the-algorithm-ml/optimizers/test_optimizer.py
2023-04-01 01:48:15 +01:00

45 lines
1.5 KiB
Python

import unittest
import torch
from tml.optimizers.config import LearningRate, OptimizerConfig
from .optimizer import compute_lr, LRShim, get_optimizer_class, build_optimizer
class TestComputeLR(unittest.TestCase):
def test_constant_lr(self):
lr_config = LearningRate(constant=0.1)
lr = compute_lr(lr_config, step=0)
self.assertAlmostEqual(lr, 0.1)
def test_piecewise_constant_lr(self):
lr_config = LearningRate(piecewise_constant={"learning_rate_boundaries": [10, 20], "learning_rate_values": [0.1, 0.01, 0.001]})
lr = compute_lr(lr_config, step=5)
self.assertAlmostEqual(lr, 0.1)
lr = compute_lr(lr_config, step=15)
self.assertAlmostEqual(lr, 0.01)
lr = compute_lr(lr_config, step=25)
self.assertAlmostEqual(lr, 0.001)
class TestLRShim(unittest.TestCase):
def setUp(self):
self.optimizer = torch.optim.SGD([torch.randn(10, 10)], lr=0.1)
self.lr_dict = {"ALL_PARAMS": LearningRate(constant=0.1)}
def test_get_lr(self):
lr_scheduler = LRShim(self.optimizer, self.lr_dict)
lr = lr_scheduler.get_lr()
self.assertAlmostEqual(lr, [0.1])
class TestBuildOptimizer(unittest.TestCase):
def test_build_optimizer(self):
model = torch.nn.Linear(10, 1)
optimizer_config = OptimizerConfig(sgd={"lr": 0.1})
optimizer, scheduler = build_optimizer(model, optimizer_config)
self.assertIsInstance(optimizer, torch.optim.SGD)
self.assertIsInstance(scheduler, LRShim)
if __name__ == "__main__":
unittest.main()