mirror of
https://github.com/twitter/the-algorithm.git
synced 2025-01-25 02:11:19 +01:00
25 lines
966 B
Python
25 lines
966 B
Python
|
import numpy as np
|
||
|
import tensorflow.compat.v1 as tf
|
||
|
|
||
|
|
||
|
def create_sparse_tensor(batch_size, input_size, num_values, dtype=tf.float32):
|
||
|
random_indices = np.sort(np.random.randint(batch_size * input_size, size=num_values))
|
||
|
test_indices_i = random_indices // input_size
|
||
|
test_indices_j = random_indices % input_size
|
||
|
test_indices = np.stack([test_indices_i, test_indices_j], axis=1)
|
||
|
test_values = np.random.random(num_values).astype(dtype.as_numpy_dtype)
|
||
|
|
||
|
return tf.SparseTensor(indices=tf.constant(test_indices),
|
||
|
values=tf.constant(test_values),
|
||
|
dense_shape=(batch_size, input_size))
|
||
|
|
||
|
|
||
|
def create_reference_input(sparse_input, use_binary_values):
|
||
|
if use_binary_values:
|
||
|
sp_a = tf.SparseTensor(indices=sparse_input.indices,
|
||
|
values=tf.ones_like(sparse_input.values),
|
||
|
dense_shape=sparse_input.dense_shape)
|
||
|
else:
|
||
|
sp_a = sparse_input
|
||
|
return sp_a
|