the-algorithm/twml/twml_common/sparse_inputs.py

61 lines
1.8 KiB
Python
Raw Normal View History

import numpy as np
import tensorflow.compat.v1 as tf
2023-04-17 06:19:03 +02:00
def create_sparse_tensor(
batch_size: int,
input_size: int,
num_values: int,
dtype: tf.DType = tf.float32,
) -> tf.SparseTensor:
"""
Creates a sparse tensor with the given batch size, input size, and number of values.
Args:
batch_size (int): The batch size of the sparse tensor.
input_size (int): The input size of the sparse tensor.
num_values (int): The number of values in the sparse tensor.
dtype (tf.DType): The dtype of the sparse tensor.
Returns:
A sparse tensor with the given batch size, input size, and number of values.
"""
random_indices = np.sort(
np.random.randint(batch_size * input_size, size=num_values)
)
test_indices_i = random_indices // input_size
test_indices_j = random_indices % input_size
test_indices = np.stack([test_indices_i, test_indices_j], axis=1)
test_values = np.random.random(num_values).astype(dtype.as_numpy_dtype)
return tf.SparseTensor(
indices=tf.constant(test_indices),
values=tf.constant(test_values),
dense_shape=(batch_size, input_size),
)
def create_reference_input(
sparse_input: tf.SparseTensor, use_binary_values: bool
) -> tf.SparseTensor:
"""
Creates a reference input for the sparse input.
Args:
sparse_input (tf.SparseTensor): The sparse input.
use_binary_values (bool): Whether to use binary values.
Returns:
A reference input for the sparse input.
"""
if use_binary_values:
sp_a = tf.SparseTensor(
indices=sparse_input.indices,
values=tf.ones_like(sparse_input.values),
dense_shape=sparse_input.dense_shape,
)
else:
sp_a = sparse_input
return sp_a