mirror of
https://github.com/twitter/the-algorithm-ml.git
synced 2025-01-25 21:31:14 +01:00
261 lines
9.4 KiB
Python
261 lines
9.4 KiB
Python
"""Configuration for the main Recap model."""
|
|
|
|
import enum
|
|
from typing import List, Optional, Dict
|
|
|
|
import tml.core.config as base_config
|
|
from tml.projects.home.recap.embedding import config as embedding_config
|
|
|
|
import pydantic
|
|
|
|
|
|
class DropoutConfig(base_config.BaseConfig):
|
|
"""Configuration for the dropout layer."""
|
|
|
|
rate: pydantic.PositiveFloat = pydantic.Field(
|
|
0.1, description="Fraction of inputs to be dropped."
|
|
)
|
|
|
|
|
|
class LayerNormConfig(base_config.BaseConfig):
|
|
"""Configruation for the layer normalization."""
|
|
|
|
epsilon: float = pydantic.Field(
|
|
1e-3, description="Small float added to variance to avoid dividing by zero."
|
|
)
|
|
axis: int = pydantic.Field(-1, description="Axis or axes to normalize across.")
|
|
center: bool = pydantic.Field(True, description="Whether to add learnable center.")
|
|
scale: bool = pydantic.Field(True, description="Whether to add learnable scale.")
|
|
|
|
|
|
class BatchNormConfig(base_config.BaseConfig):
|
|
"""Configuration of the batch normalization layer."""
|
|
|
|
epsilon: pydantic.PositiveFloat = 1e-5
|
|
momentum: pydantic.PositiveFloat = 0.9
|
|
training_mode_at_inference_time: bool = False
|
|
use_renorm: bool = False
|
|
center: bool = pydantic.Field(True, description="Whether to add learnable center.")
|
|
scale: bool = pydantic.Field(True, description="Whether to add learnable scale.")
|
|
|
|
|
|
class DenseLayerConfig(base_config.BaseConfig):
|
|
layer_size: pydantic.PositiveInt
|
|
dropout: DropoutConfig = pydantic.Field(None, description="Optional dropout config for layer.")
|
|
|
|
|
|
class MlpConfig(base_config.BaseConfig):
|
|
"""Configuration for MLP model."""
|
|
|
|
layer_sizes: List[pydantic.PositiveInt] = pydantic.Field(None, one_of="mlp_layer_definition")
|
|
layers: List[DenseLayerConfig] = pydantic.Field(None, one_of="mlp_layer_definition")
|
|
|
|
|
|
class BatchNormConfig(base_config.BaseConfig):
|
|
"""Configuration for the batch norm layer."""
|
|
|
|
affine: bool = pydantic.Field(True, description="Use affine transformation.")
|
|
momentum: pydantic.PositiveFloat = pydantic.Field(
|
|
0.1, description="Forgetting parameter in moving average."
|
|
)
|
|
|
|
|
|
class DoubleNormLogConfig(base_config.BaseConfig):
|
|
batch_norm_config: Optional[BatchNormConfig] = pydantic.Field(None)
|
|
clip_magnitude: float = pydantic.Field(
|
|
5.0, description="Threshold to clip the normalized input values."
|
|
)
|
|
layer_norm_config: Optional[LayerNormConfig] = pydantic.Field(None)
|
|
|
|
|
|
class Log1pAbsConfig(base_config.BaseConfig):
|
|
"""Simple configuration where only the log transform is performed."""
|
|
|
|
|
|
class ClipLog1pAbsConfig(base_config.BaseConfig):
|
|
clip_magnitude: pydantic.NonNegativeFloat = pydantic.Field(
|
|
3e38, description="Threshold to clip the input values."
|
|
)
|
|
|
|
|
|
class ZScoreLogConfig(base_config.BaseConfig):
|
|
analysis_path: str
|
|
schema_path: str = pydantic.Field(
|
|
None,
|
|
description="Schema path which feaure statistics are generated with. Can be different from scehma in data config.",
|
|
)
|
|
clip_magnitude: float = pydantic.Field(
|
|
5.0, description="Threshold to clip the normalized input values."
|
|
)
|
|
use_batch_norm: bool = pydantic.Field(
|
|
False, description="Option to use batch normalization on the inputs."
|
|
)
|
|
use_renorm: bool = pydantic.Field(
|
|
False, description="Option to use batch renormalization for trainig and serving consistency."
|
|
)
|
|
use_bq_stats: bool = pydantic.Field(
|
|
False, description="Option to load the partitioned json files from BQ as statistics."
|
|
)
|
|
|
|
|
|
class FeaturizationConfig(base_config.BaseConfig):
|
|
"""Configuration for featurization."""
|
|
|
|
log1p_abs_config: Log1pAbsConfig = pydantic.Field(None, one_of="featurization")
|
|
clip_log1p_abs_config: ClipLog1pAbsConfig = pydantic.Field(None, one_of="featurization")
|
|
z_score_log_config: ZScoreLogConfig = pydantic.Field(None, one_of="featurization")
|
|
double_norm_log_config: DoubleNormLogConfig = pydantic.Field(None, one_of="featurization")
|
|
feature_names_to_concat: List[str] = pydantic.Field(
|
|
["binary"], description="Feature names to concatenate as raw values with continuous features."
|
|
)
|
|
|
|
|
|
class DropoutConfig(base_config.BaseConfig):
|
|
"""Configuration for the dropout layer."""
|
|
|
|
rate: pydantic.PositiveFloat = pydantic.Field(
|
|
0.1, description="Fraction of inputs to be dropped."
|
|
)
|
|
|
|
|
|
class MlpConfig(base_config.BaseConfig):
|
|
"""Configuration for MLP model."""
|
|
|
|
layer_sizes: List[pydantic.PositiveInt]
|
|
batch_norm: BatchNormConfig = pydantic.Field(
|
|
None, description="Optional batch norm configuration."
|
|
)
|
|
dropout: DropoutConfig = pydantic.Field(None, description="Optional dropout configuration.")
|
|
final_layer_activation: bool = pydantic.Field(
|
|
False, description="Whether to include activation on final layer."
|
|
)
|
|
|
|
|
|
class DcnConfig(base_config.BaseConfig):
|
|
"""Config for DCN model."""
|
|
|
|
poly_degree: pydantic.PositiveInt
|
|
projection_dim: pydantic.PositiveInt = pydantic.Field(
|
|
None, description="Factorizes main DCN matmul with projection."
|
|
)
|
|
|
|
parallel_mlp: Optional[MlpConfig] = pydantic.Field(
|
|
None, description="Config for the mlp if used. If None, only the cross layers are used."
|
|
)
|
|
use_parallel: bool = pydantic.Field(True, description="Whether to use parallel DCN.")
|
|
|
|
output_mlp: Optional[MlpConfig] = pydantic.Field(None, description="Config for the output mlp.")
|
|
|
|
|
|
class MaskBlockConfig(base_config.BaseConfig):
|
|
output_size: int
|
|
reduction_factor: Optional[pydantic.PositiveFloat] = pydantic.Field(
|
|
None, one_of="aggregation_size"
|
|
)
|
|
aggregation_size: Optional[pydantic.PositiveInt] = pydantic.Field(
|
|
None, description="Specify the aggregation size directly.", one_of="aggregation_size"
|
|
)
|
|
input_layer_norm: bool
|
|
|
|
|
|
class MaskNetConfig(base_config.BaseConfig):
|
|
mask_blocks: List[MaskBlockConfig]
|
|
mlp: Optional[MlpConfig] = pydantic.Field(None, description="MLP Configuration for parallel")
|
|
use_parallel: bool = pydantic.Field(False, description="Whether to use parallel MaskNet.")
|
|
|
|
|
|
class PositionDebiasConfig(base_config.BaseConfig):
|
|
"""
|
|
Configuration for Position Debias.
|
|
"""
|
|
|
|
max_position: int = pydantic.Field(256, description="Bucket all later positions.")
|
|
num_dims: pydantic.PositiveInt = pydantic.Field(
|
|
64, description="Number of dimensions in embedding."
|
|
)
|
|
drop_probability: float = pydantic.Field(0.5, description="Probability of dropping position.")
|
|
|
|
# Currently it should be 51 based on dataset being tested at the time of writing this model
|
|
# However, no default provided here to make sure user of the model is aware of its importance.
|
|
position_feature_index: int = pydantic.Field(
|
|
description="The index of the position feature in the discrete features"
|
|
)
|
|
|
|
|
|
class AffineMap(base_config.BaseConfig):
|
|
"""An affine map that scales the logits into the appropriate range."""
|
|
|
|
scale: float = pydantic.Field(1.0)
|
|
bias: float = pydantic.Field(0.0)
|
|
|
|
|
|
class DLRMConfig(base_config.BaseConfig):
|
|
bottom_mlp: MlpConfig = pydantic.Field(
|
|
...,
|
|
description="Bottom mlp, the output to be combined with sparse features and feed to interaction",
|
|
)
|
|
top_mlp: MlpConfig = pydantic.Field(..., description="Top mlp, generate the final output")
|
|
|
|
|
|
class TaskModel(base_config.BaseConfig):
|
|
mlp_config: MlpConfig = pydantic.Field(None, one_of="architecture")
|
|
dcn_config: DcnConfig = pydantic.Field(None, one_of="architecture")
|
|
dlrm_config: DLRMConfig = pydantic.Field(None, one_of="architecture")
|
|
mask_net_config: MaskNetConfig = pydantic.Field(None, one_of="architecture")
|
|
|
|
affine_map: AffineMap = pydantic.Field(
|
|
None,
|
|
description="Affine map applied to logits so we can represent a broader range of probabilities.",
|
|
)
|
|
# DANGER DANGER: not implemented yet.
|
|
# loss_weight: float = pydantic.Field(1.0, description="Weight for task in loss.")
|
|
pos_weight: float = pydantic.Field(1.0, description="Weight of positive in loss.")
|
|
|
|
|
|
class MultiTaskType(str, enum.Enum):
|
|
SHARE_NONE = "share_none" # Tasks are separate.
|
|
SHARE_ALL = "share_all" # Tasks share same backbone.
|
|
SHARE_PARTIAL = "share_partial" # Tasks share some backbone, but have their own portions.
|
|
|
|
|
|
class ModelConfig(base_config.BaseConfig):
|
|
"""Specify model architecture."""
|
|
|
|
tasks: Dict[str, TaskModel] = pydantic.Field(
|
|
description="Specification of architecture per task."
|
|
)
|
|
|
|
large_embeddings: embedding_config.LargeEmbeddingsConfig = pydantic.Field(None)
|
|
small_embeddings: embedding_config.SmallEmbeddingsConfig = pydantic.Field(None)
|
|
# Not implemented yet.
|
|
# multi_task_loss_reduction_fn: str = "mean"
|
|
|
|
position_debias_config: PositionDebiasConfig = pydantic.Field(
|
|
default=None, description="position debias model configuration"
|
|
)
|
|
|
|
featurization_config: FeaturizationConfig = pydantic.Field(None)
|
|
|
|
multi_task_type: MultiTaskType = pydantic.Field(
|
|
MultiTaskType.SHARE_NONE, description="Multi task architecture"
|
|
)
|
|
|
|
backbone: TaskModel = pydantic.Field(None, description="Type of architecture for the backbone.")
|
|
stratifiers: List[embedding_config.StratifierConfig] = pydantic.Field(
|
|
default=None, description="Discrete features and values to stratify metrics by."
|
|
)
|
|
|
|
@pydantic.root_validator()
|
|
def _validate_mtl(cls, values):
|
|
if values.get("multi_task_type", None) is None:
|
|
return values
|
|
elif values["multi_task_type"] in [MultiTaskType.SHARE_ALL, MultiTaskType.SHARE_PARTIAL]:
|
|
if values.get("backbone", None) is None:
|
|
raise ValueError("Require `backbone` for SHARE_ALL and SHARE_PARTIAL.")
|
|
elif values["multi_task_type"] in [
|
|
MultiTaskType.SHARE_NONE,
|
|
]:
|
|
if values.get("backbone", None) is not None:
|
|
raise ValueError("Can not have backbone if the share type is SHARE_NONE")
|
|
return values
|