Compare commits

...

2 Commits

Author SHA1 Message Date
rajveer43
590e8b76fe mmm 2023-09-12 22:48:45 +05:30
rajveer43
92eaaad3ed udpate 2023-09-12 18:12:05 +05:30
8 changed files with 399 additions and 163 deletions

View File

@ -13,23 +13,30 @@ GCS_PREFIX = "gs://"
class Snapshot:
"""Checkpoints using torchsnapshot.
Also saves step to be updated by the training loop.
"""
Checkpoints using torchsnapshot. Also saves step to be updated by the training loop.
"""
def __init__(self, save_dir: str, state: Dict[str, Any]) -> None:
"""
Initializes a Snapshot object.
Args:
save_dir (str): Directory where checkpoints will be saved.
state (Dict[str, Any]): State dictionary containing checkpoint information.
"""
self.save_dir = save_dir
self.state = state
self.state["extra_state"] = torchsnapshot.StateDict(step=0, walltime=0.0)
@property
def step(self):
"""Get the current training step."""
return self.state["extra_state"]["step"]
@step.setter
def step(self, step: int) -> None:
"""Set the current training step."""
self.state["extra_state"]["step"] = step
@property
@ -41,7 +48,15 @@ class Snapshot:
self.state["extra_state"]["walltime"] = walltime
def save(self, global_step: int) -> "PendingSnapshot":
"""Saves checkpoint with given global_step."""
"""
Saves a checkpoint with a given global step.
Args:
global_step (int): The global step to associate with the checkpoint.
Returns:
PendingSnapshot: A pending snapshot object.
"""
path = os.path.join(self.save_dir, str(global_step))
logging.info(f"Saving snapshot global_step {global_step} to {path}.")
start_time = time.time()
@ -58,7 +73,12 @@ class Snapshot:
return snapshot
def restore(self, checkpoint: str) -> None:
"""Restores a given checkpoint."""
"""
Restores a given checkpoint.
Args:
checkpoint (str): Path to the checkpoint to restore.
"""
snapshot = torchsnapshot.Snapshot(path=checkpoint)
logging.info(f"Restoring snapshot from {snapshot.path}.")
start_time = time.time()
@ -83,11 +103,16 @@ class Snapshot:
global_step: Optional[int] = None,
missing_ok: bool = False,
) -> torchsnapshot.Snapshot:
"""Get torch stateless snapshot, without actually loading it.
"""
Get a torch stateless snapshot, without actually loading it.
Args:
snapshot_path: path to the model snapshot
global_step: restores from this checkpoint if specified.
missing_ok: if True and checkpoints do not exist, returns without restoration.
snapshot_path (str): Path to the model snapshot.
global_step (int, optional): Restores from this checkpoint if specified.
missing_ok (bool): If True and checkpoints do not exist, returns without restoration.
Returns:
torchsnapshot.Snapshot: A torch snapshot object.
"""
path = get_checkpoint(snapshot_path, global_step, missing_ok)
logging.info(f"Loading snapshot from {path}.")
@ -100,12 +125,13 @@ class Snapshot:
snapshot_emb_name: str,
weight_tensor,
) -> None:
"""Loads pretrained embedding from the snapshot to the model.
Utilise partial lodaing meachanism from torchsnapshot.
"""
Loads pretrained embedding from the snapshot to the model.
Args:
embedding_snapshot: Path to the snapshot containing pretrained embeddings (EBC).
snapshot_emb_name: Name of the layer in the *snapshot* model, containing the EBC.
weight_tensor: embeddings tensor of *current* model, where the embeddings will be loaded.
embedding_snapshot (torchsnapshot.Snapshot): Path to the snapshot containing pretrained embeddings (EBC).
snapshot_emb_name (str): Name of the layer in the snapshot model containing the EBC.
weight_tensor: Embeddings tensor of the current model where the embeddings will be loaded.
"""
start_time = time.time()
manifest = embedding_snapshot.get_manifest()
@ -209,7 +235,22 @@ def get_checkpoint(
def get_checkpoints(save_dir: str) -> List[str]:
"""Gets all checkpoints that have been fully written."""
"""
Get a list of fully written checkpoints in the specified directory.
This function retrieves a list of fully written checkpoints in the given directory.
Checkpoints that are considered fully written include those that have a
corresponding snapshot metadata file.
Args:
save_dir (str): The directory where checkpoints are stored.
Returns:
List[str]: A list of fully written checkpoint paths.
Note:
Checkpoints are sorted by their numeric filenames in ascending order.
"""
checkpoints = []
fs = infer_fs(save_dir)
if fs.exists(save_dir):
@ -232,6 +273,18 @@ def wait_for_evaluators(
global_step: int,
timeout: int,
) -> None:
"""
Waits for all evaluators to finish and checks for their completion status.
Args:
save_dir (str): Directory where checkpoints are saved.
partition_names (List[str]): List of partition names to check for completion.
global_step (int): The global step for which to wait for evaluators.
timeout (int): Maximum time in seconds to wait for evaluators to finish.
Returns:
None: This function returns nothing but logs the progress and results.
"""
logging.info("Waiting for all evaluators to finish.")
start_time = time.time()

View File

@ -10,32 +10,41 @@ import pydantic
class BaseConfig(pydantic.BaseModel):
"""Base class for all derived config classes.
This class provides some convenient functionality:
- Disallows extra fields when constructing an object. User error
should be reduced by exact arguments.
- "one_of" fields. A subclass can group optional fields and enforce
that only one of the fields be set. For example:
This class provides convenient functionality and constraints for derived config classes:
```
- Disallows extra fields when constructing an object. User errors due to extraneous arguments
are minimized.
- "one_of" fields: Subclasses can group optional fields and enforce that only one of the fields
be set. For example:
```python
class ExampleConfig(BaseConfig):
x: int = Field(None, one_of="group_1")
y: int = Field(None, one_of="group_1")
ExampleConfig(x=1) # ok
ExampleConfig(y=1) # ok
ExampleConfig(x=1, y=1) # throws error
ExampleConfig(x=1) # OK
ExampleConfig(y=1) # OK
ExampleConfig(x=1, y=1) # Raises an error
```
Attributes:
Config (class): Configuration options for this class, forbidding extra fields.
Methods:
_field_data_map(cls, field_data_name): Create a map of fields with the provided field data.
_one_of_check(cls, values): Validate that all 'one of' fields appear exactly once.
_at_most_one_of_check(cls, values): Validate that all 'at_most_one_of' fields appear at most once.
pretty_print(self): Return a human-readable (YAML) representation of the config useful for logging.
"""
class Config:
"""Forbids extras."""
"""Configuration options that forbid extra fields."""
extra = pydantic.Extra.forbid # noqa
@classmethod
@functools.lru_cache()
def _field_data_map(cls, field_data_name):
"""Create a map of fields with provided the field data."""
"""Create a map of fields with the provided field data."""
schema = cls.schema()
one_of = collections.defaultdict(list)
for field, fdata in schema["properties"].items():
@ -45,7 +54,7 @@ class BaseConfig(pydantic.BaseModel):
@pydantic.root_validator
def _one_of_check(cls, values):
"""Validate that all 'one of' fields are appear exactly once."""
"""Validate that all 'one of' fields appear exactly once."""
one_of_map = cls._field_data_map("one_of")
for one_of, field_names in one_of_map.items():
if sum([values.get(n, None) is not None for n in field_names]) != 1:
@ -59,8 +68,9 @@ class BaseConfig(pydantic.BaseModel):
for one_of, field_names in at_most_one_of_map.items():
if sum([values.get(n, None) is not None for n in field_names]) > 1:
raise ValueError(f"At most one of {','.join(field_names)} can be set.")
return values
def pretty_print(self) -> str:
"""Return a human legible (yaml) representation of the config useful for logging."""
"""Return a human-readable (YAML) representation of the config useful for logging."""
return yaml.dump(self.dict())

View File

@ -13,6 +13,13 @@ class BaseConfigTest(TestCase):
def test_extra_forbidden(self):
"""
Test that extra fields are forbidden when creating a Config instance.
This test case checks whether the `BaseConfig` class correctly raises a
`pydantic.ValidationError` when extra fields are provided when creating a
`Config` instance.
Raises:
AssertionError: If the test fails.
"""
class Config(BaseConfig):
x: int
@ -24,6 +31,13 @@ class BaseConfigTest(TestCase):
def test_one_of(self):
"""
Test the use of the `one_of` attribute for fields in a Config instance.
This test case checks the behavior of the `one_of` attribute in a `Config`
instance. It verifies that the `pydantic.Field` correctly enforces the
specified constraint.
Raises:
AssertionError: If the test fails.
"""
class Config(BaseConfig):
x: int = pydantic.Field(None, one_of="f")
@ -39,6 +53,13 @@ class BaseConfigTest(TestCase):
def test_at_most_one_of(self):
"""
Test the use of the `at_most_one_of` attribute for fields in a Config instance.
This test case checks the behavior of the `at_most_one_of` attribute in a
`Config` instance. It verifies that the `pydantic.Field` enforces the
constraint where at most one of the specified fields can be provided.
Raises:
AssertionError: If the test fails.
"""
class Config(BaseConfig):
x: int = pydantic.Field(None, at_most_one_of="f")

View File

@ -8,10 +8,41 @@ from tml.core.config.base_config import BaseConfig
def load_config_from_yaml(config_type: Type[BaseConfig], yaml_path: str):
"""Recommend method to load a config file (a yaml file) and parse it.
"""
Recommend method to Load and parse a configuration from a YAML file.
This function loads a configuration from a YAML file, parses it, and returns an instance of the
specified config type.
Because we have a shared filesystem the recommended route to running jobs it put modified config
files with the desired parameters somewhere on the filesytem and run jobs pointing to them.
Args:
config_type (Type[BaseConfig]): The Pydantic config class to load.
yaml_path (str): The path to the YAML configuration file.
Returns:
BaseConfig: An instance of the specified config type populated with values from the YAML file.
Example:
Suppose you have a YAML file 'my_config.yaml' containing the following:
```yaml
x: 42
y: "hello"
```
You can load and parse it using this function as follows:
```python
my_config = load_config_from_yaml(MyConfigClass, 'my_config.yaml')
```
Note:
This function performs environment variable substitution in the YAML file. It replaces
occurrences of the format '$VAR' or '${VAR}' with their corresponding environment variable
values. If an environment variable does not exist, the string is left unchanged.
"""
def _substitute(s):

View File

@ -8,11 +8,27 @@ import pydantic
class _PointlessConfig(BaseConfig):
a: int
user: str
def test_load_config_from_yaml(tmp_path):
"""Test loading a configuration from a YAML file and verifying its values.
This test function checks the functionality of the `load_config_from_yaml` function by creating
a temporary YAML configuration file, loading it, and asserting that the loaded config object
has the expected values.
Args:
tmp_path: A temporary directory provided by the `pytest` framework.
Test Steps:
1. Create a temporary YAML file containing configuration data.
2. Use the `load_config_from_yaml` function to load the configuration from the YAML file.
3. Assert that the loaded configuration object has the expected values.
"""
yaml_path = tmp_path.joinpath("test.yaml").as_posix()
with open(yaml_path, "w") as yaml_file:
yaml_file.write("""a: 3\nuser: ${USER}\n""")

View File

@ -9,35 +9,72 @@ FLIGHT_SERVER_PORT: int = 2222
def on_kf():
"""Check if the code is running on Kubernetes with Kubeflow (KF) environment.
Returns:
bool: True if running on KF, False otherwise.
"""
return "SPEC_TYPE" in os.environ
def has_readers():
"""Check if the current task has dataset workers.
Returns:
bool: True if the task has dataset workers, False otherwise.
"""
if on_kf():
machines_config_env = json.loads(os.environ["MACHINES_CONFIG"])
return machines_config_env["dataset_worker"] is not None
return machines_config_env.get("dataset_worker") is not None
return os.environ.get("HAS_READERS", "False") == "True"
def get_task_type():
"""Get the type of the current task.
Returns:
str: Task type, such as 'chief', 'datasetworker', or 'datasetdispatcher'.
"""
if on_kf():
return os.environ["SPEC_TYPE"]
return os.environ["TASK_TYPE"]
def is_chief() -> bool:
"""Check if the current task is the 'chief'.
Returns:
bool: True if the current task is the 'chief', False otherwise.
"""
return get_task_type() == "chief"
def is_reader() -> bool:
"""Check if the current task is a 'datasetworker'.
Returns:
bool: True if the current task is a 'datasetworker', False otherwise.
"""
return get_task_type() == "datasetworker"
def is_dispatcher() -> bool:
"""Check if the current task is a 'datasetdispatcher'.
Returns:
bool: True if the current task is a 'datasetdispatcher', False otherwise.
"""
return get_task_type() == "datasetdispatcher"
def get_task_index():
"""Get the index of the current task.
Returns:
int: Task index.
Raises:
NotImplementedError: If not running on Kubernetes with Kubeflow (KF) environment.
"""
if on_kf():
pod_name = os.environ["MY_POD_NAME"]
return int(pod_name.split("-")[-1])
@ -46,12 +83,24 @@ def get_task_index():
def get_reader_port():
"""Get the port used by readers.
Returns:
int: Reader port.
"""
if on_kf():
return KF_DDS_PORT
return SLURM_DDS_PORT
def get_dds():
"""Get the Distributed Data Service (DDS) address.
Returns:
str: DDS address in the format 'grpc://host:port'.
Raises:
ValueError: If the job does not have DDS.
"""
if not has_readers():
return None
dispatcher_address = get_dds_dispatcher_address()
@ -62,6 +111,11 @@ def get_dds():
def get_dds_dispatcher_address():
"""Get the DDS dispatcher address.
Returns:
str: DDS dispatcher address in the format 'host:port'.
"""
if not has_readers():
return None
if on_kf():
@ -73,6 +127,11 @@ def get_dds_dispatcher_address():
def get_dds_worker_address():
"""Get the DDS worker address.
Returns:
str: DDS worker address in the format 'host:port'.
"""
if not has_readers():
return None
if on_kf():
@ -85,15 +144,27 @@ def get_dds_worker_address():
def get_num_readers():
"""Get the number of dataset workers.
Returns:
int: Number of dataset workers.
"""
if not has_readers():
return 0
if on_kf():
machines_config_env = json.loads(os.environ["MACHINES_CONFIG"])
return int(machines_config_env["num_dataset_workers"] or 0)
return int(machines_config_env.get("num_dataset_workers") or 0)
return len(os.environ["SLURM_JOB_NODELIST_HET_GROUP_1"].split(","))
def get_flight_server_addresses():
"""Get Flight server addresses for dataset workers.
Returns:
List[str]: List of Flight server addresses in the format 'grpc://host:port'.
Raises:
NotImplementedError: If not running on Kubernetes with Kubeflow (KF) environment.
"""
if on_kf():
job_name = os.environ["JOB_NAME"]
return [
@ -105,4 +176,9 @@ def get_flight_server_addresses():
def get_dds_journaling_dir():
"""Get the DDS journaling directory.
Returns:
str: DDS journaling directory.
"""
return os.environ.get("DATASET_JOURNALING_DIR", None)

View File

@ -14,17 +14,20 @@ def update_mean(
weight: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Update the mean according to Welford formula:
Update the mean according to the Welford formula.
This function updates the mean and the weighted sum of values using the Welford algorithm.
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Weighted_batched_version.
See also https://nullbuffer.com/articles/welford_algorithm.html for more information.
Args:
current_mean: The value of the current accumulated mean.
current_weight_sum: The current weighted sum.
value: The new value that needs to be added to get a new mean.
weight: The weights for the new value.
Returns: The updated mean and updated weighted sum.
current_mean (torch.Tensor): The value of the current accumulated mean.
current_weight_sum (torch.Tensor): The current weighted sum.
value (torch.Tensor): The new value that needs to be added to get a new mean.
weight (torch.Tensor): The weights for the new value.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The updated mean and updated weighted sum.
"""
weight = torch.broadcast_to(weight, value.shape)
@ -38,11 +41,14 @@ def update_mean(
def stable_mean_dist_reduce_fn(state: torch.Tensor) -> torch.Tensor:
"""
Merge the state from multiple workers.
This function merges the state from multiple workers to compute the accumulated mean.
Args:
state: A tensor with the first dimension indicating workers.
Returns: The accumulated mean from all workers.
state (torch.Tensor): A tensor with the first dimension indicating workers.
Returns:
torch.Tensor: The accumulated mean from all workers.
"""
mean, weight_sum = update_mean(
current_mean=torch.as_tensor(0.0, dtype=state.dtype, device=state.device),
@ -55,11 +61,19 @@ def stable_mean_dist_reduce_fn(state: torch.Tensor) -> torch.Tensor:
class StableMean(torchmetrics.Metric):
"""
This implements a numerical stable mean metrics computation using Welford algorithm according to
A numerical stable mean metric using the Welford algorithm.
This class implements a numerical stable mean metrics computation using the Welford algorithm.
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Weighted_batched_version.
For example when using float32, the algorithm will give a valid output even if the "sum" is larger
than the maximum float32 as far as the mean is within the limit of float32.
See also https://nullbuffer.com/articles/welford_algorithm.html for more information.
Args:
**kwargs: Additional parameters supported by all torchmetrics.Metric.
Attributes:
mean_and_weight_sum (torch.Tensor): A tensor to store the mean and weighted sum.
"""
def __init__(self, **kwargs):
@ -75,11 +89,11 @@ class StableMean(torchmetrics.Metric):
)
def update(self, value: torch.Tensor, weight: Union[float, torch.Tensor] = 1.0) -> None:
"""
Update the current mean.
"""Update the current mean.
Args:
value: Value to update the mean with.
weight: weight to use. Shape should be broadcastable to that of value.
value (torch.Tensor): Value to update the mean with.
weight (Union[float, torch.Tensor]): Weight to use. Shape should be broadcastable to that of value.
"""
mean, weight_sum = self.mean_and_weight_sum[0], self.mean_and_weight_sum[1]
@ -91,7 +105,9 @@ class StableMean(torchmetrics.Metric):
)
def compute(self) -> torch.Tensor:
"""
Compute and return the accumulated mean.
"""Compute and return the accumulated mean.
Returns:
torch.Tensor: The accumulated mean.
"""
return self.mean_and_weight_sum[0]

View File

@ -29,6 +29,9 @@ def _compute_helper(
equal_predictions_as_incorrect: For positive & negative labels having identical scores,
we assume that they are correct prediction (i.e weight = 1) when ths is False. Otherwise,
we assume that they are correct prediction (i.e weight = 0).
Returns:
torch.Tensor: The computed AUROC
"""
dim = 0
@ -52,22 +55,32 @@ def _compute_helper(
class AUROCWithMWU(torchmetrics.Metric):
"""
AUROC using Mann-Whitney U-test.
AUROC (Area Under the Receiver Operating Characteristic) using Mann-Whitney U-test.
This AUROC implementation is well suited for (non-zero) low-CTR (Click-Through Rate)
scenarios. It returns the correct AUROC even when predicted probabilities are close to 0.
See https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve.
This AUROC implementation is well suited to (non-zero) low-CTR. In particular it will return
the correct AUROC even if the predicted probabilities are all close to 0.
Currently only support binary classification.
Note: Currently, this implementation only supports binary classification.
Args:
label_threshold (float): Threshold for classifying labels as positive or negative.
Labels above this threshold are considered positive, and those below are considered negative.
raise_missing_class (bool): If True, an error is raised when the negative or positive class is missing.
Otherwise, a warning is logged, and AUROC is computed.
**kwargs: Additional parameters supported by all torchmetrics.Metric.
"""
def __init__(self, label_threshold: float = 0.5, raise_missing_class: bool = False, **kwargs):
"""
Initializes the AUROCWithMWU metric.
Args:
label_threshold: Labels strictly above this threshold are considered positive labels,
otherwise, they are considered negative.
raise_missing_class: If True, an error will be raise if negative or positive class is missing.
Otherwise, we will simply log a warning.
label_threshold (float): Threshold for classifying labels as positive or negative.
Labels above this threshold are considered positive, and those below are considered negative.
raise_missing_class (bool): If True, an error is raised when the negative or positive class is missing.
Otherwise, a warning is logged, and AUROC is computed.
**kwargs: Additional parameters supported by all torchmetrics.Metric.
"""
super().__init__(**kwargs)