This commit is contained in:
rajveer43 2023-09-12 18:12:05 +05:30
parent deec9a820e
commit 92eaaad3ed
5 changed files with 198 additions and 67 deletions

View File

@ -13,23 +13,30 @@ GCS_PREFIX = "gs://"
class Snapshot:
"""Checkpoints using torchsnapshot.
Also saves step to be updated by the training loop.
"""
Checkpoints using torchsnapshot. Also saves step to be updated by the training loop.
"""
def __init__(self, save_dir: str, state: Dict[str, Any]) -> None:
"""
Initializes a Snapshot object.
Args:
save_dir (str): Directory where checkpoints will be saved.
state (Dict[str, Any]): State dictionary containing checkpoint information.
"""
self.save_dir = save_dir
self.state = state
self.state["extra_state"] = torchsnapshot.StateDict(step=0, walltime=0.0)
@property
def step(self):
"""Get the current training step."""
return self.state["extra_state"]["step"]
@step.setter
def step(self, step: int) -> None:
"""Set the current training step."""
self.state["extra_state"]["step"] = step
@property
@ -41,7 +48,15 @@ class Snapshot:
self.state["extra_state"]["walltime"] = walltime
def save(self, global_step: int) -> "PendingSnapshot":
"""Saves checkpoint with given global_step."""
"""
Saves a checkpoint with a given global step.
Args:
global_step (int): The global step to associate with the checkpoint.
Returns:
PendingSnapshot: A pending snapshot object.
"""
path = os.path.join(self.save_dir, str(global_step))
logging.info(f"Saving snapshot global_step {global_step} to {path}.")
start_time = time.time()
@ -58,7 +73,12 @@ class Snapshot:
return snapshot
def restore(self, checkpoint: str) -> None:
"""Restores a given checkpoint."""
"""
Restores a given checkpoint.
Args:
checkpoint (str): Path to the checkpoint to restore.
"""
snapshot = torchsnapshot.Snapshot(path=checkpoint)
logging.info(f"Restoring snapshot from {snapshot.path}.")
start_time = time.time()
@ -83,11 +103,16 @@ class Snapshot:
global_step: Optional[int] = None,
missing_ok: bool = False,
) -> torchsnapshot.Snapshot:
"""Get torch stateless snapshot, without actually loading it.
"""
Get a torch stateless snapshot, without actually loading it.
Args:
snapshot_path: path to the model snapshot
global_step: restores from this checkpoint if specified.
missing_ok: if True and checkpoints do not exist, returns without restoration.
snapshot_path (str): Path to the model snapshot.
global_step (int, optional): Restores from this checkpoint if specified.
missing_ok (bool): If True and checkpoints do not exist, returns without restoration.
Returns:
torchsnapshot.Snapshot: A torch snapshot object.
"""
path = get_checkpoint(snapshot_path, global_step, missing_ok)
logging.info(f"Loading snapshot from {path}.")
@ -100,12 +125,13 @@ class Snapshot:
snapshot_emb_name: str,
weight_tensor,
) -> None:
"""Loads pretrained embedding from the snapshot to the model.
Utilise partial lodaing meachanism from torchsnapshot.
"""
Loads pretrained embedding from the snapshot to the model.
Args:
embedding_snapshot: Path to the snapshot containing pretrained embeddings (EBC).
snapshot_emb_name: Name of the layer in the *snapshot* model, containing the EBC.
weight_tensor: embeddings tensor of *current* model, where the embeddings will be loaded.
embedding_snapshot (torchsnapshot.Snapshot): Path to the snapshot containing pretrained embeddings (EBC).
snapshot_emb_name (str): Name of the layer in the snapshot model containing the EBC.
weight_tensor: Embeddings tensor of the current model where the embeddings will be loaded.
"""
start_time = time.time()
manifest = embedding_snapshot.get_manifest()
@ -209,7 +235,22 @@ def get_checkpoint(
def get_checkpoints(save_dir: str) -> List[str]:
"""Gets all checkpoints that have been fully written."""
"""
Get a list of fully written checkpoints in the specified directory.
This function retrieves a list of fully written checkpoints in the given directory.
Checkpoints that are considered fully written include those that have a
corresponding snapshot metadata file.
Args:
save_dir (str): The directory where checkpoints are stored.
Returns:
List[str]: A list of fully written checkpoint paths.
Note:
Checkpoints are sorted by their numeric filenames in ascending order.
"""
checkpoints = []
fs = infer_fs(save_dir)
if fs.exists(save_dir):
@ -232,6 +273,18 @@ def wait_for_evaluators(
global_step: int,
timeout: int,
) -> None:
"""
Waits for all evaluators to finish and checks for their completion status.
Args:
save_dir (str): Directory where checkpoints are saved.
partition_names (List[str]): List of partition names to check for completion.
global_step (int): The global step for which to wait for evaluators.
timeout (int): Maximum time in seconds to wait for evaluators to finish.
Returns:
None: This function returns nothing but logs the progress and results.
"""
logging.info("Waiting for all evaluators to finish.")
start_time = time.time()

View File

@ -10,32 +10,41 @@ import pydantic
class BaseConfig(pydantic.BaseModel):
"""Base class for all derived config classes.
This class provides some convenient functionality:
- Disallows extra fields when constructing an object. User error
should be reduced by exact arguments.
- "one_of" fields. A subclass can group optional fields and enforce
that only one of the fields be set. For example:
This class provides convenient functionality and constraints for derived config classes:
```
- Disallows extra fields when constructing an object. User errors due to extraneous arguments
are minimized.
- "one_of" fields: Subclasses can group optional fields and enforce that only one of the fields
be set. For example:
```python
class ExampleConfig(BaseConfig):
x: int = Field(None, one_of="group_1")
y: int = Field(None, one_of="group_1")
ExampleConfig(x=1) # ok
ExampleConfig(y=1) # ok
ExampleConfig(x=1, y=1) # throws error
ExampleConfig(x=1) # OK
ExampleConfig(y=1) # OK
ExampleConfig(x=1, y=1) # Raises an error
```
Attributes:
Config (class): Configuration options for this class, forbidding extra fields.
Methods:
_field_data_map(cls, field_data_name): Create a map of fields with the provided field data.
_one_of_check(cls, values): Validate that all 'one of' fields appear exactly once.
_at_most_one_of_check(cls, values): Validate that all 'at_most_one_of' fields appear at most once.
pretty_print(self): Return a human-readable (YAML) representation of the config useful for logging.
"""
class Config:
"""Forbids extras."""
"""Configuration options that forbid extra fields."""
extra = pydantic.Extra.forbid # noqa
@classmethod
@functools.lru_cache()
def _field_data_map(cls, field_data_name):
"""Create a map of fields with provided the field data."""
"""Create a map of fields with the provided field data."""
schema = cls.schema()
one_of = collections.defaultdict(list)
for field, fdata in schema["properties"].items():
@ -45,7 +54,7 @@ class BaseConfig(pydantic.BaseModel):
@pydantic.root_validator
def _one_of_check(cls, values):
"""Validate that all 'one of' fields are appear exactly once."""
"""Validate that all 'one of' fields appear exactly once."""
one_of_map = cls._field_data_map("one_of")
for one_of, field_names in one_of_map.items():
if sum([values.get(n, None) is not None for n in field_names]) != 1:
@ -59,8 +68,9 @@ class BaseConfig(pydantic.BaseModel):
for one_of, field_names in at_most_one_of_map.items():
if sum([values.get(n, None) is not None for n in field_names]) > 1:
raise ValueError(f"At most one of {','.join(field_names)} can be set.")
return values
def pretty_print(self) -> str:
"""Return a human legible (yaml) representation of the config useful for logging."""
"""Return a human-readable (YAML) representation of the config useful for logging."""
return yaml.dump(self.dict())

View File

@ -13,6 +13,13 @@ class BaseConfigTest(TestCase):
def test_extra_forbidden(self):
"""
Test that extra fields are forbidden when creating a Config instance.
This test case checks whether the `BaseConfig` class correctly raises a
`pydantic.ValidationError` when extra fields are provided when creating a
`Config` instance.
Raises:
AssertionError: If the test fails.
"""
class Config(BaseConfig):
x: int
@ -24,6 +31,13 @@ class BaseConfigTest(TestCase):
def test_one_of(self):
"""
Test the use of the `one_of` attribute for fields in a Config instance.
This test case checks the behavior of the `one_of` attribute in a `Config`
instance. It verifies that the `pydantic.Field` correctly enforces the
specified constraint.
Raises:
AssertionError: If the test fails.
"""
class Config(BaseConfig):
x: int = pydantic.Field(None, one_of="f")
@ -39,6 +53,13 @@ class BaseConfigTest(TestCase):
def test_at_most_one_of(self):
"""
Test the use of the `at_most_one_of` attribute for fields in a Config instance.
This test case checks the behavior of the `at_most_one_of` attribute in a
`Config` instance. It verifies that the `pydantic.Field` enforces the
constraint where at most one of the specified fields can be provided.
Raises:
AssertionError: If the test fails.
"""
class Config(BaseConfig):
x: int = pydantic.Field(None, at_most_one_of="f")

View File

@ -8,10 +8,41 @@ from tml.core.config.base_config import BaseConfig
def load_config_from_yaml(config_type: Type[BaseConfig], yaml_path: str):
"""Recommend method to load a config file (a yaml file) and parse it.
"""
Recommend method to Load and parse a configuration from a YAML file.
This function loads a configuration from a YAML file, parses it, and returns an instance of the
specified config type.
Because we have a shared filesystem the recommended route to running jobs it put modified config
files with the desired parameters somewhere on the filesytem and run jobs pointing to them.
Args:
config_type (Type[BaseConfig]): The Pydantic config class to load.
yaml_path (str): The path to the YAML configuration file.
Returns:
BaseConfig: An instance of the specified config type populated with values from the YAML file.
Example:
Suppose you have a YAML file 'my_config.yaml' containing the following:
```yaml
x: 42
y: "hello"
```
You can load and parse it using this function as follows:
```python
my_config = load_config_from_yaml(MyConfigClass, 'my_config.yaml')
```
Note:
This function performs environment variable substitution in the YAML file. It replaces
occurrences of the format '$VAR' or '${VAR}' with their corresponding environment variable
values. If an environment variable does not exist, the string is left unchanged.
"""
def _substitute(s):

View File

@ -8,11 +8,27 @@ import pydantic
class _PointlessConfig(BaseConfig):
a: int
user: str
def test_load_config_from_yaml(tmp_path):
"""Test loading a configuration from a YAML file and verifying its values.
This test function checks the functionality of the `load_config_from_yaml` function by creating
a temporary YAML configuration file, loading it, and asserting that the loaded config object
has the expected values.
Args:
tmp_path: A temporary directory provided by the `pytest` framework.
Test Steps:
1. Create a temporary YAML file containing configuration data.
2. Use the `load_config_from_yaml` function to load the configuration from the YAML file.
3. Assert that the loaded configuration object has the expected values.
"""
yaml_path = tmp_path.joinpath("test.yaml").as_posix()
with open(yaml_path, "w") as yaml_file:
yaml_file.write("""a: 3\nuser: ${USER}\n""")