105 lines
2.6 KiB
Python

"""Local reader of parquet files.
1. Make sure you are initialized locally:
```
./images/init_venv_macos.sh
```
2. Activate
```
source ~/tml_venv/bin/activate
```
3. Use tool, e.g.
`head` prints the first `--num` rows of the dataset.
```
python3 tools/pq.py \
--num 5 --path "tweet_eng/small/edges/all/*" \
head
```
`distinct` prints the observed values in the first `--num` rows for the specified columns.
```
python3 tools/pq.py \
--num 1000000000 --columns '["rel"]' \
--path "tweet_eng/small/edges/all/*" \
distinct
```
"""
from typing import List, Optional
from tml.common.filesystem import infer_fs
import fire
import pandas as pd
import pyarrow as pa
import pyarrow.dataset as pads
import pyarrow.parquet as pq
def _create_dataset(path: str):
fs = infer_fs(path)
files = fs.glob(path)
return pads.dataset(files, format="parquet", filesystem=fs)
class PqReader:
def __init__(
self, path: str, num: int = 10, batch_size: int = 1024, columns: Optional[List[str]] = None
):
self._ds = _create_dataset(path)
self._batch_size = batch_size
self._num = num
self._columns = columns
def __iter__(self):
batches = self._ds.to_batches(batch_size=self._batch_size, columns=self._columns)
rows_seen = 0
for count, record in enumerate(batches):
if self._num and rows_seen >= self._num:
break
yield record
rows_seen += record.data.num_rows
def _head(self):
total_read = self._num * self.bytes_per_row
if total_read >= int(500e6):
raise Exception(
"Sorry you're trying to read more than 500 MB " f"into memory ({total_read} bytes)."
)
return self._ds.head(self._num, columns=self._columns)
@property
def bytes_per_row(self) -> int:
nbits = 0
for t in self._ds.schema.types:
try:
nbits += t.bit_width
except:
# Just estimate size if it is variable
nbits += 8
return nbits // 8
def schema(self):
print(f"\n# Schema\n{self._ds.schema}")
def head(self):
"""Displays first --num rows."""
print(self._head().to_pandas())
def distinct(self):
"""Displays unique values seen in specified columns in the first `--num` rows.
Useful for getting an approximate vocabulary for certain columns.
"""
for col_name, column in zip(self._head().column_names, self._head().columns):
print(col_name)
print("unique:", column.unique().to_pylist())
if __name__ == "__main__":
pd.set_option("display.max_columns", None)
pd.set_option("display.max_rows", None)
fire.Fire(PqReader)