mirror of
https://github.com/twitter/the-algorithm-ml.git
synced 2025-01-25 13:21:10 +01:00
131 lines
4.3 KiB
Python
131 lines
4.3 KiB
Python
"""Dataset to be overwritten that can work with or without distributed reading.
|
|
|
|
- Override `pa_to_batch` for dataset specific imputation, negative sampling, or coercion to Batch.
|
|
- Readers can be colocated or off trainer machines.
|
|
|
|
"""
|
|
import abc
|
|
import functools
|
|
import random
|
|
from typing import Optional
|
|
|
|
from fsspec.implementations.local import LocalFileSystem
|
|
import pyarrow.dataset as pads
|
|
import pyarrow as pa
|
|
import pyarrow.parquet
|
|
import pyarrow.flight
|
|
from pyarrow.ipc import IpcWriteOptions
|
|
import torch
|
|
|
|
from tml.common.batch import DataclassBatch
|
|
from tml.machines import environment as env
|
|
import tml.reader.utils as reader_utils
|
|
from tml.common.filesystem import infer_fs
|
|
from tml.ml_logging.torch_logging import logging
|
|
|
|
|
|
class _Reader(pa.flight.FlightServerBase):
|
|
"""Distributed reader flight server wrapping a dataset."""
|
|
|
|
def __init__(self, location: str, ds: "Dataset"):
|
|
super().__init__(location=location)
|
|
self._location = location
|
|
self._ds = ds
|
|
|
|
def do_get(self, _, __):
|
|
# NB: An updated schema (to account for column selection) has to be given the stream.
|
|
schema = next(iter(self._ds.to_batches())).schema
|
|
batches = self._ds.to_batches()
|
|
return pa.flight.RecordBatchStream(
|
|
data_source=pa.RecordBatchReader.from_batches(
|
|
schema=schema,
|
|
batches=batches,
|
|
),
|
|
options=IpcWriteOptions(use_threads=True),
|
|
)
|
|
|
|
|
|
class Dataset(torch.utils.data.IterableDataset):
|
|
LOCATION = "grpc://0.0.0.0:2222"
|
|
|
|
def __init__(self, file_pattern: str, **dataset_kwargs) -> None:
|
|
"""Specify batch size and column to select for.
|
|
|
|
Refer to https://arrow.apache.org/docs/python/generated/pyarrow.dataset.Scanner.html#pyarrow.dataset.Scanner.from_dataset.
|
|
"""
|
|
self._file_pattern = file_pattern
|
|
self._fs = infer_fs(self._file_pattern)
|
|
self._dataset_kwargs = dataset_kwargs
|
|
logging.info(f"Using dataset_kwargs: {self._dataset_kwargs}")
|
|
self._files = self._fs.glob(self._file_pattern)
|
|
assert len(self._files) > 0, f"No files found at {self._file_pattern}"
|
|
logging.info(f"Found {len(self._files)} files: {', '.join(self._files[:4])}, ...")
|
|
self._schema = pa.parquet.read_schema(self._files[0], filesystem=self._fs)
|
|
self._validate_columns()
|
|
|
|
def _validate_columns(self):
|
|
columns = set(self._dataset_kwargs.get("columns", []))
|
|
wrong_columns = set(columns) - set(self._schema.names)
|
|
if wrong_columns:
|
|
raise Exception(f"Specified columns {list(wrong_columns)} not in schema.")
|
|
|
|
def serve(self):
|
|
self.reader = _Reader(location=self.LOCATION, ds=self)
|
|
self.reader.serve()
|
|
|
|
def _create_dataset(self):
|
|
return pads.dataset(
|
|
source=random.sample(self._files, len(self._files))[0],
|
|
format="parquet",
|
|
filesystem=self._fs,
|
|
exclude_invalid_files=False,
|
|
)
|
|
|
|
def to_batches(self):
|
|
"""This allows the init to control reading settings.
|
|
|
|
Refer to https://arrow.apache.org/docs/python/generated/pyarrow.dataset.Scanner.html#pyarrow.dataset.Scanner.from_dataset.
|
|
|
|
Perform `drop_remainder` behavior to afix batch size.
|
|
This does not shift our data distribution bc of volume and file-level shuffling on every repeat.
|
|
"""
|
|
batch_size = self._dataset_kwargs["batch_size"]
|
|
while True:
|
|
ds = self._create_dataset()
|
|
for batch in ds.to_batches(**self._dataset_kwargs):
|
|
if batch.num_rows < batch_size:
|
|
logging.info(f"Dropping remainder ({batch.num_rows}/{batch_size})")
|
|
break
|
|
yield batch
|
|
|
|
@abc.abstractmethod
|
|
def pa_to_batch(self, batch: pa.RecordBatch) -> DataclassBatch:
|
|
raise NotImplementedError
|
|
|
|
def dataloader(self, remote: bool = False):
|
|
if not remote:
|
|
return map(self.pa_to_batch, self.to_batches())
|
|
readers = get_readers(2)
|
|
return map(self.pa_to_batch, reader_utils.roundrobin(*readers))
|
|
|
|
|
|
GRPC_OPTIONS = [
|
|
("GRPC_ARG_KEEPALIVE_TIME_MS", 60000),
|
|
("GRPC_ARG_MIN_RECONNECT_BACKOFF_MS", 2000),
|
|
("GRPC_ARG_MAX_METADATA_SIZE", 1024 * 1024 * 1024),
|
|
]
|
|
|
|
|
|
def get_readers(num_readers_per_worker: int):
|
|
addresses = env.get_flight_server_addresses()
|
|
|
|
readers = []
|
|
for worker in addresses:
|
|
logging.info(f"Attempting connection to reader {worker}.")
|
|
client = pa.flight.connect(worker, generic_options=GRPC_OPTIONS)
|
|
client.wait_for_available(60)
|
|
reader = client.do_get(None).to_reader()
|
|
logging.info(f"Connected reader to {worker}.")
|
|
readers.append(reader)
|
|
return readers
|