from typing import Any, Dict, List, Optional from tml.common.wandb import WandbConfig from tml.core.config import base_config from tml.projects.twhin.data.config import TwhinDataConfig from tml.projects.twhin.models.config import TwhinModelConfig import pydantic class RuntimeConfig(base_config.BaseConfig): wandb: WandbConfig = pydantic.Field(None) enable_tensorfloat32: bool = pydantic.Field( False, description="Use tensorfloat32 if on Ampere devices." ) enable_amp: bool = pydantic.Field(False, description="Enable automatic mixed precision.") class TrainingConfig(base_config.BaseConfig): save_dir: str = pydantic.Field("/tmp/model", description="Directory to save checkpoints.") num_train_steps: pydantic.PositiveInt = 10000 initial_checkpoint_dir: str = pydantic.Field( None, description="Directory of initial checkpoints", at_most_one_of="initialization" ) checkpoint_every_n: pydantic.PositiveInt = 1000 checkpoint_max_to_keep: pydantic.PositiveInt = pydantic.Field( None, description="Maximum number of checkpoints to keep. Defaults to keeping all." ) train_log_every_n: pydantic.PositiveInt = 1000 num_eval_steps: int = pydantic.Field( 16384, description="Number of evaluation steps. If < 0 the entire dataset will be used." ) eval_log_every_n: pydantic.PositiveInt = 5000 eval_timeout_in_s: pydantic.PositiveFloat = 60 * 60 gradient_accumulation: int = pydantic.Field( None, description="Number of replica steps to accumulate gradients." ) num_epochs: pydantic.PositiveInt = 1