2023-09-13 11:22:13 +05:30

229 lines
7.1 KiB
Python

"""Reader utilities."""
import itertools
import time
from typing import Optional
from tml.common.batch import DataclassBatch
from tml.ml_logging.torch_logging import logging
import pyarrow as pa
import torch
def roundrobin(*iterables):
"""
Iterate through provided iterables in a round-robin fashion.
This function takes multiple iterables and returns an iterator that yields elements from
each iterable in a round-robin manner. It continues cycling through the iterables until
all of them are exhausted.
Adapted from https://docs.python.org/3/library/itertools.html.
Args:
*iterables: One or more iterable objects to iterate through.
Yields:
Elements from the provided iterables in a round-robin fashion.
Raises:
StopIteration: If all provided iterables are exhausted.
Example:
```python
iterable1 = [1, 2, 3]
iterable2 = ['a', 'b', 'c']
iterable3 = [0.1, 0.2, 0.3]
for item in roundrobin(iterable1, iterable2, iterable3):
print(item)
# Output:
# 1
# 'a'
# 0.1
# 2
# 'b'
# 0.2
# 3
# 'c'
# 0.3
```
Note:
- If one of the provided iterables is shorter than the others, the function will
continue iterating through the remaining iterables until all are exhausted.
- If an iterable raises an exception during iteration, a warning message is logged,
and the function continues with the next iterable.
See Also:
- `itertools.cycle`: A function that repeatedly cycles through elements of an iterable.
- `itertools.islice`: A function to slice an iterable to limit the number of iterations.
"""
num_active = len(iterables)
nexts = itertools.cycle(iter(it).__next__ for it in iterables)
while num_active:
try:
for _next in nexts:
result = _next()
yield result
except StopIteration:
# Remove the iterator we just exhausted from the cycle.
num_active -= 1
nexts = itertools.cycle(itertools.islice(nexts, num_active))
logging.warning(f"Iterable exhausted, {num_active} iterables left.")
except Exception as exc:
logging.warning(f"Iterable raised exception {exc}, ignoring.")
# continue
raise
def speed_check(data_loader, max_steps: int, frequency: int, peek: Optional[int]):
"""
Monitor the speed and progress of data loading using a data loader.
This function iterates through a data loader for a specified number of steps or until
the end of the data loader is reached, periodically logging progress information.
Args:
data_loader: The data loader to monitor.
max_steps: The maximum number of steps to iterate through the data loader.
frequency: The frequency (in steps) at which to log progress.
peek (optional): If specified, it indicates the frequency (in steps) at which to log
batch contents for inspection.
Example:
```python
import torch
from torch.utils.data import DataLoader
# Create a data loader (replace with your own DataLoader configuration)
data_loader = DataLoader(dataset, batch_size=32, shuffle=True)
# Monitor data loading speed and progress
speed_check(data_loader, max_steps=1000, frequency=50, peek=500)
```
Args:
data_loader: The data loader to monitor.
max_steps: The maximum number of steps to iterate through the data loader.
frequency: The frequency (in steps) at which to log progress.
peek (optional): If specified, it indicates the frequency (in steps) at which to log
batch contents for inspection.
Note:
- The function logs information about elapsed time, the number of examples processed,
and the processing speed in examples per second.
- If `peek` is provided, batch contents will be logged for inspection at the specified
frequency.
See Also:
- `torch.utils.data.DataLoader`: PyTorch's data loading utility for batching and
iterating through datasets.
"""
num_examples = 0
prev = time.perf_counter()
for idx, batch in enumerate(data_loader):
if idx > max_steps:
break
if peek and idx % peek == 0:
logging.info(f"Batch: {batch}")
num_examples += batch.batch_size
if idx % frequency == 0:
now = time.perf_counter()
elapsed = now - prev
logging.info(
f"step: {idx}, "
f"elapsed(s): {elapsed}, "
f"examples: {num_examples}, "
f"ex/s: {num_examples / elapsed}, "
)
prev = now
num_examples = 0
def pa_to_torch(array: pa.array) -> torch.Tensor:
"""
Convert a PyArrow Array to a PyTorch Tensor.
Args:
array (pa.array): The PyArrow Array to convert.
Returns:
torch.Tensor: A PyTorch Tensor containing the data from the input PyArrow Array.
Example:
```python
import pyarrow as pa
import torch
# Create a PyArrow Array
arrow_array = pa.array([1, 2, 3])
# Convert it to a PyTorch Tensor
torch_tensor = pa_to_torch(arrow_array)
```
"""
return torch.from_numpy(array.to_numpy())
def create_default_pa_to_batch(schema) -> DataclassBatch:
"""
Create a function that converts a PyArrow RecordBatch to a custom DataclassBatch with imputed values for missing data.
Args:
schema (pa.Schema): The PyArrow schema describing the data structure of the RecordBatch.
Returns:
callable: A function that takes a PyArrow RecordBatch as input and returns a custom DataclassBatch.
Example:
```python
import pyarrow as pa
from dataclass_batch import DataclassBatch
# Define a PyArrow schema
schema = pa.schema([
("feature1", pa.float64()),
("feature2", pa.int64()),
("label", pa.int64()),
])
# Create the conversion function
pa_to_batch = create_default_pa_to_batch(schema)
# Create a PyArrow RecordBatch
record_batch = pa.RecordBatch.from_pandas(pd.DataFrame({
"feature1": [1.0, 2.0, None],
"feature2": [10, 20, 30],
"label": [0, 1, None],
}))
# Convert the RecordBatch to a custom DataclassBatch
custom_batch = pa_to_batch(record_batch)
```
"""
_CustomBatch = DataclassBatch.from_schema("DefaultBatch", schema=schema)
def get_imputation_value(pa_type):
type_map = {
pa.float64(): pa.scalar(0, type=pa.float64()),
pa.int64(): pa.scalar(0, type=pa.int64()),
pa.string(): pa.scalar("", type=pa.string()),
}
if pa_type not in type_map:
raise Exception(f"Imputation for type {pa_type} not supported.")
return type_map[pa_type]
def _impute(array: pa.array) -> pa.array:
return array.fill_null(get_imputation_value(array.type))
def _column_to_tensor(record_batch: pa.RecordBatch):
tensors = {
col_name: pa_to_torch(_impute(record_batch.column(col_name)))
for col_name in record_batch.schema.names
}
return _CustomBatch(**tensors)
return _column_to_tensor