mirror of
https://github.com/twitter/the-algorithm-ml.git
synced 2024-12-24 07:11:49 +01:00
167 lines
6.0 KiB
Python
167 lines
6.0 KiB
Python
"""Build optimizers and learning rate schedules."""
|
|
import bisect
|
|
from collections import defaultdict
|
|
import functools
|
|
import math
|
|
import typing
|
|
from typing import Optional
|
|
import warnings
|
|
|
|
# from large_embeddings.config import EmbeddingOptimizerConfig
|
|
from tml.projects.home.recap import model as model_mod
|
|
from tml.optimizers import config
|
|
from tml.optimizers import compute_lr
|
|
from absl import logging # type: ignore[attr-defined]
|
|
|
|
import torch
|
|
from torchrec.optim import keyed
|
|
|
|
|
|
_DEFAULT_LR = 24601.0 # NaN the model if we're not using the learning rate.
|
|
_BACKBONE = "backbone"
|
|
_DENSE_EMBEDDINGS = "dense_ebc"
|
|
|
|
|
|
class RecapLRShim(torch.optim.lr_scheduler._LRScheduler):
|
|
"""Shim to get learning rates into a LRScheduler.
|
|
|
|
This adheres to the torch.optim scheduler API and can be plugged anywhere that
|
|
e.g. exponential decay can be used.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
optimizer,
|
|
lr_dict: typing.Dict[str, config.LearningRate],
|
|
emb_learning_rate,
|
|
last_epoch=-1,
|
|
verbose=False,
|
|
):
|
|
self.optimizer = optimizer
|
|
self.lr_dict = lr_dict
|
|
self.group_names = list(self.lr_dict.keys())
|
|
self.emb_learning_rate = emb_learning_rate
|
|
|
|
# We handle sparse LR scheduling separately, so only validate LR groups against dense param groups
|
|
num_dense_param_groups = sum(
|
|
1
|
|
for _, _optim in optimizer._optims
|
|
for _ in _optim.param_groups
|
|
if isinstance(_optim, keyed.KeyedOptimizerWrapper)
|
|
)
|
|
if num_dense_param_groups != len(lr_dict):
|
|
raise ValueError(
|
|
f"Optimizer had {len(optimizer.param_groups)}, but config had {len(lr_dict)}."
|
|
)
|
|
super().__init__(optimizer, last_epoch, verbose)
|
|
|
|
def get_lr(self):
|
|
if not self._get_lr_called_within_step:
|
|
warnings.warn(
|
|
"To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.",
|
|
UserWarning,
|
|
)
|
|
return self._get_closed_form_lr()
|
|
|
|
def _get_closed_form_lr(self):
|
|
learning_rates = []
|
|
|
|
for lr_config in self.lr_dict.values():
|
|
learning_rates.append(compute_lr(lr_config, self.last_epoch))
|
|
# WARNING: The order of appending is important.
|
|
if self.emb_learning_rate:
|
|
learning_rates.append(compute_lr(self.emb_learning_rate, self.last_epoch))
|
|
return learning_rates
|
|
|
|
|
|
def build_optimizer(
|
|
model: torch.nn.Module,
|
|
optimizer_config: config.OptimizerConfig,
|
|
emb_optimizer_config: None = None, # Optional[EmbeddingOptimizerConfig] = None,
|
|
):
|
|
"""Builds an optimizer and scheduler.
|
|
|
|
Args:
|
|
model: A torch model, probably with DDP/DMP.
|
|
optimizer_config: An OptimizerConfig object that specifies learning rates per tower.
|
|
|
|
Returns:
|
|
A torch.optim instance, and a scheduler instance.
|
|
"""
|
|
optimizer_fn = functools.partial(
|
|
torch.optim.Adam,
|
|
lr=_DEFAULT_LR,
|
|
betas=(optimizer_config.adam.beta_1, optimizer_config.adam.beta_2),
|
|
eps=optimizer_config.adam.epsilon,
|
|
maximize=False,
|
|
)
|
|
if optimizer_config.multi_task_learning_rates:
|
|
logging.info("***** Parameter groups for optimization *****")
|
|
# Importantly, we preserve insertion order in dictionaries here.
|
|
parameter_groups: typing.Dict[str, typing.Dict] = defaultdict(dict)
|
|
added_parameters: typing.Set[str] = set()
|
|
for task in optimizer_config.multi_task_learning_rates.tower_learning_rates:
|
|
for name, parameter in model.named_parameters():
|
|
if f".{model_mod.sanitize(task)}." in name:
|
|
parameter_groups[task][name] = parameter
|
|
logging.info(f"{task}: {name}")
|
|
if name in added_parameters:
|
|
raise ValueError(f"Parameter {name} matched multiple tasks.")
|
|
added_parameters.add(name)
|
|
|
|
for name, parameter in model.named_parameters():
|
|
if name not in added_parameters and "embedding_bags" not in name:
|
|
parameter_groups[_BACKBONE][name] = parameter
|
|
added_parameters.add(name)
|
|
logging.info(f"{_BACKBONE}: {name}")
|
|
|
|
for name, parameter in model.named_parameters():
|
|
if name not in added_parameters and "embedding_bags" in name:
|
|
parameter_groups[_DENSE_EMBEDDINGS][name] = parameter
|
|
logging.info(f"{_DENSE_EMBEDDINGS}: {name}")
|
|
|
|
all_learning_rates = optimizer_config.multi_task_learning_rates.tower_learning_rates.copy()
|
|
if optimizer_config.multi_task_learning_rates.backbone_learning_rate is not None:
|
|
all_learning_rates[
|
|
_BACKBONE
|
|
] = optimizer_config.multi_task_learning_rates.backbone_learning_rate
|
|
if _DENSE_EMBEDDINGS in parameter_groups and emb_optimizer_config:
|
|
all_learning_rates[_DENSE_EMBEDDINGS] = emb_optimizer_config.learning_rate.copy()
|
|
else:
|
|
parameter_groups = dict(model.named_parameters())
|
|
all_learning_rates = {"single_task": optimizer_config.single_task_learning_rate}
|
|
|
|
optimizers = [
|
|
keyed.KeyedOptimizerWrapper(param_group, optimizer_fn)
|
|
for param_name, param_group in parameter_groups.items()
|
|
if param_name != _DENSE_EMBEDDINGS
|
|
]
|
|
# Making EBC optimizer to be SGD to match fused optimiser
|
|
if _DENSE_EMBEDDINGS in parameter_groups:
|
|
optimizers.append(
|
|
keyed.KeyedOptimizerWrapper(
|
|
parameter_groups[_DENSE_EMBEDDINGS],
|
|
functools.partial(torch.optim.SGD, lr=_DEFAULT_LR, maximize=False, momentum=False),
|
|
)
|
|
)
|
|
|
|
if not parameter_groups.keys() == all_learning_rates.keys():
|
|
raise ValueError("Learning rates do not match optimizers")
|
|
|
|
# If the optimiser is dense, model.fused_optimizer will be empty (but not None)
|
|
emb_learning_rate = None
|
|
if hasattr(model, "fused_optimizer") and model.fused_optimizer.optimizers:
|
|
logging.info(f"Model fused optimiser: {model.fused_optimizer}")
|
|
optimizers.append(model.fused_optimizer)
|
|
if emb_optimizer_config:
|
|
emb_learning_rate = emb_optimizer_config.learning_rate.copy()
|
|
else:
|
|
raise ValueError("Fused kernel exists, but LR is not set")
|
|
logging.info(f"***** Combining optimizers: {optimizers} *****")
|
|
optimizer = keyed.CombinedOptimizer(optimizers)
|
|
scheduler = RecapLRShim(optimizer, all_learning_rates, emb_learning_rate)
|
|
logging.info(f"***** Combined optimizer after init: {optimizer} *****")
|
|
|
|
return optimizer, scheduler
|