with 11876 additions and 0 deletions

0
ml_logging/__init__.py Normal file
View File

View File

@ -0,0 +1,26 @@
"""Sets up logging through absl for training usage.
- Redirects logging to sys.stdout so that severity levels in GCP Stackdriver are accurate.
Usage:
>>> from twitter.ml.logging.absl_logging import logging
>>> logging.info(f"Properly logged as INFO level in GCP Stackdriver.")
"""
import logging as py_logging
import sys
from absl import logging as logging
def setup_absl_logging():
"""Make sure that absl logging pushes to stdout rather than stderr."""
logging.get_absl_handler().python_handler.stream = sys.stdout
formatter = py_logging.Formatter(
fmt="[%(module)s.%(funcName)s:%(lineno)s - %(levelname)s] %(message)s"
)
logging.get_absl_handler().setFormatter(formatter)
logging.set_verbosity(logging.INFO)
setup_absl_logging()

View File

@ -0,0 +1,21 @@
import unittest
from tml.ml_logging.torch_logging import logging
class Testtlogging(unittest.TestCase):
def test_warn_once(self):
with self.assertLogs(level="INFO") as captured_logs:
logging.info("first info")
logging.warning("first warning")
logging.warning("first warning")
logging.info("second info")
self.assertEqual(
captured_logs.output,
[
"INFO:absl:first info",
"WARNING:absl:first warning",
"INFO:absl:second info",
],
)

View File

@ -0,0 +1,61 @@
"""Overrides absl logger to be rank-aware for distributed pytorch usage.
>>> # in-bazel import
>>> from twitter.ml.logging.torch_logging import logging
>>> # out-bazel import
>>> from ml.logging.torch_logging import logging
>>> logging.info(f"This only prints on rank 0 if distributed, otherwise prints normally.")
>>> logging.info(f"This prints on all ranks if distributed, otherwise prints normally.", rank=-1)
"""
import functools
from typing import Optional
from tml.ml_logging.absl_logging import logging as logging
from absl import logging as absl_logging
import torch.distributed as dist
def rank_specific(logger):
"""Ensures that we only override a given logger once."""
if hasattr(logger, "_ALREADY_OVERWRITTEN_TO_BE_RANK_SPECIFIC"):
return logger
def _if_rank(logger_method, limit: Optional[int] = None):
if limit:
# If we are limiting redundant logs, wrap logging call with a cache
# to not execute if already cached.
def _wrap(_call):
@functools.lru_cache(limit)
def _logger_method(*args, **kwargs):
_call(*args, **kwargs)
return _logger_method
logger_method = _wrap(logger_method)
def _inner(msg, *args, rank: int = 0, **kwargs):
if not dist.is_initialized():
logger_method(msg, *args, **kwargs)
elif dist.get_rank() == rank:
logger_method(msg, *args, **kwargs)
elif rank < 0:
logger_method(f"Rank{dist.get_rank()}: {msg}", *args, **kwargs)
# Register this stack frame with absl logging so that it doesn't trample logging lines.
absl_logging.ABSLLogger.register_frame_to_skip(__file__, _inner.__name__)
return _inner
logger.fatal = _if_rank(logger.fatal)
logger.error = _if_rank(logger.error)
logger.warning = _if_rank(logger.warning, limit=1)
logger.info = _if_rank(logger.info)
logger.debug = _if_rank(logger.debug)
logger.exception = _if_rank(logger.exception)
logger._ALREADY_OVERWRITTEN_TO_BE_RANK_SPECIFIC = True
rank_specific(logging)