mirror of
https://github.com/twitter/the-algorithm-ml.git
synced 2024-12-25 07:31:58 +01:00
149 lines
4.9 KiB
Python
149 lines
4.9 KiB
Python
"""Common metrics that also support multi task.
|
|
|
|
We assume multi task models will output [task_idx, ...] predictions
|
|
|
|
"""
|
|
from typing import Any, Dict
|
|
|
|
from tml.core.metric_mixin import MetricMixin, StratifyMixin, TaskMixin
|
|
|
|
import torch
|
|
import torchmetrics as tm
|
|
|
|
|
|
def probs_and_labels(
|
|
outputs: Dict[str, torch.Tensor],
|
|
task_idx: int,
|
|
) -> Dict[str, torch.Tensor]:
|
|
preds = outputs["probabilities"]
|
|
target = outputs["labels"]
|
|
if task_idx >= 0:
|
|
preds = preds[:, task_idx]
|
|
target = target[:, task_idx]
|
|
return {
|
|
"preds": preds,
|
|
"target": target.int(),
|
|
}
|
|
|
|
|
|
class Count(StratifyMixin, TaskMixin, MetricMixin, tm.SumMetric):
|
|
def transform(self, outputs):
|
|
outputs = self.maybe_apply_stratification(outputs, ["labels"])
|
|
value = outputs["labels"]
|
|
if self._task_idx >= 0:
|
|
value = value[:, self._task_idx]
|
|
return {"value": value}
|
|
|
|
|
|
class Ctr(StratifyMixin, TaskMixin, MetricMixin, tm.MeanMetric):
|
|
def transform(self, outputs):
|
|
outputs = self.maybe_apply_stratification(outputs, ["labels"])
|
|
value = outputs["labels"]
|
|
if self._task_idx >= 0:
|
|
value = value[:, self._task_idx]
|
|
return {"value": value}
|
|
|
|
|
|
class Pctr(StratifyMixin, TaskMixin, MetricMixin, tm.MeanMetric):
|
|
def transform(self, outputs):
|
|
outputs = self.maybe_apply_stratification(outputs, ["probabilities"])
|
|
value = outputs["probabilities"]
|
|
if self._task_idx >= 0:
|
|
value = value[:, self._task_idx]
|
|
return {"value": value}
|
|
|
|
|
|
class Precision(StratifyMixin, TaskMixin, MetricMixin, tm.Precision):
|
|
def transform(self, outputs):
|
|
outputs = self.maybe_apply_stratification(outputs, ["probabilities", "labels"])
|
|
return probs_and_labels(outputs, self._task_idx)
|
|
|
|
|
|
class Recall(StratifyMixin, TaskMixin, MetricMixin, tm.Recall):
|
|
def transform(self, outputs):
|
|
outputs = self.maybe_apply_stratification(outputs, ["probabilities", "labels"])
|
|
return probs_and_labels(outputs, self._task_idx)
|
|
|
|
|
|
class TorchMetricsRocauc(StratifyMixin, TaskMixin, MetricMixin, tm.AUROC):
|
|
def transform(self, outputs):
|
|
outputs = self.maybe_apply_stratification(outputs, ["probabilities", "labels"])
|
|
return probs_and_labels(outputs, self._task_idx)
|
|
|
|
|
|
class Auc(StratifyMixin, TaskMixin, MetricMixin, tm.MeanMetric):
|
|
"""
|
|
Based on:
|
|
https://github.com/facebookresearch/PyTorch-BigGraph/blob/a11ff0eb644b7e4cb569067c280112b47f40ef62/torchbiggraph/util.py#L420
|
|
"""
|
|
|
|
def __init__(self, num_samples, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.num_samples = num_samples
|
|
|
|
def transform(self, outputs: Dict[str, torch.Tensor]) -> Dict[str, Any]:
|
|
scores, labels = outputs["logits"], outputs["labels"]
|
|
pos_scores = scores[labels == 1]
|
|
neg_scores = scores[labels == 0]
|
|
result = {
|
|
"value": pos_scores[torch.randint(len(pos_scores), (self.num_samples,))]
|
|
> neg_scores[torch.randint(len(neg_scores), (self.num_samples,))]
|
|
}
|
|
return result
|
|
|
|
|
|
class PosRanks(StratifyMixin, TaskMixin, MetricMixin, tm.MeanMetric):
|
|
"""
|
|
The ranks of all positives
|
|
Based on:
|
|
https://github.com/facebookresearch/PyTorch-BigGraph/blob/a11ff0eb644b7e4cb569067c280112b47f40ef62/torchbiggraph/eval.py#L73
|
|
"""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
|
|
def transform(self, outputs: Dict[str, torch.Tensor]) -> Dict[str, Any]:
|
|
scores, labels = outputs["logits"], outputs["labels"]
|
|
_, sorted_indices = scores.sort(descending=True)
|
|
pos_ranks = labels[sorted_indices].nonzero(as_tuple=True)[0] + 1 # all ranks start from 1
|
|
result = {"value": pos_ranks}
|
|
return result
|
|
|
|
|
|
class ReciprocalRank(StratifyMixin, TaskMixin, MetricMixin, tm.MeanMetric):
|
|
"""
|
|
The reciprocal of the ranks of all
|
|
Based on:
|
|
https://github.com/facebookresearch/PyTorch-BigGraph/blob/a11ff0eb644b7e4cb569067c280112b47f40ef62/torchbiggraph/eval.py#L74
|
|
"""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
|
|
def transform(self, outputs: Dict[str, torch.Tensor]) -> Dict[str, Any]:
|
|
scores, labels = outputs["logits"], outputs["labels"]
|
|
_, sorted_indices = scores.sort(descending=True)
|
|
pos_ranks = labels[sorted_indices].nonzero(as_tuple=True)[0] + 1 # all ranks start from 1
|
|
result = {"value": torch.div(torch.ones_like(pos_ranks), pos_ranks)}
|
|
return result
|
|
|
|
|
|
class HitAtK(StratifyMixin, TaskMixin, MetricMixin, tm.MeanMetric):
|
|
"""
|
|
The fraction of positives that rank in the top K among their negatives
|
|
Note that this is basically precision@k
|
|
Based on:
|
|
https://github.com/facebookresearch/PyTorch-BigGraph/blob/a11ff0eb644b7e4cb569067c280112b47f40ef62/torchbiggraph/eval.py#L75
|
|
"""
|
|
|
|
def __init__(self, k: int, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.k = k
|
|
|
|
def transform(self, outputs: Dict[str, torch.Tensor]) -> Dict[str, Any]:
|
|
scores, labels = outputs["logits"], outputs["labels"]
|
|
_, sorted_indices = scores.sort(descending=True)
|
|
pos_ranks = labels[sorted_indices].nonzero(as_tuple=True)[0] + 1 # all ranks start from 1
|
|
result = {"value": (pos_ranks <= self.k).float()}
|
|
return result
|