mirror of
https://github.com/twitter/the-algorithm.git
synced 2024-11-18 17:39:26 +01:00
466 lines
14 KiB
Python
466 lines
14 KiB
Python
|
import kerastuner as kt
|
||
|
import math
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
import random
|
||
|
import sklearn.metrics
|
||
|
import tensorflow as tf
|
||
|
import os
|
||
|
import glob
|
||
|
|
||
|
from tqdm import tqdm
|
||
|
from matplotlib import pyplot as plt
|
||
|
from tensorflow.keras.models import Sequential
|
||
|
from tensorflow.keras.layers import Dense
|
||
|
from google.cloud import storage
|
||
|
|
||
|
physical_devices = tf.config.list_physical_devices('GPU')
|
||
|
physical_devices
|
||
|
|
||
|
tf.config.set_visible_devices([tf.config.PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU')], 'GPU')
|
||
|
tf.config.get_visible_devices('GPU')
|
||
|
|
||
|
def decode_fn_embedding(example_proto):
|
||
|
|
||
|
feature_description = {
|
||
|
"embedding": tf.io.FixedLenFeature([256], dtype=tf.float32),
|
||
|
"labels": tf.io.FixedLenFeature([], dtype=tf.int64),
|
||
|
}
|
||
|
|
||
|
example = tf.io.parse_single_example(
|
||
|
example_proto,
|
||
|
feature_description
|
||
|
)
|
||
|
|
||
|
return example
|
||
|
|
||
|
def preprocess_embedding_example(example_dict, positive_label=1, features_as_dict=False):
|
||
|
labels = example_dict["labels"]
|
||
|
label = tf.math.reduce_any(labels == positive_label)
|
||
|
label = tf.cast(label, tf.int32)
|
||
|
embedding = example_dict["embedding"]
|
||
|
|
||
|
if features_as_dict:
|
||
|
features = {"embedding": embedding}
|
||
|
else:
|
||
|
features = embedding
|
||
|
|
||
|
return features, label
|
||
|
input_root = ...
|
||
|
sens_prev_input_root = ...
|
||
|
|
||
|
use_sens_prev_data = True
|
||
|
has_validation_data = True
|
||
|
positive_label = 1
|
||
|
|
||
|
train_batch_size = 256
|
||
|
test_batch_size = 256
|
||
|
validation_batch_size = 256
|
||
|
|
||
|
do_resample = False
|
||
|
def class_func(features, label):
|
||
|
return label
|
||
|
|
||
|
resample_fn = tf.data.experimental.rejection_resample(
|
||
|
class_func, target_dist = [0.5, 0.5], seed=0
|
||
|
)
|
||
|
train_glob = f"{input_root}/train/tfrecord/*.tfrecord"
|
||
|
train_files = tf.io.gfile.glob(train_glob)
|
||
|
|
||
|
if use_sens_prev_data:
|
||
|
train_sens_prev_glob = f"{sens_prev_input_root}/train/tfrecord/*.tfrecord"
|
||
|
train_sens_prev_files = tf.io.gfile.glob(train_sens_prev_glob)
|
||
|
train_files = train_files + train_sens_prev_files
|
||
|
|
||
|
random.shuffle(train_files)
|
||
|
|
||
|
if not len(train_files):
|
||
|
raise ValueError(f"Did not find any train files matching {train_glob}")
|
||
|
|
||
|
|
||
|
test_glob = f"{input_root}/test/tfrecord/*.tfrecord"
|
||
|
test_files = tf.io.gfile.glob(test_glob)
|
||
|
|
||
|
if not len(test_files):
|
||
|
raise ValueError(f"Did not find any eval files matching {test_glob}")
|
||
|
|
||
|
test_ds = tf.data.TFRecordDataset(test_files).map(decode_fn_embedding)
|
||
|
test_ds = test_ds.map(lambda x: preprocess_embedding_example(x, positive_label=positive_label)).batch(batch_size=test_batch_size)
|
||
|
|
||
|
if use_sens_prev_data:
|
||
|
test_sens_prev_glob = f"{sens_prev_input_root}/test/tfrecord/*.tfrecord"
|
||
|
test_sens_prev_files = tf.io.gfile.glob(test_sens_prev_glob)
|
||
|
|
||
|
if not len(test_sens_prev_files):
|
||
|
raise ValueError(f"Did not find any eval files matching {test_sens_prev_glob}")
|
||
|
|
||
|
test_sens_prev_ds = tf.data.TFRecordDataset(test_sens_prev_files).map(decode_fn_embedding)
|
||
|
test_sens_prev_ds = test_sens_prev_ds.map(lambda x: preprocess_embedding_example(x, positive_label=positive_label)).batch(batch_size=test_batch_size)
|
||
|
|
||
|
train_ds = tf.data.TFRecordDataset(train_files).map(decode_fn_embedding)
|
||
|
train_ds = train_ds.map(lambda x: preprocess_embedding_example(x, positive_label=positive_label))
|
||
|
|
||
|
if do_resample:
|
||
|
train_ds = train_ds.apply(resample_fn).map(lambda _,b:(b))
|
||
|
|
||
|
train_ds = train_ds.batch(batch_size=256).shuffle(buffer_size=10)
|
||
|
train_ds = train_ds.repeat()
|
||
|
|
||
|
|
||
|
if has_validation_data:
|
||
|
eval_glob = f"{input_root}/validation/tfrecord/*.tfrecord"
|
||
|
eval_files = tf.io.gfile.glob(eval_glob)
|
||
|
|
||
|
if use_sens_prev_data:
|
||
|
eval_sens_prev_glob = f"{sens_prev_input_root}/validation/tfrecord/*.tfrecord"
|
||
|
eval_sens_prev_files = tf.io.gfile.glob(eval_sens_prev_glob)
|
||
|
eval_files = eval_files + eval_sens_prev_files
|
||
|
|
||
|
|
||
|
if not len(eval_files):
|
||
|
raise ValueError(f"Did not find any eval files matching {eval_glob}")
|
||
|
|
||
|
eval_ds = tf.data.TFRecordDataset(eval_files).map(decode_fn_embedding)
|
||
|
eval_ds = eval_ds.map(lambda x: preprocess_embedding_example(x, positive_label=positive_label)).batch(batch_size=validation_batch_size)
|
||
|
|
||
|
else:
|
||
|
|
||
|
eval_ds = tf.data.TFRecordDataset(test_files).map(decode_fn_embedding)
|
||
|
eval_ds = eval_ds.map(lambda x: preprocess_embedding_example(x, positive_label=positive_label)).batch(batch_size=validation_batch_size)
|
||
|
check_ds = tf.data.TFRecordDataset(train_files).map(decode_fn_embedding)
|
||
|
cnt = 0
|
||
|
pos_cnt = 0
|
||
|
for example in tqdm(check_ds):
|
||
|
label = example['labels']
|
||
|
if label == 1:
|
||
|
pos_cnt += 1
|
||
|
cnt += 1
|
||
|
print(f'{cnt} train entries with {pos_cnt} positive')
|
||
|
|
||
|
metrics = []
|
||
|
|
||
|
metrics.append(
|
||
|
tf.keras.metrics.PrecisionAtRecall(
|
||
|
recall=0.9, num_thresholds=200, class_id=None, name=None, dtype=None
|
||
|
)
|
||
|
)
|
||
|
|
||
|
metrics.append(
|
||
|
tf.keras.metrics.AUC(
|
||
|
num_thresholds=200,
|
||
|
curve="PR",
|
||
|
)
|
||
|
)
|
||
|
def build_model(hp):
|
||
|
model = Sequential()
|
||
|
|
||
|
optimizer = tf.keras.optimizers.Adam(
|
||
|
learning_rate=0.001,
|
||
|
beta_1=0.9,
|
||
|
beta_2=0.999,
|
||
|
epsilon=1e-08,
|
||
|
amsgrad=False,
|
||
|
name="Adam",
|
||
|
)
|
||
|
|
||
|
activation=hp.Choice("activation", ["tanh", "gelu"])
|
||
|
kernel_initializer=hp.Choice("kernel_initializer", ["he_uniform", "glorot_uniform"])
|
||
|
for i in range(hp.Int("num_layers", 1, 2)):
|
||
|
model.add(tf.keras.layers.BatchNormalization())
|
||
|
|
||
|
units=hp.Int("units", min_value=128, max_value=256, step=128)
|
||
|
|
||
|
if i == 0:
|
||
|
model.add(
|
||
|
Dense(
|
||
|
units=units,
|
||
|
activation=activation,
|
||
|
kernel_initializer=kernel_initializer,
|
||
|
input_shape=(None, 256)
|
||
|
)
|
||
|
)
|
||
|
else:
|
||
|
model.add(
|
||
|
Dense(
|
||
|
units=units,
|
||
|
activation=activation,
|
||
|
kernel_initializer=kernel_initializer,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
model.add(Dense(1, activation='sigmoid', kernel_initializer=kernel_initializer))
|
||
|
model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=metrics)
|
||
|
|
||
|
return model
|
||
|
|
||
|
tuner = kt.tuners.BayesianOptimization(
|
||
|
build_model,
|
||
|
objective=kt.Objective('val_loss', direction="min"),
|
||
|
max_trials=30,
|
||
|
directory='tuner_dir',
|
||
|
project_name='with_twitter_clip')
|
||
|
|
||
|
callbacks = [tf.keras.callbacks.EarlyStopping(
|
||
|
monitor='val_loss', min_delta=0, patience=5, verbose=0,
|
||
|
mode='auto', baseline=None, restore_best_weights=True
|
||
|
)]
|
||
|
|
||
|
steps_per_epoch = 400
|
||
|
tuner.search(train_ds,
|
||
|
epochs=100,
|
||
|
batch_size=256,
|
||
|
steps_per_epoch=steps_per_epoch,
|
||
|
verbose=2,
|
||
|
validation_data=eval_ds,
|
||
|
callbacks=callbacks)
|
||
|
|
||
|
tuner.results_summary()
|
||
|
models = tuner.get_best_models(num_models=2)
|
||
|
best_model = models[0]
|
||
|
|
||
|
best_model.build(input_shape=(None, 256))
|
||
|
best_model.summary()
|
||
|
|
||
|
tuner.get_best_hyperparameters()[0].values
|
||
|
|
||
|
optimizer = tf.keras.optimizers.Adam(
|
||
|
learning_rate=0.001,
|
||
|
beta_1=0.9,
|
||
|
beta_2=0.999,
|
||
|
epsilon=1e-08,
|
||
|
amsgrad=False,
|
||
|
name="Adam",
|
||
|
)
|
||
|
best_model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=metrics)
|
||
|
best_model.summary()
|
||
|
|
||
|
callbacks = [tf.keras.callbacks.EarlyStopping(
|
||
|
monitor='val_loss', min_delta=0, patience=10, verbose=0,
|
||
|
mode='auto', baseline=None, restore_best_weights=True
|
||
|
)]
|
||
|
history = best_model.fit(train_ds, epochs=100, validation_data=eval_ds, steps_per_epoch=steps_per_epoch, callbacks=callbacks)
|
||
|
|
||
|
model_name = 'twitter_hypertuned'
|
||
|
model_path = f'models/nsfw_Keras_with_CLIP_{model_name}'
|
||
|
tf.keras.models.save_model(best_model, model_path)
|
||
|
|
||
|
def copy_local_directory_to_gcs(local_path, bucket, gcs_path):
|
||
|
"""Recursively copy a directory of files to GCS.
|
||
|
|
||
|
local_path should be a directory and not have a trailing slash.
|
||
|
"""
|
||
|
assert os.path.isdir(local_path)
|
||
|
for local_file in glob.glob(local_path + '/**'):
|
||
|
if not os.path.isfile(local_file):
|
||
|
dir_name = os.path.basename(os.path.normpath(local_file))
|
||
|
copy_local_directory_to_gcs(local_file, bucket, f"{gcs_path}/{dir_name}")
|
||
|
else:
|
||
|
remote_path = os.path.join(gcs_path, local_file[1 + len(local_path) :])
|
||
|
blob = bucket.blob(remote_path)
|
||
|
blob.upload_from_filename(local_file)
|
||
|
|
||
|
client = storage.Client(project=...)
|
||
|
bucket = client.get_bucket(...)
|
||
|
copy_local_directory_to_gcs(model_path, bucket, model_path)
|
||
|
copy_local_directory_to_gcs('tuner_dir', bucket, 'tuner_dir')
|
||
|
loaded_model = tf.keras.models.load_model(model_path)
|
||
|
print(history.history.keys())
|
||
|
|
||
|
plt.figure(figsize = (20, 5))
|
||
|
|
||
|
plt.subplot(1, 3, 1)
|
||
|
plt.plot(history.history['auc'])
|
||
|
plt.plot(history.history['val_auc'])
|
||
|
plt.title('model auc')
|
||
|
plt.ylabel('auc')
|
||
|
plt.xlabel('epoch')
|
||
|
plt.legend(['train', 'test'], loc='upper left')
|
||
|
|
||
|
plt.subplot(1, 3, 2)
|
||
|
plt.plot(history.history['loss'])
|
||
|
plt.plot(history.history['val_loss'])
|
||
|
plt.title('model loss')
|
||
|
plt.ylabel('loss')
|
||
|
plt.xlabel('epoch')
|
||
|
plt.legend(['train', 'test'], loc='upper left')
|
||
|
|
||
|
plt.subplot(1, 3, 3)
|
||
|
plt.plot(history.history['precision_at_recall'])
|
||
|
plt.plot(history.history['val_precision_at_recall'])
|
||
|
plt.title('model precision at 0.9 recall')
|
||
|
plt.ylabel('precision_at_recall')
|
||
|
plt.xlabel('epoch')
|
||
|
plt.legend(['train', 'test'], loc='upper left')
|
||
|
|
||
|
plt.savefig('history_with_twitter_clip.pdf')
|
||
|
|
||
|
test_labels = []
|
||
|
test_preds = []
|
||
|
|
||
|
for batch_features, batch_labels in tqdm(test_ds):
|
||
|
test_preds.extend(loaded_model.predict_proba(batch_features))
|
||
|
test_labels.extend(batch_labels.numpy())
|
||
|
|
||
|
test_sens_prev_labels = []
|
||
|
test_sens_prev_preds = []
|
||
|
|
||
|
for batch_features, batch_labels in tqdm(test_sens_prev_ds):
|
||
|
test_sens_prev_preds.extend(loaded_model.predict_proba(batch_features))
|
||
|
test_sens_prev_labels.extend(batch_labels.numpy())
|
||
|
|
||
|
n_test_pos = 0
|
||
|
n_test_neg = 0
|
||
|
n_test = 0
|
||
|
|
||
|
for label in test_labels:
|
||
|
n_test +=1
|
||
|
if label == 1:
|
||
|
n_test_pos +=1
|
||
|
else:
|
||
|
n_test_neg +=1
|
||
|
|
||
|
print(f'n_test = {n_test}, n_pos = {n_test_pos}, n_neg = {n_test_neg}')
|
||
|
|
||
|
n_test_sens_prev_pos = 0
|
||
|
n_test_sens_prev_neg = 0
|
||
|
n_test_sens_prev = 0
|
||
|
|
||
|
for label in test_sens_prev_labels:
|
||
|
n_test_sens_prev +=1
|
||
|
if label == 1:
|
||
|
n_test_sens_prev_pos +=1
|
||
|
else:
|
||
|
n_test_sens_prev_neg +=1
|
||
|
|
||
|
print(f'n_test_sens_prev = {n_test_sens_prev}, n_pos_sens_prev = {n_test_sens_prev_pos}, n_neg = {n_test_sens_prev_neg}')
|
||
|
|
||
|
test_weights = np.ones(np.asarray(test_preds).shape)
|
||
|
|
||
|
test_labels = np.asarray(test_labels)
|
||
|
test_preds = np.asarray(test_preds)
|
||
|
test_weights = np.asarray(test_weights)
|
||
|
|
||
|
pr = sklearn.metrics.precision_recall_curve(
|
||
|
test_labels,
|
||
|
test_preds)
|
||
|
|
||
|
auc = sklearn.metrics.auc(pr[1], pr[0])
|
||
|
plt.plot(pr[1], pr[0])
|
||
|
plt.title("nsfw (MU test set)")
|
||
|
|
||
|
test_sens_prev_weights = np.ones(np.asarray(test_sens_prev_preds).shape)
|
||
|
|
||
|
test_sens_prev_labels = np.asarray(test_sens_prev_labels)
|
||
|
test_sens_prev_preds = np.asarray(test_sens_prev_preds)
|
||
|
test_sens_prev_weights = np.asarray(test_sens_prev_weights)
|
||
|
|
||
|
pr_sens_prev = sklearn.metrics.precision_recall_curve(
|
||
|
test_sens_prev_labels,
|
||
|
test_sens_prev_preds)
|
||
|
|
||
|
auc_sens_prev = sklearn.metrics.auc(pr_sens_prev[1], pr_sens_prev[0])
|
||
|
plt.plot(pr_sens_prev[1], pr_sens_prev[0])
|
||
|
plt.title("nsfw (sens prev test set)")
|
||
|
|
||
|
df = pd.DataFrame(
|
||
|
{
|
||
|
"label": test_labels.squeeze(),
|
||
|
"preds_keras": np.asarray(test_preds).flatten(),
|
||
|
})
|
||
|
plt.figure(figsize=(15, 10))
|
||
|
df["preds_keras"].hist()
|
||
|
plt.title("Keras predictions", size=20)
|
||
|
plt.xlabel('score')
|
||
|
plt.ylabel("freq")
|
||
|
|
||
|
plt.figure(figsize = (20, 5))
|
||
|
plt.subplot(1, 3, 1)
|
||
|
|
||
|
plt.plot(pr[2], pr[0][0:-1])
|
||
|
plt.xlabel("threshold")
|
||
|
plt.ylabel("precision")
|
||
|
|
||
|
plt.subplot(1, 3, 2)
|
||
|
|
||
|
plt.plot(pr[2], pr[1][0:-1])
|
||
|
plt.xlabel("threshold")
|
||
|
plt.ylabel("recall")
|
||
|
plt.title("Keras", size=20)
|
||
|
|
||
|
plt.subplot(1, 3, 3)
|
||
|
|
||
|
plt.plot(pr[1], pr[0])
|
||
|
plt.xlabel("recall")
|
||
|
plt.ylabel("precision")
|
||
|
|
||
|
plt.savefig('with_twitter_clip.pdf')
|
||
|
|
||
|
def get_point_for_recall(recall_value, recall, precision):
|
||
|
idx = np.argmin(np.abs(recall - recall_value))
|
||
|
return (recall[idx], precision[idx])
|
||
|
|
||
|
def get_point_for_precision(precision_value, recall, precision):
|
||
|
idx = np.argmin(np.abs(precision - precision_value))
|
||
|
return (recall[idx], precision[idx])
|
||
|
precision, recall, thresholds = pr
|
||
|
|
||
|
auc_precision_recall = sklearn.metrics.auc(recall, precision)
|
||
|
|
||
|
print(auc_precision_recall)
|
||
|
|
||
|
plt.figure(figsize=(15, 10))
|
||
|
plt.plot(recall, precision)
|
||
|
|
||
|
plt.xlabel("recall")
|
||
|
plt.ylabel("precision")
|
||
|
|
||
|
ptAt50 = get_point_for_recall(0.5, recall, precision)
|
||
|
print(ptAt50)
|
||
|
plt.plot( [ptAt50[0],ptAt50[0]], [0,ptAt50[1]], 'r')
|
||
|
plt.plot([0, ptAt50[0]], [ptAt50[1], ptAt50[1]], 'r')
|
||
|
|
||
|
ptAt90 = get_point_for_recall(0.9, recall, precision)
|
||
|
print(ptAt90)
|
||
|
plt.plot( [ptAt90[0],ptAt90[0]], [0,ptAt90[1]], 'b')
|
||
|
plt.plot([0, ptAt90[0]], [ptAt90[1], ptAt90[1]], 'b')
|
||
|
|
||
|
ptAt50fmt = "%.4f" % ptAt50[1]
|
||
|
ptAt90fmt = "%.4f" % ptAt90[1]
|
||
|
aucFmt = "%.4f" % auc_precision_recall
|
||
|
plt.title(
|
||
|
f"Keras (nsfw MU test)\nAUC={aucFmt}\np={ptAt50fmt} @ r=0.5\np={ptAt90fmt} @ r=0.9\nN_train={...}} ({...} pos), N_test={n_test} ({n_test_pos} pos)",
|
||
|
size=20
|
||
|
)
|
||
|
plt.subplots_adjust(top=0.72)
|
||
|
plt.savefig('recall_precision_nsfw_Keras_with_twitter_CLIP_MU_test.pdf')
|
||
|
|
||
|
precision, recall, thresholds = pr_sens_prev
|
||
|
|
||
|
auc_precision_recall = sklearn.metrics.auc(recall, precision)
|
||
|
print(auc_precision_recall)
|
||
|
plt.figure(figsize=(15, 10))
|
||
|
|
||
|
plt.plot(recall, precision)
|
||
|
|
||
|
plt.xlabel("recall")
|
||
|
plt.ylabel("precision")
|
||
|
|
||
|
ptAt50 = get_point_for_recall(0.5, recall, precision)
|
||
|
print(ptAt50)
|
||
|
plt.plot( [ptAt50[0],ptAt50[0]], [0,ptAt50[1]], 'r')
|
||
|
plt.plot([0, ptAt50[0]], [ptAt50[1], ptAt50[1]], 'r')
|
||
|
|
||
|
ptAt90 = get_point_for_recall(0.9, recall, precision)
|
||
|
print(ptAt90)
|
||
|
plt.plot( [ptAt90[0],ptAt90[0]], [0,ptAt90[1]], 'b')
|
||
|
plt.plot([0, ptAt90[0]], [ptAt90[1], ptAt90[1]], 'b')
|
||
|
|
||
|
ptAt50fmt = "%.4f" % ptAt50[1]
|
||
|
ptAt90fmt = "%.4f" % ptAt90[1]
|
||
|
aucFmt = "%.4f" % auc_precision_recall
|
||
|
plt.title(
|
||
|
f"Keras (nsfw sens prev test)\nAUC={aucFmt}\np={ptAt50fmt} @ r=0.5\np={ptAt90fmt} @ r=0.9\nN_train={...} ({...} pos), N_test={n_test_sens_prev} ({n_test_sens_prev_pos} pos)",
|
||
|
size=20
|
||
|
)
|
||
|
plt.subplots_adjust(top=0.72)
|
||
|
plt.savefig('recall_precision_nsfw_Keras_with_twitter_CLIP_sens_prev_test.pdf')
|