121 lines
3.7 KiB
Python

from typing import Mapping, Tuple, Union
import torch
import torchrec
import numpy as np
import tensorflow as tf
def keyed_tensor_from_tensors_dict(
tensor_map: Mapping[str, torch.Tensor]
) -> "torchrec.KeyedTensor":
"""
Convert a dictionary of torch tensor to torchrec keyed tensor
Args:
tensor_map:
Returns:
"""
keys = list(tensor_map.keys())
# We expect batch size to be first dim. However, if we get a shape [Batch_size],
# KeyedTensor will not find the correct batch_size. So, in those cases we make sure the shape is
# [Batch_size x 1].
values = [
tensor_map[key] if len(tensor_map[key].shape) > 1 else torch.unsqueeze(tensor_map[key], -1)
for key in keys
]
return torchrec.KeyedTensor.from_tensor_list(keys, values)
def _compute_jagged_tensor_from_tensor(tensor: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if tensor.is_sparse:
x = tensor.coalesce() # Ensure that the indices are ordered.
lengths = torch.bincount(x.indices()[0])
values = x.values()
else:
values = tensor
lengths = torch.ones(tensor.shape[0], dtype=torch.int32, device=tensor.device)
return values, lengths
def jagged_tensor_from_tensor(tensor: torch.Tensor) -> "torchrec.JaggedTensor":
"""
Convert a torch tensor to torchrec jagged tensor.
Note: Currently only support shape of [Batch_size] or [Batch_size x N] for dense tensors.
For sparse tensor the shape of .values() should be [Batch_size] or [Batch_size x N]; the
dense_shape of the sparse tensor can be arbitrary.
Args:
tensor: a torch (sparse) tensor.
Returns:
"""
values, lengths = _compute_jagged_tensor_from_tensor(tensor)
return torchrec.JaggedTensor(values=values, lengths=lengths)
def keyed_jagged_tensor_from_tensors_dict(
tensor_map: Mapping[str, torch.Tensor]
) -> "torchrec.KeyedJaggedTensor":
"""
Convert a dictionary of (sparse) torch tensors to torchrec keyed jagged tensor.
Note: Currently only support shape of [Batch_size] or [Batch_size x 1] for dense tensors.
For sparse tensor the shape of .values() should be [Batch_size] or [Batch_size x 1]; the
dense_shape of the sparse tensor can be arbitrary.
Args:
tensor_map:
Returns:
"""
if not tensor_map:
return torchrec.KeyedJaggedTensor(
keys=[],
values=torch.zeros(0, dtype=torch.int),
lengths=torch.zeros(0, dtype=torch.int),
)
values = []
lengths = []
for tensor in tensor_map.values():
tensor_val, tensor_len = _compute_jagged_tensor_from_tensor(tensor)
values.append(torch.squeeze(tensor_val))
lengths.append(tensor_len)
values = torch.cat(values, axis=0)
lengths = torch.cat(lengths, axis=0)
return torchrec.KeyedJaggedTensor(
keys=list(tensor_map.keys()),
values=values,
lengths=lengths,
)
def _tf_to_numpy(tf_tensor: tf.Tensor) -> np.ndarray:
return tf_tensor._numpy() # noqa
def _dense_tf_to_torch(tensor: tf.Tensor, pin_memory: bool) -> torch.Tensor:
tensor = _tf_to_numpy(tensor)
# Pytorch does not support bfloat16, up cast to float32 to keep the same number of bits on exponent
if tensor.dtype.name == "bfloat16":
tensor = tensor.astype(np.float32)
tensor = torch.from_numpy(tensor)
if pin_memory:
tensor = tensor.pin_memory()
return tensor
def sparse_or_dense_tf_to_torch(
tensor: Union[tf.Tensor, tf.SparseTensor], pin_memory: bool
) -> torch.Tensor:
if isinstance(tensor, tf.SparseTensor):
tensor = torch.sparse_coo_tensor(
_dense_tf_to_torch(tensor.indices, pin_memory).t(),
_dense_tf_to_torch(tensor.values, pin_memory),
torch.Size(_tf_to_numpy(tensor.dense_shape)),
)
else:
tensor = _dense_tf_to_torch(tensor, pin_memory)
return tensor