mirror of
https://github.com/twitter/the-algorithm-ml.git
synced 2025-01-10 06:49:21 +01:00
41 lines
1.5 KiB
Python
41 lines
1.5 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
from tml.common.wandb import WandbConfig
|
|
from tml.core.config import base_config
|
|
from tml.projects.twhin.data.config import TwhinDataConfig
|
|
from tml.projects.twhin.models.config import TwhinModelConfig
|
|
|
|
import pydantic
|
|
|
|
|
|
class RuntimeConfig(base_config.BaseConfig):
|
|
wandb: WandbConfig = pydantic.Field(None)
|
|
enable_tensorfloat32: bool = pydantic.Field(
|
|
False, description="Use tensorfloat32 if on Ampere devices."
|
|
)
|
|
enable_amp: bool = pydantic.Field(False, description="Enable automatic mixed precision.")
|
|
|
|
|
|
class TrainingConfig(base_config.BaseConfig):
|
|
save_dir: str = pydantic.Field("/tmp/model", description="Directory to save checkpoints.")
|
|
num_train_steps: pydantic.PositiveInt = 10000
|
|
initial_checkpoint_dir: str = pydantic.Field(
|
|
None, description="Directory of initial checkpoints", at_most_one_of="initialization"
|
|
)
|
|
checkpoint_every_n: pydantic.PositiveInt = 1000
|
|
checkpoint_max_to_keep: pydantic.PositiveInt = pydantic.Field(
|
|
None, description="Maximum number of checkpoints to keep. Defaults to keeping all."
|
|
)
|
|
train_log_every_n: pydantic.PositiveInt = 1000
|
|
num_eval_steps: int = pydantic.Field(
|
|
16384, description="Number of evaluation steps. If < 0 the entire dataset will be used."
|
|
)
|
|
eval_log_every_n: pydantic.PositiveInt = 5000
|
|
|
|
eval_timeout_in_s: pydantic.PositiveFloat = 60 * 60
|
|
|
|
gradient_accumulation: int = pydantic.Field(
|
|
None, description="Number of replica steps to accumulate gradients."
|
|
)
|
|
num_epochs: pydantic.PositiveInt = 1
|