from typing import Mapping, Sequence, Union from tml.projects.home.recap.model.config import ( BatchNormConfig, DoubleNormLogConfig, FeaturizationConfig, LayerNormConfig, ) import torch def log_transform(x: torch.Tensor) -> torch.Tensor: """Safe log transform that works across both negative, zero, and positive floats.""" return torch.sign(x) * torch.log1p(torch.abs(x)) class BatchNorm(torch.nn.Module): def __init__(self, num_features: int, config: BatchNormConfig): super().__init__() self.layer = torch.nn.BatchNorm1d(num_features, affine=config.affine, momentum=config.momentum) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.layer(x) class LayerNorm(torch.nn.Module): def __init__(self, normalized_shape: Union[int, Sequence[int]], config: LayerNormConfig): super().__init__() if config.axis != -1: raise NotImplementedError if config.center != config.scale: raise ValueError( f"Center and scale must match in torch, received {config.center}, {config.scale}" ) self.layer = torch.nn.LayerNorm( normalized_shape, eps=config.epsilon, elementwise_affine=config.center ) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.layer(x) class Log1pAbs(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: return log_transform(x) class InputNonFinite(torch.nn.Module): def __init__(self, fill_value: float = 0): super().__init__() self.register_buffer( "fill_value", torch.as_tensor(fill_value, dtype=torch.float32), persistent=False ) def forward(self, x: torch.Tensor) -> torch.Tensor: return torch.where(torch.isfinite(x), x, self.fill_value) class Clamp(torch.nn.Module): def __init__(self, min_value: float, max_value: float): super().__init__() # Using buffer to make sure they are on correct device (and not moved every time). # Will also be part of state_dict. self.register_buffer( "min_value", torch.as_tensor(min_value, dtype=torch.float32), persistent=True ) self.register_buffer( "max_value", torch.as_tensor(max_value, dtype=torch.float32), persistent=True ) def forward(self, x: torch.Tensor) -> torch.Tensor: return torch.clamp(x, min=self.min_value, max=self.max_value) class DoubleNormLog(torch.nn.Module): """Performs a batch norm and clamp on continuous features followed by a layer norm on binary and continuous features.""" def __init__( self, input_shapes: Mapping[str, Sequence[int]], config: DoubleNormLogConfig, ): super().__init__() _before_concat_layers = [ InputNonFinite(), Log1pAbs(), ] if config.batch_norm_config: _before_concat_layers.append( BatchNorm(input_shapes["continuous"][-1], config.batch_norm_config) ) _before_concat_layers.append( Clamp(min_value=-config.clip_magnitude, max_value=config.clip_magnitude) ) self._before_concat_layers = torch.nn.Sequential(*_before_concat_layers) self.layer_norm = None if config.layer_norm_config: last_dim = input_shapes["continuous"][-1] + input_shapes["binary"][-1] self.layer_norm = LayerNorm(last_dim, config.layer_norm_config) def forward( self, continuous_features: torch.Tensor, binary_features: torch.Tensor ) -> torch.Tensor: x = self._before_concat_layers(continuous_features) x = torch.cat([x, binary_features], dim=1) if self.layer_norm: return self.layer_norm(x) return x def build_features_preprocessor( config: FeaturizationConfig, input_shapes: Mapping[str, Sequence[int]] ): """Trivial right now, but we will change in the future.""" return DoubleNormLog(input_shapes, config.double_norm_log_config)