the-algorithm-ml/projects/home/recap/data/generate_random_data.py
2023-04-03 14:27:23 +05:30

82 lines
2.6 KiB
Python

import os
import json
from absl import app, flags, logging
import tensorflow as tf
from typing import Dict
from tml.projects.home.recap.data import tfe_parsing
from tml.core import config as tml_config_mod
import tml.projects.home.recap.config as recap_config_mod
flags.DEFINE_string("config_path", None, "Path to hyperparameters for model.")
flags.DEFINE_integer("n_examples", 100, "Number of examples to generate.")
FLAGS = flags.FLAGS
def _generate_random_example(
tf_example_schema: Dict[str, tf.io.FixedLenFeature]
) -> Dict[str, tf.Tensor]:
example = {}
for feature_name, feature_spec in tf_example_schema.items():
dtype = feature_spec.dtype
if (dtype == tf.int64) or (dtype == tf.int32):
x = tf.experimental.numpy.random.randint(0, high=10, size=feature_spec.shape, dtype=dtype)
elif (dtype == tf.float32) or (dtype == tf.float64):
x = tf.random.uniform(shape=[feature_spec.shape], dtype=dtype)
else:
raise NotImplementedError(f"Unknown type {dtype}")
example[feature_name] = x
return example
def _float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _serialize_example(x: Dict[str, tf.Tensor]) -> bytes:
feature = {}
serializers = {tf.float32: _float_feature, tf.int64: _int64_feature}
for feature_name, tensor in x.items():
feature[feature_name] = serializers[tensor.dtype](tensor)
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
return example_proto.SerializeToString()
def generate_data(data_path: str, config: recap_config_mod.RecapConfig):
with tf.io.gfile.GFile(config.train_data.seg_dense_schema.schema_path, "r") as f:
seg_dense_schema = json.load(f)["schema"]
tf_example_schema = tfe_parsing.create_tf_example_schema(
config.train_data,
seg_dense_schema,
)
record_filename = os.path.join(data_path, "random.tfrecord.gz")
with tf.io.TFRecordWriter(record_filename, "GZIP") as writer:
random_example = _generate_random_example(tf_example_schema)
serialized_example = _serialize_example(random_example)
writer.write(serialized_example)
def _generate_data_main(unused_argv):
config = tml_config_mod.load_config_from_yaml(recap_config_mod.RecapConfig, FLAGS.config_path)
# Find the path where to put the data
data_path = os.path.dirname(config.train_data.inputs)
logging.info("Putting random data in %s", data_path)
generate_data(data_path, config)
if __name__ == "__main__":
app.run(_generate_data_main)