the-algorithm/trust_and_safety_models/toxicity/train.py

402 lines
13 KiB
Python
Raw Normal View History

2023-03-31 19:53:53 +02:00
from datetime import datetime
from importlib import import_module
import os
from toxicity_ml_pipeline.data.data_preprocessing import (
DefaultENNoPreprocessor,
DefaultENPreprocessor,
)
from toxicity_ml_pipeline.data.dataframe_loader import ENLoader, ENLoaderWithSampling
from toxicity_ml_pipeline.data.mb_generator import BalancedMiniBatchLoader
from toxicity_ml_pipeline.load_model import load, get_last_layer
from toxicity_ml_pipeline.optim.callbacks import (
AdditionalResultLogger,
ControlledStoppingCheckpointCallback,
GradientLoggingTensorBoard,
SyncingTensorBoard,
)
from toxicity_ml_pipeline.optim.schedulers import WarmUp
from toxicity_ml_pipeline.settings.default_settings_abs import GCS_ADDRESS as ABS_GCS
from toxicity_ml_pipeline.settings.default_settings_tox import (
GCS_ADDRESS as TOX_GCS,
MODEL_DIR,
RANDOM_SEED,
REMOTE_LOGDIR,
WARM_UP_PERC,
)
from toxicity_ml_pipeline.utils.helpers import check_gpu, set_seeds, upload_model
import numpy as np
import tensorflow as tf
try:
from tensorflow_addons.optimizers import AdamW
except ModuleNotFoundError:
print("No TFA")
class Trainer(object):
OPTIMIZERS = ["Adam", "AdamW"]
def __init__(
self,
optimizer_name,
weight_decay,
learning_rate,
mb_size,
train_epochs,
content_loss_weight=1,
language="en",
scope='TOX',
project=...,
experiment_id="default",
gradient_clipping=None,
fold="time",
seed=RANDOM_SEED,
log_gradients=False,
kw="",
stopping_epoch=None,
test=False,
):
self.seed = seed
self.weight_decay = weight_decay
self.learning_rate = learning_rate
self.mb_size = mb_size
self.train_epochs = train_epochs
self.gradient_clipping = gradient_clipping
if optimizer_name not in self.OPTIMIZERS:
raise ValueError(
f"Optimizer {optimizer_name} not implemented. Accepted values {self.OPTIMIZERS}."
)
self.optimizer_name = optimizer_name
self.log_gradients = log_gradients
self.test = test
self.fold = fold
self.stopping_epoch = stopping_epoch
self.language = language
if scope == 'TOX':
GCS_ADDRESS = TOX_GCS.format(project=project)
elif scope == 'ABS':
GCS_ADDRESS = ABS_GCS
else:
raise ValueError
GCS_ADDRESS = GCS_ADDRESS.format(project=project)
try:
self.setting_file = import_module(f"toxicity_ml_pipeline.settings.{scope.lower()}{project}_settings")
except ModuleNotFoundError:
raise ValueError(f"You need to define a setting file for your project {project}.")
experiment_settings = self.setting_file.experiment_settings
self.project = project
self.remote_logdir = REMOTE_LOGDIR.format(GCS_ADDRESS=GCS_ADDRESS, project=project)
self.model_dir = MODEL_DIR.format(GCS_ADDRESS=GCS_ADDRESS, project=project)
if experiment_id not in experiment_settings:
raise ValueError("This is not an experiment id as defined in the settings file.")
for var, default_value in experiment_settings["default"].items():
override_val = experiment_settings[experiment_id].get(var, default_value)
print("Setting ", var, override_val)
self.__setattr__(var, override_val)
self.content_loss_weight = content_loss_weight if self.dual_head else None
self.mb_loader = BalancedMiniBatchLoader(
fold=self.fold,
seed=self.seed,
perc_training_tox=self.perc_training_tox,
mb_size=self.mb_size,
n_outer_splits="time",
scope=scope,
project=project,
dual_head=self.dual_head,
sample_weights=self.sample_weights,
huggingface=("bertweet" in self.model_type),
)
self._init_dirnames(kw=kw, experiment_id=experiment_id)
print("------- Checking there is a GPU")
check_gpu()
def _init_dirnames(self, kw, experiment_id):
kw = "test" if self.test else kw
hyper_param_kw = ""
if self.optimizer_name == "AdamW":
hyper_param_kw += f"{self.weight_decay}_"
if self.gradient_clipping:
hyper_param_kw += f"{self.gradient_clipping}_"
if self.content_loss_weight:
hyper_param_kw += f"{self.content_loss_weight}_"
experiment_name = (
f"{self.language}{str(datetime.now()).replace(' ', '')[:-7]}{kw}_{experiment_id}{self.fold}_"
f"{self.optimizer_name}_"
f"{self.learning_rate}_"
f"{hyper_param_kw}"
f"{self.mb_size}_"
f"{self.perc_training_tox}_"
f"{self.train_epochs}_seed{self.seed}"
)
print("------- Experiment name: ", experiment_name)
self.logdir = (
f"..."
if self.test
else f"..."
)
self.checkpoint_path = f"{self.model_dir}/{experiment_name}"
@staticmethod
def _additional_writers(logdir, metric_name):
return tf.summary.create_file_writer(os.path.join(logdir, metric_name))
def get_callbacks(self, fold, val_data, test_data):
fold_logdir = self.logdir + f"_fold{fold}"
fold_checkpoint_path = self.checkpoint_path + f"_fold{fold}/{{epoch:02d}}"
tb_args = {
"log_dir": fold_logdir,
"histogram_freq": 0,
"update_freq": 500,
"embeddings_freq": 0,
"remote_logdir": f"{self.remote_logdir}_{self.language}"
if not self.test
else f"{self.remote_logdir}_test",
}
tensorboard_callback = (
GradientLoggingTensorBoard(loader=self.mb_loader, val_data=val_data, freq=10, **tb_args)
if self.log_gradients
else SyncingTensorBoard(**tb_args)
)
callbacks = [tensorboard_callback]
if "bertweet" in self.model_type:
from_logits = True
dataset_transform_func = self.mb_loader.make_huggingface_tensorflow_ds
else:
from_logits = False
dataset_transform_func = None
fixed_recall = 0.85 if not self.dual_head else 0.5
val_callback = AdditionalResultLogger(
data=val_data,
set_="validation",
from_logits=from_logits,
dataset_transform_func=dataset_transform_func,
dual_head=self.dual_head,
fixed_recall=fixed_recall
)
if val_callback is not None:
callbacks.append(val_callback)
test_callback = AdditionalResultLogger(
data=test_data,
set_="test",
from_logits=from_logits,
dataset_transform_func=dataset_transform_func,
dual_head=self.dual_head,
fixed_recall=fixed_recall
)
callbacks.append(test_callback)
checkpoint_args = {
"filepath": fold_checkpoint_path,
"verbose": 0,
"monitor": "val_pr_auc",
"save_weights_only": True,
"mode": "max",
"save_freq": "epoch",
}
if self.stopping_epoch:
checkpoint_callback = ControlledStoppingCheckpointCallback(
**checkpoint_args,
stopping_epoch=self.stopping_epoch,
save_best_only=False,
)
callbacks.append(checkpoint_callback)
return callbacks
def get_lr_schedule(self, steps_per_epoch):
total_num_steps = steps_per_epoch * self.train_epochs
warm_up_perc = WARM_UP_PERC if self.learning_rate >= 1e-3 else 0
warm_up_steps = int(total_num_steps * warm_up_perc)
if self.linear_lr_decay:
learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(
self.learning_rate,
total_num_steps - warm_up_steps,
end_learning_rate=0.0,
power=1.0,
cycle=False,
)
else:
print('Constant learning rate')
learning_rate_fn = self.learning_rate
if warm_up_perc > 0:
print(f".... using warm-up for {warm_up_steps} steps")
warm_up_schedule = WarmUp(
initial_learning_rate=self.learning_rate,
decay_schedule_fn=learning_rate_fn,
warmup_steps=warm_up_steps,
)
return warm_up_schedule
return learning_rate_fn
def get_optimizer(self, schedule):
optim_args = {
"learning_rate": schedule,
"beta_1": 0.9,
"beta_2": 0.999,
"epsilon": 1e-6,
"amsgrad": False,
}
if self.gradient_clipping:
optim_args["global_clipnorm"] = self.gradient_clipping
print(f".... {self.optimizer_name} w global clipnorm {self.gradient_clipping}")
if self.optimizer_name == "Adam":
return tf.keras.optimizers.Adam(**optim_args)
if self.optimizer_name == "AdamW":
optim_args["weight_decay"] = self.weight_decay
return AdamW(**optim_args)
raise NotImplementedError
def get_training_actors(self, steps_per_epoch, val_data, test_data, fold):
callbacks = self.get_callbacks(fold=fold, val_data=val_data, test_data=test_data)
schedule = self.get_lr_schedule(steps_per_epoch=steps_per_epoch)
optimizer = self.get_optimizer(schedule)
return optimizer, callbacks
def load_data(self):
if self.project == 435 or self.project == 211:
if self.dataset_type is None:
data_loader = ENLoader(project=self.project, setting_file=self.setting_file)
dataset_type_args = {}
else:
data_loader = ENLoaderWithSampling(project=self.project, setting_file=self.setting_file)
dataset_type_args = self.dataset_type
df = data_loader.load_data(
language=self.language, test=self.test, reload=self.dataset_reload, **dataset_type_args
)
return df
def preprocess(self, df):
if self.project == 435 or self.project == 211:
if self.preprocessing is None:
data_prepro = DefaultENNoPreprocessor()
elif self.preprocessing == "default":
data_prepro = DefaultENPreprocessor()
else:
raise NotImplementedError
return data_prepro(
df=df,
label_column=self.label_column,
class_weight=self.perc_training_tox if self.sample_weights == 'class_weight' else None,
filter_low_agreements=self.filter_low_agreements,
num_classes=self.num_classes,
)
def load_model(self, optimizer):
smart_bias_value = (
np.log(self.perc_training_tox / (1 - self.perc_training_tox)) if self.smart_bias_init else 0
)
model = load(
optimizer,
seed=self.seed,
trainable=self.trainable,
model_type=self.model_type,
loss_name=self.loss_name,
num_classes=self.num_classes,
additional_layer=self.additional_layer,
smart_bias_value=smart_bias_value,
content_num_classes=self.content_num_classes,
content_loss_name=self.content_loss_name,
content_loss_weight=self.content_loss_weight
)
if self.model_reload is not False:
model_folder = upload_model(full_gcs_model_path=os.path.join(self.model_dir, self.model_reload))
model.load_weights(model_folder)
if self.scratch_last_layer:
print('Putting the last layer back to scratch')
model.layers[-1] = get_last_layer(seed=self.seed,
num_classes=self.num_classes,
smart_bias_value=smart_bias_value)
return model
def _train_single_fold(self, mb_generator, test_data, steps_per_epoch, fold, val_data=None):
steps_per_epoch = 100 if self.test else steps_per_epoch
optimizer, callbacks = self.get_training_actors(
steps_per_epoch=steps_per_epoch, val_data=val_data, test_data=test_data, fold=fold
)
print("Loading model")
model = self.load_model(optimizer)
print(f"Nb of steps per epoch: {steps_per_epoch} ---- launching training")
training_args = {
"epochs": self.train_epochs,
"steps_per_epoch": steps_per_epoch,
"batch_size": self.mb_size,
"callbacks": callbacks,
"verbose": 2,
}
model.fit(mb_generator, **training_args)
return
def train_full_model(self):
print("Setting up random seed.")
set_seeds(self.seed)
print(f"Loading {self.language} data")
df = self.load_data()
df = self.preprocess(df=df)
print("Going to train on everything but the test dataset")
mini_batches, test_data, steps_per_epoch = self.mb_loader.simple_cv_load(df)
self._train_single_fold(
mb_generator=mini_batches, test_data=test_data, steps_per_epoch=steps_per_epoch, fold="full"
)
def train(self):
print("Setting up random seed.")
set_seeds(self.seed)
print(f"Loading {self.language} data")
df = self.load_data()
df = self.preprocess(df=df)
print("Loading MB generator")
i = 0
if self.project == 435 or self.project == 211:
mb_generator, steps_per_epoch, val_data, test_data = self.mb_loader.no_cv_load(full_df=df)
self._train_single_fold(
mb_generator=mb_generator,
val_data=val_data,
test_data=test_data,
steps_per_epoch=steps_per_epoch,
fold=i,
)
else:
raise ValueError("Sure you want to do multiple fold training")
for mb_generator, steps_per_epoch, val_data, test_data in self.mb_loader(full_df=df):
self._train_single_fold(
mb_generator=mb_generator,
val_data=val_data,
test_data=test_data,
steps_per_epoch=steps_per_epoch,
fold=i,
)
i += 1
if i == 3:
break