diff --git a/README.md b/README.md index 056cc0770..af87e0b51 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ -# Twitter Recommendation Algorithm +# Twitter's Recommendation Algorithm -The Twitter Recommendation Algorithm is a set of services and jobs that are responsible for constructing and serving the +Twitter's Recommendation Algorithm is a set of services and jobs that are responsible for constructing and serving the Home Timeline. For an introduction to how the algorithm works, please refer to our [engineering blog](https://blog.twitter.com/engineering/en_us/topics/open-source/2023/twitter-recommendation-algorithm). The diagram below illustrates how major services and jobs interconnect. @@ -13,24 +13,24 @@ These are the main components of the Recommendation Algorithm included in this r | Feature | [SimClusters](src/scala/com/twitter/simclusters_v2/README.md) | Community detection and sparse embeddings into those communities. | | | [TwHIN](https://github.com/twitter/the-algorithm-ml/blob/main/projects/twhin/README.md) | Dense knowledge graph embeddings for Users and Tweets. | | | [trust-and-safety-models](trust_and_safety_models/README.md) | Models for detecting NSFW or abusive content. | -| | [real-graph](src/scala/com/twitter/interaction_graph/README.md) | Model to predict likelihood of a Twitter User interacting with another User. | +| | [real-graph](src/scala/com/twitter/interaction_graph/README.md) | Model to predict the likelihood of a Twitter User interacting with another User. | | | [tweepcred](src/scala/com/twitter/graph/batch/job/tweepcred/README) | Page-Rank algorithm for calculating Twitter User reputation. | | | [recos-injector](recos-injector/README.md) | Streaming event processor for building input streams for [GraphJet](https://github.com/twitter/GraphJet) based services. | | | [graph-feature-service](graph-feature-service/README.md) | Serves graph features for a directed pair of Users (e.g. how many of User A's following liked Tweets from User B). | | Candidate Source | [search-index](src/java/com/twitter/search/README.md) | Find and rank In-Network Tweets. ~50% of Tweets come from this candidate source. | | | [cr-mixer](cr-mixer/README.md) | Coordination layer for fetching Out-of-Network tweet candidates from underlying compute services. | -| | [user-tweet-entity-graph](src/scala/com/twitter/recos/user_tweet_entity_graph/README.md) (UTEG)| Maintains an in memory User to Tweet interaction graph, and finds candidates based on traversals of this graph. This is built on the [GraphJet](https://github.com/twitter/GraphJet) framework. Several other GraphJet based features and candidate sources are located [here](src/scala/com/twitter/recos) | +| | [user-tweet-entity-graph](src/scala/com/twitter/recos/user_tweet_entity_graph/README.md) (UTEG)| Maintains an in memory User to Tweet interaction graph, and finds candidates based on traversals of this graph. This is built on the [GraphJet](https://github.com/twitter/GraphJet) framework. Several other GraphJet based features and candidate sources are located [here](src/scala/com/twitter/recos). | | | [follow-recommendation-service](follow-recommendations-service/README.md) (FRS)| Provides Users with recommendations for accounts to follow, and Tweets from those accounts. | -| Ranking | [light-ranker](src/python/twitter/deepbird/projects/timelines/scripts/models/earlybird/README.md) | Light ranker model used by search index (Earlybird) to rank Tweets. | +| Ranking | [light-ranker](src/python/twitter/deepbird/projects/timelines/scripts/models/earlybird/README.md) | Light Ranker model used by search index (Earlybird) to rank Tweets. | | | [heavy-ranker](https://github.com/twitter/the-algorithm-ml/blob/main/projects/home/recap/README.md) | Neural network for ranking candidate tweets. One of the main signals used to select timeline Tweets post candidate sourcing. | -| Tweet mixing & filtering | [home-mixer](home-mixer/README.md) | Main service used to construct and serve the Home Timeline. Built on [product-mixer](product-mixer/README.md) | +| Tweet mixing & filtering | [home-mixer](home-mixer/README.md) | Main service used to construct and serve the Home Timeline. Built on [product-mixer](product-mixer/README.md). | | | [visibility-filters](visibilitylib/README.md) | Responsible for filtering Twitter content to support legal compliance, improve product quality, increase user trust, protect revenue through the use of hard-filtering, visible product treatments, and coarse-grained downranking. | | | [timelineranker](timelineranker/README.md) | Legacy service which provides relevance-scored tweets from the Earlybird Search Index and UTEG service. | -| Software framework | [navi](navi/navi/README.md) | High performance, machine learning model serving written in Rust. | +| Software framework | [navi](navi/README.md) | High performance, machine learning model serving written in Rust. | | | [product-mixer](product-mixer/README.md) | Software framework for building feeds of content. | | | [twml](twml/README.md) | Legacy machine learning framework built on TensorFlow v1. | -We include Bazel BUILD files for most components, but not a top level BUILD or WORKSPACE file. +We include Bazel BUILD files for most components, but not a top-level BUILD or WORKSPACE file. ## Contributing diff --git a/ann/src/main/python/dataflow/faiss_index_bq_dataset.py b/ann/src/main/python/dataflow/faiss_index_bq_dataset.py index 1863cabef..dd45070db 100644 --- a/ann/src/main/python/dataflow/faiss_index_bq_dataset.py +++ b/ann/src/main/python/dataflow/faiss_index_bq_dataset.py @@ -91,7 +91,7 @@ def parse_metric(config): elif metric_str == "linf": return faiss.METRIC_Linf else: - raise Exception(f"Uknown metric: {metric_str}") + raise Exception(f"Unknown metric: {metric_str}") def run_pipeline(argv=[]): diff --git a/cr-mixer/README.md b/cr-mixer/README.md index 75c0a1553..0037f7e69 100644 --- a/cr-mixer/README.md +++ b/cr-mixer/README.md @@ -2,6 +2,6 @@ CR-Mixer is a candidate generation service proposed as part of the Personalization Strategy vision for Twitter. Its aim is to speed up the iteration and development of candidate generation and light ranking. The service acts as a lightweight coordinating layer that delegates candidate generation tasks to underlying compute services. It focuses on Twitter's candidate generation use cases and offers a centralized platform for fetching, mixing, and managing candidate sources and light rankers. The overarching goal is to increase the speed and ease of testing and developing candidate generation pipelines, ultimately delivering more value to Twitter users. -CR-Mixer act as a configurator and delegator, providing abstractions for the challenging parts of candidate generation and handling performance issues. It will offer a 1-stop-shop for fetching and mixing candidate sources, a managed and shared performant platform, a light ranking layer, a common filtering layer, a version control system, a co-owned feature switch set, and peripheral tooling. +CR-Mixer acts as a configurator and delegator, providing abstractions for the challenging parts of candidate generation and handling performance issues. It will offer a 1-stop-shop for fetching and mixing candidate sources, a managed and shared performant platform, a light ranking layer, a common filtering layer, a version control system, a co-owned feature switch set, and peripheral tooling. -CR-Mixer's pipeline consists of 4 steps: source signal extraction, candidate generation, filtering, and ranking. It also provides peripheral tooling like scribing, debugging, and monitoring. The service fetches source signals externally from stores like UserProfileService and RealGraph, calls external candidate generation services, and caches results. Filters are applied for deduping and pre-ranking, and a light ranking step follows. \ No newline at end of file +CR-Mixer's pipeline consists of 4 steps: source signal extraction, candidate generation, filtering, and ranking. It also provides peripheral tooling like scribing, debugging, and monitoring. The service fetches source signals externally from stores like UserProfileService and RealGraph, calls external candidate generation services, and caches results. Filters are applied for deduping and pre-ranking, and a light ranking step follows. diff --git a/cr-mixer/server/src/main/scala/com/twitter/cr_mixer/similarity_engine/EarlybirdTensorflowBasedSimilarityEngine.scala b/cr-mixer/server/src/main/scala/com/twitter/cr_mixer/similarity_engine/EarlybirdTensorflowBasedSimilarityEngine.scala index dd29a067b..8df6ec711 100644 --- a/cr-mixer/server/src/main/scala/com/twitter/cr_mixer/similarity_engine/EarlybirdTensorflowBasedSimilarityEngine.scala +++ b/cr-mixer/server/src/main/scala/com/twitter/cr_mixer/similarity_engine/EarlybirdTensorflowBasedSimilarityEngine.scala @@ -6,8 +6,6 @@ import com.twitter.search.earlybird.thriftscala.EarlybirdService import com.twitter.search.earlybird.thriftscala.ThriftSearchQuery import com.twitter.util.Time import com.twitter.search.common.query.thriftjava.thriftscala.CollectorParams -import com.twitter.search.common.ranking.thriftscala.ThriftAgeDecayRankingParams -import com.twitter.search.common.ranking.thriftscala.ThriftLinearFeatureRankingParams import com.twitter.search.common.ranking.thriftscala.ThriftRankingParams import com.twitter.search.common.ranking.thriftscala.ThriftScoringFunctionType import com.twitter.search.earlybird.thriftscala.ThriftSearchRelevanceOptions @@ -97,7 +95,7 @@ object EarlybirdTensorflowBasedSimilarityEngine { // Whether to collect conversation IDs. Remove it for now. // collectConversationId = Gate.True(), // true for Home rankingMode = ThriftSearchRankingMode.Relevance, - relevanceOptions = Some(getRelevanceOptions(query.useTensorflowRanking)), + relevanceOptions = Some(getRelevanceOptions), collectorParams = Some( CollectorParams( // numResultsToReturn defines how many results each EB shard will return to search root @@ -116,13 +114,11 @@ object EarlybirdTensorflowBasedSimilarityEngine { // The specific values of recap relevance/reranking options correspond to // experiment: enable_recap_reranking_2988,timeline_internal_disable_recap_filter // bucket : enable_rerank,disable_filter - private def getRelevanceOptions(useTensorflowRanking: Boolean): ThriftSearchRelevanceOptions = { + private def getRelevanceOptions: ThriftSearchRelevanceOptions = { ThriftSearchRelevanceOptions( proximityScoring = true, maxConsecutiveSameUser = Some(2), - rankingParams = - if (useTensorflowRanking) Some(getTensorflowBasedRankingParams) - else Some(getLinearRankingParams), + rankingParams = Some(getTensorflowBasedRankingParams), maxHitsToProcess = Some(500), maxUserBlendCount = Some(3), proximityPhraseWeight = 9.0, @@ -131,41 +127,12 @@ object EarlybirdTensorflowBasedSimilarityEngine { } private def getTensorflowBasedRankingParams: ThriftRankingParams = { - getLinearRankingParams.copy( + ThriftRankingParams( `type` = Some(ThriftScoringFunctionType.TensorflowBased), selectedTensorflowModel = Some("timelines_rectweet_replica"), + minScore = -1.0e100, applyBoosts = false, authorSpecificScoreAdjustments = None ) } - - private def getLinearRankingParams: ThriftRankingParams = { - ThriftRankingParams( - `type` = Some(ThriftScoringFunctionType.Linear), - minScore = -1.0e100, - retweetCountParams = Some(ThriftLinearFeatureRankingParams(weight = 20.0)), - replyCountParams = Some(ThriftLinearFeatureRankingParams(weight = 1.0)), - reputationParams = Some(ThriftLinearFeatureRankingParams(weight = 0.2)), - luceneScoreParams = Some(ThriftLinearFeatureRankingParams(weight = 2.0)), - textScoreParams = Some(ThriftLinearFeatureRankingParams(weight = 0.18)), - urlParams = Some(ThriftLinearFeatureRankingParams(weight = 2.0)), - isReplyParams = Some(ThriftLinearFeatureRankingParams(weight = 1.0)), - favCountParams = Some(ThriftLinearFeatureRankingParams(weight = 30.0)), - langEnglishUIBoost = 0.5, - langEnglishTweetBoost = 0.2, - langDefaultBoost = 0.02, - unknownLanguageBoost = 0.05, - offensiveBoost = 0.1, - inTrustedCircleBoost = 3.0, - multipleHashtagsOrTrendsBoost = 0.6, - inDirectFollowBoost = 4.0, - tweetHasTrendBoost = 1.1, - selfTweetBoost = 2.0, - tweetHasImageUrlBoost = 2.0, - tweetHasVideoUrlBoost = 2.0, - useUserLanguageInfo = true, - ageDecayParams = Some(ThriftAgeDecayRankingParams(slope = 0.005, base = 1.0)) - ) - } - } diff --git a/home-mixer/server/src/main/scala/com/twitter/home_mixer/functional_component/decorator/HomeTweetTypePredicates.scala b/home-mixer/server/src/main/scala/com/twitter/home_mixer/functional_component/decorator/HomeTweetTypePredicates.scala index 8eecc785f..0b06448d7 100644 --- a/home-mixer/server/src/main/scala/com/twitter/home_mixer/functional_component/decorator/HomeTweetTypePredicates.scala +++ b/home-mixer/server/src/main/scala/com/twitter/home_mixer/functional_component/decorator/HomeTweetTypePredicates.scala @@ -160,7 +160,7 @@ object HomeTweetTypePredicates { ("has_gte_1k_favs", _.getOrElse(EarlybirdFeature, None).exists(_.favCountV2.exists(_ >= 1000))), ( "has_gte_10k_favs", - _.getOrElse(EarlybirdFeature, None).exists(_.favCountV2.exists(_ >= 1000))), + _.getOrElse(EarlybirdFeature, None).exists(_.favCountV2.exists(_ >= 10000))), ( "has_gte_100k_favs", _.getOrElse(EarlybirdFeature, None).exists(_.favCountV2.exists(_ >= 100000))), diff --git a/home-mixer/server/src/main/scala/com/twitter/home_mixer/util/earlybird/RelevanceSearchUtil.scala b/home-mixer/server/src/main/scala/com/twitter/home_mixer/util/earlybird/RelevanceSearchUtil.scala index 30be20d60..0de4546a6 100644 --- a/home-mixer/server/src/main/scala/com/twitter/home_mixer/util/earlybird/RelevanceSearchUtil.scala +++ b/home-mixer/server/src/main/scala/com/twitter/home_mixer/util/earlybird/RelevanceSearchUtil.scala @@ -15,28 +15,6 @@ object RelevanceSearchUtil { `type` = Some(scr.ThriftScoringFunctionType.TensorflowBased), selectedTensorflowModel = Some("timelines_rectweet_replica"), minScore = -1.0e100, - retweetCountParams = Some(scr.ThriftLinearFeatureRankingParams(weight = 20.0)), - replyCountParams = Some(scr.ThriftLinearFeatureRankingParams(weight = 1.0)), - reputationParams = Some(scr.ThriftLinearFeatureRankingParams(weight = 0.2)), - luceneScoreParams = Some(scr.ThriftLinearFeatureRankingParams(weight = 2.0)), - textScoreParams = Some(scr.ThriftLinearFeatureRankingParams(weight = 0.18)), - urlParams = Some(scr.ThriftLinearFeatureRankingParams(weight = 2.0)), - isReplyParams = Some(scr.ThriftLinearFeatureRankingParams(weight = 1.0)), - favCountParams = Some(scr.ThriftLinearFeatureRankingParams(weight = 30.0)), - langEnglishUIBoost = 0.5, - langEnglishTweetBoost = 0.2, - langDefaultBoost = 0.02, - unknownLanguageBoost = 0.05, - offensiveBoost = 0.1, - inTrustedCircleBoost = 3.0, - multipleHashtagsOrTrendsBoost = 0.6, - inDirectFollowBoost = 4.0, - tweetHasTrendBoost = 1.1, - selfTweetBoost = 2.0, - tweetHasImageUrlBoost = 2.0, - tweetHasVideoUrlBoost = 2.0, - useUserLanguageInfo = true, - ageDecayParams = Some(scr.ThriftAgeDecayRankingParams(slope = 0.005, base = 1.0)), selectedModels = Some(Map("home_mixer_unified_engagement_prod" -> 1.0)), applyBoosts = false, ) diff --git a/navi/navi/README.md b/navi/README.md similarity index 70% rename from navi/navi/README.md rename to navi/README.md index d8962daf4..9a4326d96 100644 --- a/navi/navi/README.md +++ b/navi/README.md @@ -1,6 +1,6 @@ # Navi: High-Performance Machine Learning Serving Server in Rust -Navi is a high-performance, versatile machine learning serving server implemented in Rust, tailored for production usage. It's designed to efficiently serve within the Twitter tech stack, offering top-notch performance while focusing on core features. +Navi is a high-performance, versatile machine learning serving server implemented in Rust and tailored for production usage. It's designed to efficiently serve within the Twitter tech stack, offering top-notch performance while focusing on core features. ## Key Features @@ -23,12 +23,14 @@ While Navi's features may not be as comprehensive as its open-source counterpart - `thrift_bpr_adapter`: generated thrift code for BatchPredictionRequest ## Content -We include all *.rs source code that makes up the main navi binaries for you to examine. The test and benchmark code, as well as configuration files are not included due to data security concerns. +We have included all *.rs source code files that make up the main Navi binaries for you to examine. However, we have not included the test and benchmark code, or various configuration files, due to data security concerns. ## Run -in navi/navi you can run. Note you need to create a models directory and create some versions, preferably using epoch time, e.g., 1679693908377 -- scripts/run_tf2.sh -- scripts/run_onnx.sh +In navi/navi, you can run the following commands: +- `scripts/run_tf2.sh` for [TensorFlow](https://www.tensorflow.org/) +- `scripts/run_onnx.sh` for [Onnx](https://onnx.ai/) + +Do note that you need to create a models directory and create some versions, preferably using epoch time, e.g., `1679693908377`. ## Build -you can adapt the above scripts to build using Cargo +You can adapt the above scripts to build using Cargo. diff --git a/navi/dr_transform/src/all_config.rs b/navi/dr_transform/src/all_config.rs index 426d11cef..29451bfd4 100644 --- a/navi/dr_transform/src/all_config.rs +++ b/navi/dr_transform/src/all_config.rs @@ -44,6 +44,5 @@ pub struct RenamedFeatures { } pub fn parse(json_str: &str) -> Result { - let all_config: AllConfig = serde_json::from_str(json_str)?; - return std::result::Result::Ok(all_config); + serde_json::from_str(json_str) } diff --git a/navi/dr_transform/src/converter.rs b/navi/dr_transform/src/converter.rs index 30d3ad0a6..578d766fd 100644 --- a/navi/dr_transform/src/converter.rs +++ b/navi/dr_transform/src/converter.rs @@ -16,8 +16,7 @@ use segdense::util; use thrift::protocol::{TBinaryInputProtocol, TSerializable}; use thrift::transport::TBufferChannel; -use crate::{all_config}; -use crate::all_config::AllConfig; +use crate::{all_config, all_config::AllConfig}; pub fn log_feature_match( dr: &DataRecord, @@ -27,26 +26,22 @@ pub fn log_feature_match( // Note the following algorithm matches features from config using linear search. // Also the record source is MinDataRecord. This includes only binary and continous features for now. - for (feature_id, feature_value) in dr.continuous_features.as_ref().unwrap().into_iter() { + for (feature_id, feature_value) in dr.continuous_features.as_ref().unwrap() { debug!( - "{} - Continous Datarecord => Feature ID: {}, Feature value: {}", - dr_type, feature_id, feature_value + "{dr_type} - Continuous Datarecord => Feature ID: {feature_id}, Feature value: {feature_value}" ); for input_feature in &seg_dense_config.cont.input_features { if input_feature.feature_id == *feature_id { - debug!("Matching input feature: {:?}", input_feature) + debug!("Matching input feature: {input_feature:?}") } } } - for feature_id in dr.binary_features.as_ref().unwrap().into_iter() { - debug!( - "{} - Binary Datarecord => Feature ID: {}", - dr_type, feature_id - ); + for feature_id in dr.binary_features.as_ref().unwrap() { + debug!("{dr_type} - Binary Datarecord => Feature ID: {feature_id}"); for input_feature in &seg_dense_config.binary.input_features { if input_feature.feature_id == *feature_id { - debug!("Found input feature: {:?}", input_feature) + debug!("Found input feature: {input_feature:?}") } } } @@ -96,15 +91,13 @@ impl BatchPredictionRequestToTorchTensorConverter { reporting_feature_ids: Vec<(i64, &str)>, register_metric_fn: Option, ) -> BatchPredictionRequestToTorchTensorConverter { - let all_config_path = format!("{}/{}/all_config.json", model_dir, model_version); - let seg_dense_config_path = format!( - "{}/{}/segdense_transform_spec_home_recap_2022.json", - model_dir, model_version - ); + let all_config_path = format!("{model_dir}/{model_version}/all_config.json"); + let seg_dense_config_path = + format!("{model_dir}/{model_version}/segdense_transform_spec_home_recap_2022.json"); let seg_dense_config = util::load_config(&seg_dense_config_path); let all_config = all_config::parse( &fs::read_to_string(&all_config_path) - .unwrap_or_else(|error| panic!("error loading all_config.json - {}", error)), + .unwrap_or_else(|error| panic!("error loading all_config.json - {error}")), ) .unwrap(); @@ -138,11 +131,11 @@ impl BatchPredictionRequestToTorchTensorConverter { let (discrete_feature_metrics, continuous_feature_metrics) = METRICS.get_or_init(|| { let discrete = HistogramVec::new( HistogramOpts::new(":navi:feature_id:discrete", "Discrete Feature ID values") - .buckets(Vec::from(&[ - 0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0, + .buckets(Vec::from([ + 0.0f64, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0, 120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 250.0, 300.0, 500.0, 1000.0, 10000.0, 100000.0, - ] as &'static [f64])), + ])), &["feature_id"], ) .expect("metric cannot be created"); @@ -151,18 +144,18 @@ impl BatchPredictionRequestToTorchTensorConverter { ":navi:feature_id:continuous", "continuous Feature ID values", ) - .buckets(Vec::from(&[ - 0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0, 120.0, - 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 250.0, 300.0, 500.0, - 1000.0, 10000.0, 100000.0, - ] as &'static [f64])), + .buckets(Vec::from([ + 0.0f64, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0, + 120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 250.0, 300.0, + 500.0, 1000.0, 10000.0, 100000.0, + ])), &["feature_id"], ) .expect("metric cannot be created"); - register_metric_fn.map(|r| { + if let Some(r) = register_metric_fn { r(&discrete); r(&continuous); - }); + } (discrete, continuous) }); @@ -171,16 +164,13 @@ impl BatchPredictionRequestToTorchTensorConverter { for (feature_id, feature_type) in reporting_feature_ids.iter() { match *feature_type { - "discrete" => discrete_features_to_report.insert(feature_id.clone()), - "continuous" => continuous_features_to_report.insert(feature_id.clone()), - _ => panic!( - "Invalid feature type {} for reporting metrics!", - feature_type - ), + "discrete" => discrete_features_to_report.insert(*feature_id), + "continuous" => continuous_features_to_report.insert(*feature_id), + _ => panic!("Invalid feature type {feature_type} for reporting metrics!"), }; } - return BatchPredictionRequestToTorchTensorConverter { + BatchPredictionRequestToTorchTensorConverter { all_config, seg_dense_config, all_config_path, @@ -193,7 +183,7 @@ impl BatchPredictionRequestToTorchTensorConverter { continuous_features_to_report, discrete_feature_metrics, continuous_feature_metrics, - }; + } } fn get_feature_id(feature_name: &str, seg_dense_config: &Root) -> i64 { @@ -203,7 +193,7 @@ impl BatchPredictionRequestToTorchTensorConverter { return feature.feature_id; } } - return -1; + -1 } fn parse_batch_prediction_request(bytes: Vec) -> BatchPredictionRequest { @@ -211,7 +201,7 @@ impl BatchPredictionRequestToTorchTensorConverter { let mut bc = TBufferChannel::with_capacity(bytes.len(), 0); bc.set_readable_bytes(&bytes); let mut protocol = TBinaryInputProtocol::new(bc, true); - return BatchPredictionRequest::read_from_in_protocol(&mut protocol).unwrap(); + BatchPredictionRequest::read_from_in_protocol(&mut protocol).unwrap() } fn get_embedding_tensors( @@ -228,45 +218,43 @@ impl BatchPredictionRequestToTorchTensorConverter { let mut working_set = vec![0 as f32; total_size]; let mut bpr_start = 0; for (bpr, &bpr_end) in bprs.iter().zip(batch_size) { - if bpr.common_features.is_some() { - if bpr.common_features.as_ref().unwrap().tensors.is_some() { - if bpr - .common_features - .as_ref() - .unwrap() - .tensors - .as_ref() - .unwrap() - .contains_key(&feature_id) + if bpr.common_features.is_some() + && bpr.common_features.as_ref().unwrap().tensors.is_some() + && bpr + .common_features + .as_ref() + .unwrap() + .tensors + .as_ref() + .unwrap() + .contains_key(&feature_id) + { + let source_tensor = bpr + .common_features + .as_ref() + .unwrap() + .tensors + .as_ref() + .unwrap() + .get(&feature_id) + .unwrap(); + let tensor = match source_tensor { + GeneralTensor::FloatTensor(float_tensor) => + //Tensor::of_slice( { - let source_tensor = bpr - .common_features - .as_ref() - .unwrap() - .tensors - .as_ref() - .unwrap() - .get(&feature_id) - .unwrap(); - let tensor = match source_tensor { - GeneralTensor::FloatTensor(float_tensor) => - //Tensor::of_slice( - { - float_tensor - .floats - .iter() - .map(|x| x.into_inner() as f32) - .collect::>() - } - _ => vec![0 as f32; cols], - }; + float_tensor + .floats + .iter() + .map(|x| x.into_inner() as f32) + .collect::>() + } + _ => vec![0 as f32; cols], + }; - // since the tensor is found in common feature, add it in all batches - for row in bpr_start..bpr_end { - for col in 0..cols { - working_set[row * cols + col] = tensor[col]; - } - } + // since the tensor is found in common feature, add it in all batches + for row in bpr_start..bpr_end { + for col in 0..cols { + working_set[row * cols + col] = tensor[col]; } } } @@ -300,7 +288,7 @@ impl BatchPredictionRequestToTorchTensorConverter { } bpr_start = bpr_end; } - return Array2::::from_shape_vec([rows, cols], working_set).unwrap(); + Array2::::from_shape_vec([rows, cols], working_set).unwrap() } // Todo : Refactor, create a generic version with different type and field accessors @@ -310,9 +298,9 @@ impl BatchPredictionRequestToTorchTensorConverter { // (INT64 --> INT64, DataRecord.discrete_feature) fn get_continuous(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor { // These need to be part of model schema - let rows: usize = batch_ends[batch_ends.len() - 1]; - let cols: usize = 5293; - let full_size: usize = (rows * cols).try_into().unwrap(); + let rows = batch_ends[batch_ends.len() - 1]; + let cols = 5293; + let full_size = rows * cols; let default_val = f32::NAN; let mut tensor = vec![default_val; full_size]; @@ -337,55 +325,48 @@ impl BatchPredictionRequestToTorchTensorConverter { .unwrap(); for feature in common_features { - match self.feature_mapper.get(feature.0) { - Some(f_info) => { - let idx = f_info.index_within_tensor as usize; - if idx < cols { - // Set value in each row - for r in bpr_start..bpr_end { - let flat_index: usize = (r * cols + idx).try_into().unwrap(); - tensor[flat_index] = feature.1.into_inner() as f32; - } + if let Some(f_info) = self.feature_mapper.get(feature.0) { + let idx = f_info.index_within_tensor as usize; + if idx < cols { + // Set value in each row + for r in bpr_start..bpr_end { + let flat_index = r * cols + idx; + tensor[flat_index] = feature.1.into_inner() as f32; } } - None => (), } if self.continuous_features_to_report.contains(feature.0) { self.continuous_feature_metrics .with_label_values(&[feature.0.to_string().as_str()]) - .observe(feature.1.into_inner() as f64) + .observe(feature.1.into_inner()) } else if self.discrete_features_to_report.contains(feature.0) { self.discrete_feature_metrics .with_label_values(&[feature.0.to_string().as_str()]) - .observe(feature.1.into_inner() as f64) + .observe(feature.1.into_inner()) } } } // Process the batch of datarecords for r in bpr_start..bpr_end { - let dr: &DataRecord = - &bpr.individual_features_list[usize::try_from(r - bpr_start).unwrap()]; + let dr: &DataRecord = &bpr.individual_features_list[r - bpr_start]; if dr.continuous_features.is_some() { for feature in dr.continuous_features.as_ref().unwrap() { - match self.feature_mapper.get(&feature.0) { - Some(f_info) => { - let idx = f_info.index_within_tensor as usize; - let flat_index: usize = (r * cols + idx).try_into().unwrap(); - if flat_index < tensor.len() && idx < cols { - tensor[flat_index] = feature.1.into_inner() as f32; - } + if let Some(f_info) = self.feature_mapper.get(feature.0) { + let idx = f_info.index_within_tensor as usize; + let flat_index = r * cols + idx; + if flat_index < tensor.len() && idx < cols { + tensor[flat_index] = feature.1.into_inner() as f32; } - None => (), } if self.continuous_features_to_report.contains(feature.0) { self.continuous_feature_metrics .with_label_values(&[feature.0.to_string().as_str()]) - .observe(feature.1.into_inner() as f64) + .observe(feature.1.into_inner()) } else if self.discrete_features_to_report.contains(feature.0) { self.discrete_feature_metrics .with_label_values(&[feature.0.to_string().as_str()]) - .observe(feature.1.into_inner() as f64) + .observe(feature.1.into_inner()) } } } @@ -393,22 +374,19 @@ impl BatchPredictionRequestToTorchTensorConverter { bpr_start = bpr_end; } - return InputTensor::FloatTensor( - Array2::::from_shape_vec( - [rows.try_into().unwrap(), cols.try_into().unwrap()], - tensor, - ) - .unwrap() - .into_dyn(), - ); + InputTensor::FloatTensor( + Array2::::from_shape_vec([rows, cols], tensor) + .unwrap() + .into_dyn(), + ) } fn get_binary(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor { // These need to be part of model schema - let rows: usize = batch_ends[batch_ends.len() - 1]; - let cols: usize = 149; - let full_size: usize = (rows * cols).try_into().unwrap(); - let default_val: i64 = 0; + let rows = batch_ends[batch_ends.len() - 1]; + let cols = 149; + let full_size = rows * cols; + let default_val = 0; let mut v = vec![default_val; full_size]; @@ -432,55 +410,48 @@ impl BatchPredictionRequestToTorchTensorConverter { .unwrap(); for feature in common_features { - match self.feature_mapper.get(feature) { - Some(f_info) => { - let idx = f_info.index_within_tensor as usize; - if idx < cols { - // Set value in each row - for r in bpr_start..bpr_end { - let flat_index: usize = (r * cols + idx).try_into().unwrap(); - v[flat_index] = 1; - } + if let Some(f_info) = self.feature_mapper.get(feature) { + let idx = f_info.index_within_tensor as usize; + if idx < cols { + // Set value in each row + for r in bpr_start..bpr_end { + let flat_index = r * cols + idx; + v[flat_index] = 1; } } - None => (), } } } // Process the batch of datarecords for r in bpr_start..bpr_end { - let dr: &DataRecord = - &bpr.individual_features_list[usize::try_from(r - bpr_start).unwrap()]; + let dr: &DataRecord = &bpr.individual_features_list[r - bpr_start]; if dr.binary_features.is_some() { for feature in dr.binary_features.as_ref().unwrap() { - match self.feature_mapper.get(&feature) { - Some(f_info) => { - let idx = f_info.index_within_tensor as usize; - let flat_index: usize = (r * cols + idx).try_into().unwrap(); - v[flat_index] = 1; - } - None => (), + if let Some(f_info) = self.feature_mapper.get(feature) { + let idx = f_info.index_within_tensor as usize; + let flat_index = r * cols + idx; + v[flat_index] = 1; } } } } bpr_start = bpr_end; } - return InputTensor::Int64Tensor( - Array2::::from_shape_vec([rows.try_into().unwrap(), cols.try_into().unwrap()], v) + InputTensor::Int64Tensor( + Array2::::from_shape_vec([rows, cols], v) .unwrap() .into_dyn(), - ); + ) } #[allow(dead_code)] fn get_discrete(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor { // These need to be part of model schema - let rows: usize = batch_ends[batch_ends.len() - 1]; - let cols: usize = 320; - let full_size: usize = (rows * cols).try_into().unwrap(); - let default_val: i64 = 0; + let rows = batch_ends[batch_ends.len() - 1]; + let cols = 320; + let full_size = rows * cols; + let default_val = 0; let mut v = vec![default_val; full_size]; @@ -504,18 +475,15 @@ impl BatchPredictionRequestToTorchTensorConverter { .unwrap(); for feature in common_features { - match self.feature_mapper.get(feature.0) { - Some(f_info) => { - let idx = f_info.index_within_tensor as usize; - if idx < cols { - // Set value in each row - for r in bpr_start..bpr_end { - let flat_index: usize = (r * cols + idx).try_into().unwrap(); - v[flat_index] = *feature.1; - } + if let Some(f_info) = self.feature_mapper.get(feature.0) { + let idx = f_info.index_within_tensor as usize; + if idx < cols { + // Set value in each row + for r in bpr_start..bpr_end { + let flat_index = r * cols + idx; + v[flat_index] = *feature.1; } } - None => (), } if self.discrete_features_to_report.contains(feature.0) { self.discrete_feature_metrics @@ -527,18 +495,15 @@ impl BatchPredictionRequestToTorchTensorConverter { // Process the batch of datarecords for r in bpr_start..bpr_end { - let dr: &DataRecord = &bpr.individual_features_list[usize::try_from(r).unwrap()]; + let dr: &DataRecord = &bpr.individual_features_list[r]; if dr.discrete_features.is_some() { for feature in dr.discrete_features.as_ref().unwrap() { - match self.feature_mapper.get(&feature.0) { - Some(f_info) => { - let idx = f_info.index_within_tensor as usize; - let flat_index: usize = (r * cols + idx).try_into().unwrap(); - if flat_index < v.len() && idx < cols { - v[flat_index] = *feature.1; - } + if let Some(f_info) = self.feature_mapper.get(feature.0) { + let idx = f_info.index_within_tensor as usize; + let flat_index = r * cols + idx; + if flat_index < v.len() && idx < cols { + v[flat_index] = *feature.1; } - None => (), } if self.discrete_features_to_report.contains(feature.0) { self.discrete_feature_metrics @@ -550,11 +515,11 @@ impl BatchPredictionRequestToTorchTensorConverter { } bpr_start = bpr_end; } - return InputTensor::Int64Tensor( - Array2::::from_shape_vec([rows.try_into().unwrap(), cols.try_into().unwrap()], v) + InputTensor::Int64Tensor( + Array2::::from_shape_vec([rows, cols], v) .unwrap() .into_dyn(), - ); + ) } fn get_user_embedding( @@ -604,7 +569,7 @@ impl Converter for BatchPredictionRequestToTorchTensorConverter { .map(|bpr| bpr.individual_features_list.len()) .scan(0usize, |acc, e| { //running total - *acc = *acc + e; + *acc += e; Some(*acc) }) .collect::>(); diff --git a/navi/dr_transform/src/util.rs b/navi/dr_transform/src/util.rs index 8c8773185..83b99805a 100644 --- a/navi/dr_transform/src/util.rs +++ b/navi/dr_transform/src/util.rs @@ -9,15 +9,17 @@ use std::{ pub fn load_batch_prediction_request_base64(file_name: &str) -> Vec> { let file = File::open(file_name).expect("could not read file"); let mut result = vec![]; - for line in io::BufReader::new(file).lines() { + for (mut line_count, line) in io::BufReader::new(file).lines().enumerate() { + line_count += 1; match base64::decode(line.unwrap().trim()) { Ok(payload) => result.push(payload), - Err(err) => println!("error decoding line {}", err), + Err(err) => println!("error decoding line {file_name}:{line_count} - {err}"), } } - println!("reslt len: {}", result.len()); - return result; + println!("result len: {}", result.len()); + result } + pub fn save_to_npy(data: &[T], save_to: String) { let mut writer = WriteOptions::new() .default_dtype() diff --git a/recos-injector/README.md b/recos-injector/README.md index c27c34481..a391578c2 100644 --- a/recos-injector/README.md +++ b/recos-injector/README.md @@ -1,13 +1,10 @@ -# recos-injector -Recos-Injector is a streaming event processor for building input streams for GraphJet based services. -It is general purpose in that it consumes arbitrary incoming event stream (e.x. Fav, RT, Follow, client_events, etc), applies -filtering, combines and publishes cleaned up events to corresponding GraphJet services. -Each GraphJet based service subscribes to a dedicated Kafka topic. Recos-Injector enables a GraphJet based service to consume any -event it wants +# Recos-Injector -## How to run recos-injector-server tests +Recos-Injector is a streaming event processor used to build input streams for GraphJet-based services. It is a general-purpose tool that consumes arbitrary incoming event streams (e.g., Fav, RT, Follow, client_events, etc.), applies filtering, and combines and publishes cleaned up events to corresponding GraphJet services. Each GraphJet-based service subscribes to a dedicated Kafka topic, and Recos-Injector enables GraphJet-based services to consume any event they want. -Tests can be run by using this command from your project's root directory: +## How to run Recos-Injector server tests + +You can run tests by using the following command from your project's root directory: $ bazel build recos-injector/... $ bazel test recos-injector/... @@ -28,17 +25,16 @@ terminal: $ curl -s localhost:9990/admin/ping pong -Run `curl -s localhost:9990/admin` to see a list of all of the available admin -endpoints. +Run `curl -s localhost:9990/admin` to see a list of all available admin endpoints. -## Querying recos-injector-server from a Scala console +## Querying Recos-Injector server from a Scala console -Recos Injector does not have a thrift endpoint. It reads Event Bus and Kafka queues and writes to recos_injector kafka. +Recos-Injector does not have a Thrift endpoint. Instead, it reads Event Bus and Kafka queues and writes to the Recos-Injector Kafka. ## Generating a package for deployment -To package your service into a zip for deployment: +To package your service into a zip file for deployment, run: $ bazel bundle recos-injector/server:bin --bundle-jvm-archive=zip -If successful, a file `dist/recos-injector-server.zip` will be created. +If the command is successful, a file named `dist/recos-injector-server.zip` will be created. diff --git a/simclusters-ann/README.md b/simclusters-ann/README.md index 8770435cd..69ff6cffa 100644 --- a/simclusters-ann/README.md +++ b/simclusters-ann/README.md @@ -15,7 +15,7 @@ SimClusters from the Linear Algebra Perspective discussed the difference between However, calculating the cosine similarity between two Tweets is pretty expensive in Tweet candidate generation. In TWISTLY, we scan at most 15,000 (6 source tweets * 25 clusters * 100 tweets per clusters) tweet candidates for every Home Timeline request. The traditional algorithm needs to make API calls to fetch 15,000 tweet SimCluster embeddings. Consider that we need to process over 6,000 RPS, it’s hard to support by the existing infrastructure. -## SimClusters Approximate Cosine Similariy Core Algorithm +## SimClusters Approximate Cosine Similarity Core Algorithm 1. Provide a source SimCluster Embedding *SV*, *SV = [(SC1, Score), (SC2, Score), (SC3, Score) …]* diff --git a/src/java/com/twitter/search/common/converter/earlybird/BasicIndexingConverter.java b/src/java/com/twitter/search/common/converter/earlybird/BasicIndexingConverter.java index ddd9e50b3..afde8a84e 100644 --- a/src/java/com/twitter/search/common/converter/earlybird/BasicIndexingConverter.java +++ b/src/java/com/twitter/search/common/converter/earlybird/BasicIndexingConverter.java @@ -513,12 +513,12 @@ public class BasicIndexingConverter { Optional inReplyToUserId = Optional.of(inReplyToUserIdVal).filter(x -> x > 0); Optional inReplyToStatusId = Optional.of(inReplyToStatusIdVal).filter(x -> x > 0); - // We have six combinations here. A tweet can be + // We have six combinations here. A Tweet can be // 1) a reply to another tweet (then it has both in-reply-to-user-id and // in-reply-to-status-id set), // 2) directed-at a user (then it only has in-reply-to-user-id set), // 3) not a reply at all. - // Additionally, it may or may not be a retweet (if it is, then it has retweet-user-id and + // Additionally, it may or may not be a Retweet (if it is, then it has retweet-user-id and // retweet-status-id set). // // We want to set some fields unconditionally, and some fields (reference-author-id and diff --git a/src/java/com/twitter/search/earlybird/ml/ScoringModelsManager.java b/src/java/com/twitter/search/earlybird/ml/ScoringModelsManager.java index 4f95bda54..0e12f18c7 100644 --- a/src/java/com/twitter/search/earlybird/ml/ScoringModelsManager.java +++ b/src/java/com/twitter/search/earlybird/ml/ScoringModelsManager.java @@ -22,13 +22,13 @@ import static com.twitter.search.modeling.tweet_ranking.TweetScoringFeatures.Fea /** * Loads the scoring models for tweets and provides access to them. * - * This class relies on a list ModelLoader objects to retrieve the objects from them. It will + * This class relies on a list of ModelLoader objects to retrieve the objects from them. It will * return the first model found according to the order in the list. * * For production, we load models from 2 sources: classpath and HDFS. If a model is available * from HDFS, we return it, otherwise we use the model from the classpath. * - * The models used in for default requests (i.e. not experiments) MUST be present in the + * The models used for default requests (i.e. not experiments) MUST be present in the * classpath, this allows us to avoid errors if they can't be loaded from HDFS. * Models for experiments can live only in HDFS, so we don't need to redeploy Earlybird if we * want to test them. diff --git a/src/python/twitter/deepbird/projects/timelines/configs/recap_earlybird/feature_config.py b/src/python/twitter/deepbird/projects/timelines/configs/recap_earlybird/feature_config.py index cbed50605..94171a0ee 100644 --- a/src/python/twitter/deepbird/projects/timelines/configs/recap_earlybird/feature_config.py +++ b/src/python/twitter/deepbird/projects/timelines/configs/recap_earlybird/feature_config.py @@ -3,7 +3,8 @@ from twml.feature_config import FeatureConfigBuilder def get_feature_config(data_spec_path, label): - return FeatureConfigBuilder(data_spec_path=data_spec_path, debug=True) \ + return ( + FeatureConfigBuilder(data_spec_path=data_spec_path, debug=True) .batch_add_features( [ ("ebd.author_specific_score", "A"), @@ -72,3 +73,4 @@ def get_feature_config(data_spec_path, label): ]) \ .define_weight("meta.record_weight/type=earlybird") \ .build() + ) diff --git a/src/scala/com/twitter/graph/batch/job/tweepcred/README b/src/scala/com/twitter/graph/batch/job/tweepcred/README index 75a2e5e49..55ef3b093 100644 --- a/src/scala/com/twitter/graph/batch/job/tweepcred/README +++ b/src/scala/com/twitter/graph/batch/job/tweepcred/README @@ -1,3 +1,5 @@ +Tweepcred + Tweepcred is a social network analysis tool that calculates the influence of Twitter users based on their interactions with other users. The tool uses the PageRank algorithm to rank users based on their influence. PageRank Algorithm @@ -70,4 +72,4 @@ The algorithm tests for convergence by calculating the total difference between This is a helper class called Reputation that contains methods for calculating a user's reputation score. The first method called scaledReputation takes a Double parameter raw which represents the user's page rank, and returns a Byte value that represents the user's reputation on a scale of 0 to 100. This method uses a formula that involves converting the logarithm of the page rank to a number between 0 and 100. -The second method called adjustReputationsPostCalculation takes three parameters: mass (a Double value representing the user's page rank), numFollowers (an Int value representing the number of followers a user has), and numFollowings (an Int value representing the number of users a user is following). This method reduces the page rank of users who have a low number of followers but a high number of followings. It calculates a division factor based on the ratio of followings to followers, and reduces the user's page rank by dividing it by this factor. The method returns the adjusted page rank. \ No newline at end of file +The second method called adjustReputationsPostCalculation takes three parameters: mass (a Double value representing the user's page rank), numFollowers (an Int value representing the number of followers a user has), and numFollowings (an Int value representing the number of users a user is following). This method reduces the page rank of users who have a low number of followers but a high number of followings. It calculates a division factor based on the ratio of followings to followers, and reduces the user's page rank by dividing it by this factor. The method returns the adjusted page rank. diff --git a/src/scala/com/twitter/recos/user_tweet_entity_graph/README.md b/src/scala/com/twitter/recos/user_tweet_entity_graph/README.md index bf52891a9..39af44deb 100644 --- a/src/scala/com/twitter/recos/user_tweet_entity_graph/README.md +++ b/src/scala/com/twitter/recos/user_tweet_entity_graph/README.md @@ -1,17 +1,17 @@ # UserTweetEntityGraph (UTEG) ## What is it -User Tweet Entity Graph (UTEG) is a Finalge thrift service built on the GraphJet framework. In maintains a graph of user-tweet relationships and serves user recommendations based on traversals in this graph. +User Tweet Entity Graph (UTEG) is a Finalge thrift service built on the GraphJet framework. It maintains a graph of user-tweet relationships and serves user recommendations based on traversals in this graph. ## How is it used on Twitter UTEG generates the "XXX Liked" out-of-network tweets seen on Twitter's Home Timeline. -The core idea behind UTEG is collaborative filtering. UTEG takes a user's weighted follow graph (i.e a list of weighted userIds) as input, -performs efficient traversal & aggregation, and returns the top weighted tweets engaged basd on # of users that engaged the tweet, as well as +The core idea behind UTEG is collaborative filtering. UTEG takes a user's weighted follow graph (i.e a list of weighted userIds) as input, +performs efficient traversal & aggregation, and returns the top-weighted tweets engaged based on # of users that engaged the tweet, as well as the engaged users' weights. -UTEG is a stateful service and relies on a Kafka stream to ingest & persist states. It maintains an in-memory user engagements over the past -24-48 hours. Older events are dropped and GC'ed. +UTEG is a stateful service and relies on a Kafka stream to ingest & persist states. It maintains in-memory user engagements over the past +24-48 hours. Older events are dropped and GC'ed. -For full details on storage & processing, please check out our open-sourced project GraphJet, a general-purpose high performance in-memory storage engine. +For full details on storage & processing, please check out our open-sourced project GraphJet, a general-purpose high-performance in-memory storage engine. - https://github.com/twitter/GraphJet - http://www.vldb.org/pvldb/vol9/p1281-sharma.pdf diff --git a/src/scala/com/twitter/simclusters_v2/common/SimClustersEmbedding.scala b/src/scala/com/twitter/simclusters_v2/common/SimClustersEmbedding.scala index 9f2eb06a3..b8f0179cb 100644 --- a/src/scala/com/twitter/simclusters_v2/common/SimClustersEmbedding.scala +++ b/src/scala/com/twitter/simclusters_v2/common/SimClustersEmbedding.scala @@ -78,7 +78,7 @@ sealed trait SimClustersEmbedding extends Equals { CosineSimilarityUtil.applyNormArray(sortedScores, expScaledNorm) /** - * The Standard Deviation of a Embedding. + * The Standard Deviation of an Embedding. */ lazy val std: Double = { if (scores.isEmpty) { diff --git a/src/thrift/com/twitter/search/common/ranking/ranking.thrift b/src/thrift/com/twitter/search/common/ranking/ranking.thrift index 1bf70034c..bd1cff929 100644 --- a/src/thrift/com/twitter/search/common/ranking/ranking.thrift +++ b/src/thrift/com/twitter/search/common/ranking/ranking.thrift @@ -306,7 +306,7 @@ struct ThriftFacetRankingOptions { // penalty for keyword stuffing 60: optional i32 multipleHashtagsOrTrendsPenalty - // Langauge related boosts, similar to those in relevance ranking options. By default they are + // Language related boosts, similar to those in relevance ranking options. By default they are // all 1.0 (no-boost). // When the user language is english, facet language is not 11: optional double langEnglishUIBoost = 1.0 diff --git a/src/thrift/com/twitter/search/earlybird/thrift/earlybird.thrift b/src/thrift/com/twitter/search/earlybird/thrift/earlybird.thrift index a71242fa4..0d4547264 100644 --- a/src/thrift/com/twitter/search/earlybird/thrift/earlybird.thrift +++ b/src/thrift/com/twitter/search/earlybird/thrift/earlybird.thrift @@ -728,7 +728,7 @@ struct ThriftSearchResultMetadata { 29: optional double parusScore // Extra feature data, all new feature fields you want to return from Earlybird should go into - // this one, the outer one is always reaching its limit of the nubmer of fields JVM can + // this one, the outer one is always reaching its limit of the number of fields JVM can // comfortably support!! 86: optional ThriftSearchResultExtraMetadata extraMetadata @@ -831,7 +831,7 @@ struct ThriftSearchResult { 12: optional list cardTitleHitHighlights 13: optional list cardDescriptionHitHighlights - // Expansion types, if expandResult == False, the expasions set should be ignored. + // Expansion types, if expandResult == False, the expansions set should be ignored. 8: optional bool expandResult = 0 9: optional set expansions @@ -971,7 +971,7 @@ struct ThriftTermStatisticsResults { // The binIds will correspond to the times of the hits matching the driving search query for this // term statistics request. // If there were no hits matching the search query, numBins binIds will be returned, but the - // values of the binIds will not meaninfully correspond to anything related to the query, and + // values of the binIds will not meaningfully correspond to anything related to the query, and // should not be used. Such cases can be identified by ThriftSearchResults.numHitsProcessed being // set to 0 in the response, and the response not being early terminated. 3: optional list binIds @@ -1097,8 +1097,8 @@ struct ThriftSearchResults { // Superroots' schema merge/choose logic when returning results to clients: // . pick the schema based on the order of: realtime > protected > archive // . because of the above ordering, it is possible that archive earlybird schema with a new flush - // verion (with new bit features) might be lost to older realtime earlybird schema; this is - // considered to to be rare and accetable because one realtime earlybird deploy would fix it + // version (with new bit features) might be lost to older realtime earlybird schema; this is + // considered to to be rare and acceptable because one realtime earlybird deploy would fix it 21: optional features.ThriftSearchFeatureSchema featureSchema // How long it took to score the results in earlybird (in nanoseconds). The number of results diff --git a/src/thrift/com/twitter/simclusters_v2/abuse.thrift b/src/thrift/com/twitter/simclusters_v2/abuse.thrift index e7abf8415..60043244b 100644 --- a/src/thrift/com/twitter/simclusters_v2/abuse.thrift +++ b/src/thrift/com/twitter/simclusters_v2/abuse.thrift @@ -29,8 +29,8 @@ struct AdhocSingleSideClusterScores { * we implement will use search abuse reports and impressions. We can build stores for new values * in the future. * -* The consumer creates the interactions which the author recieves. For instance, the consumer -* creates an abuse report for an author. The consumer scores are related to the interation creation +* The consumer creates the interactions which the author receives. For instance, the consumer +* creates an abuse report for an author. The consumer scores are related to the interaction creation * behavior of the consumer. The author scores are related to the whether the author receives these * interactions. * diff --git a/src/thrift/com/twitter/simclusters_v2/embedding.thrift b/src/thrift/com/twitter/simclusters_v2/embedding.thrift index eca5b541f..110da0c65 100644 --- a/src/thrift/com/twitter/simclusters_v2/embedding.thrift +++ b/src/thrift/com/twitter/simclusters_v2/embedding.thrift @@ -70,7 +70,7 @@ struct TweetTopKTweetsWithScore { /** * The generic SimClustersEmbedding for online long-term storage and real-time calculation. * Use SimClustersEmbeddingId as the only identifier. - * Warning: Doesn't include modelversion and embedding type in the value struct. + * Warning: Doesn't include model version and embedding type in the value struct. **/ struct SimClustersEmbedding { 1: required list embedding diff --git a/src/thrift/com/twitter/simclusters_v2/evaluation.thrift b/src/thrift/com/twitter/simclusters_v2/evaluation.thrift index c83e0def8..85414baf9 100644 --- a/src/thrift/com/twitter/simclusters_v2/evaluation.thrift +++ b/src/thrift/com/twitter/simclusters_v2/evaluation.thrift @@ -50,7 +50,7 @@ struct CandidateTweets { }(hasPersonalData = 'true') /** - * An encapuslated collection of reference tweets + * An encapsulated collection of reference tweets **/ struct ReferenceTweets { 1: required i64 targetUserId(personalDataType = 'UserId') diff --git a/src/thrift/com/twitter/simclusters_v2/identifier.thrift b/src/thrift/com/twitter/simclusters_v2/identifier.thrift index 5685679d2..b4285e699 100644 --- a/src/thrift/com/twitter/simclusters_v2/identifier.thrift +++ b/src/thrift/com/twitter/simclusters_v2/identifier.thrift @@ -33,12 +33,12 @@ enum EmbeddingType { Pop10000RankDecay11Tweet = 31, OonPop1000RankDecayTweet = 32, - // [Experimental] Offline generated produciton-like LogFavScore-based Tweet Embedding + // [Experimental] Offline generated production-like LogFavScore-based Tweet Embedding OfflineGeneratedLogFavBasedTweet = 40, // Reserve 51-59 for Ads Embedding - LogFavBasedAdsTweet = 51, // Experimenal embedding for ads tweet candidate - LogFavClickBasedAdsTweet = 52, // Experimenal embedding for ads tweet candidate + LogFavBasedAdsTweet = 51, // Experimental embedding for ads tweet candidate + LogFavClickBasedAdsTweet = 52, // Experimental embedding for ads tweet candidate // Reserve 60-69 for Evergreen content LogFavBasedEvergreenTweet = 60, @@ -104,7 +104,7 @@ enum EmbeddingType { //Reserved 401 - 500 for Space embedding FavBasedApeSpace = 401 // DEPRECATED LogFavBasedListenerSpace = 402 // DEPRECATED - LogFavBasedAPESpeakerSpace = 403 // DEPRCATED + LogFavBasedAPESpeakerSpace = 403 // DEPRECATED LogFavBasedUserInterestedInListenerSpace = 404 // DEPRECATED // Experimental, internal-only IDs diff --git a/timelineranker/README.md b/timelineranker/README.md index 3aa3355d3..72b9226db 100644 --- a/timelineranker/README.md +++ b/timelineranker/README.md @@ -1,36 +1,13 @@ -Overview -======== - -**TimelineRanker** (TLR) is a legacy service which provides relevance-scored tweets from the Earlybird Search Index and User Tweet Entity Graph (UTEG) service. Despite its name, it no longer does any kind of heavy ranking/model based ranking itself - just uses relevance scores from the Search Index for ranked tweet endpoints. +# TimelineRanker +**TimelineRanker** (TLR) is a legacy service that provides relevance-scored tweets from the Earlybird Search Index and User Tweet Entity Graph (UTEG) service. Despite its name, it no longer performs heavy ranking or model-based ranking itself; it only uses relevance scores from the Search Index for ranked tweet endpoints. The following is a list of major services that Timeline Ranker interacts with: -**Earlybird-root-superroot (a.k.a Search)** - -Timeline Ranker calls the Search Index's super root to fetch a list of Tweets. - -**User Tweet Entity Graph (UTEG)** - -Timeline Ranker calls UTEG to fetch a list of tweets liked by the users you follow. - -**Socialgraph** - -Timeline Ranker calls Social Graph Service to obtain follow graph and user states such as blocked, muted, retweets muted, etc. - -**TweetyPie** - -Timeline Ranker hydrates tweets by calling TweetyPie so that it can post-filter tweets based on certain hydrated fields. - -**Manhattan** - -Timeline Ranker hydrates some tweet features (eg, user languages) from Manhattan. - -**Home Mixer** - -Home Mixer calls Timeline Ranker to fetch tweets from the Earlybird Search Index and User Tweet Entity Graph (UTEG) service to power both the For You and Following Home Timelines. - -Timeline Ranker does light ranking based on Earlybird tweet candidate scores and truncates to the number of candidates requested by Home Mixer based on these scores - - +- **Earlybird-root-superroot (a.k.a Search):** Timeline Ranker calls the Search Index's super root to fetch a list of Tweets. +- **User Tweet Entity Graph (UTEG):** Timeline Ranker calls UTEG to fetch a list of tweets liked by the users you follow. +- **Socialgraph:** Timeline Ranker calls Social Graph Service to obtain the follow graph and user states such as blocked, muted, retweets muted, etc. +- **TweetyPie:** Timeline Ranker hydrates tweets by calling TweetyPie to post-filter tweets based on certain hydrated fields. +- **Manhattan:** Timeline Ranker hydrates some tweet features (e.g., user languages) from Manhattan. +**Home Mixer** calls Timeline Ranker to fetch tweets from the Earlybird Search Index and User Tweet Entity Graph (UTEG) service to power both the For You and Following Home Timelines. Timeline Ranker performs light ranking based on Earlybird tweet candidate scores and truncates to the number of candidates requested by Home Mixer based on these scores. diff --git a/trust_and_safety_models/README.md b/trust_and_safety_models/README.md index 6cdd9a355..c16de2d3d 100644 --- a/trust_and_safety_models/README.md +++ b/trust_and_safety_models/README.md @@ -3,8 +3,8 @@ Trust and Safety Models We decided to open source the training code of the following models: - pNSFWMedia: Model to detect tweets with NSFW images. This includes adult and porn content. -- pNSFWText: Model to detect tweets with NSFW text, adult/sexual topics -- pToxicity: Model to detect toxic tweets. Toxicity includes marginal content like insults and certain types of harassment. Toxic content does not violate Twitter terms of service -- pAbuse: Model to detect abusive content. This includes violations of Twitter terms of service, including hate speech, targeted harassment and abusive behavior. +- pNSFWText: Model to detect tweets with NSFW text, adult/sexual topics. +- pToxicity: Model to detect toxic tweets. Toxicity includes marginal content like insults and certain types of harassment. Toxic content does not violate Twitter's terms of service. +- pAbuse: Model to detect abusive content. This includes violations of Twitter's terms of service, including hate speech, targeted harassment and abusive behavior. We have several more models and rules that we are not going to open source at this time because of the adversarial nature of this area. The team is considering open sourcing more models going forward and will keep the community posted accordingly. diff --git a/twml/README.md b/twml/README.md index df7a10328..b2b315b45 100644 --- a/twml/README.md +++ b/twml/README.md @@ -1,7 +1,7 @@ # TWML --- -Note: `twml` is no longer under development. Much of the code here is not out of date and unused. +Note: `twml` is no longer under development. Much of the code here is out of date and unused. It is included here for completeness, because `twml` is still used to train the light ranker models (see `src/python/twitter/deepbird/projects/timelines/scripts/models/earlybird/README.md`) --- @@ -10,4 +10,4 @@ TWML is one of Twitter's machine learning frameworks, which uses Tensorflow unde deprecated, it is still currently used to train the Earlybird light ranking models ( see `src/python/twitter/deepbird/projects/timelines/scripts/models/earlybird/train.py`). -The most relevant part of this is the `DataRecordTrainer` class, which is where the core training logic resides. \ No newline at end of file +The most relevant part of this is the `DataRecordTrainer` class, which is where the core training logic resides. diff --git a/visibilitylib/src/main/resources/config/com/twitter/visibility/decider.yml b/visibilitylib/src/main/resources/config/com/twitter/visibility/decider.yml index c2c8f8a9a..54b5edcba 100644 --- a/visibilitylib/src/main/resources/config/com/twitter/visibility/decider.yml +++ b/visibilitylib/src/main/resources/config/com/twitter/visibility/decider.yml @@ -494,6 +494,9 @@ visibility_library_enable_trends_representative_tweet_safety_level: visibility_library_enable_trusted_friends_user_list_safety_level: default_availability: 10000 +visibility_library_enable_twitter_delegate_user_list_safety_level: + default_availability: 10000 + visibility_library_enable_tweet_detail_safety_level: default_availability: 10000 @@ -758,7 +761,7 @@ visibility_library_enable_short_circuiting_from_blender_visibility_library: visibility_library_enable_short_circuiting_from_search_visibility_library: default_availability: 0 -visibility_library_enable_nsfw_text_topics_drop_rule: +visibility_library_enable_nsfw_text_high_precision_drop_rule: default_availability: 10000 visibility_library_enable_spammy_tweet_rule_verdict_logging: diff --git a/visibilitylib/src/main/scala/com/twitter/visibility/configapi/configs/DeciderKey.scala b/visibilitylib/src/main/scala/com/twitter/visibility/configapi/configs/DeciderKey.scala index 9fefb4154..58331779c 100644 --- a/visibilitylib/src/main/scala/com/twitter/visibility/configapi/configs/DeciderKey.scala +++ b/visibilitylib/src/main/scala/com/twitter/visibility/configapi/configs/DeciderKey.scala @@ -535,6 +535,9 @@ private[visibility] object DeciderKey extends DeciderKeyEnum { val EnableTrustedFriendsUserListSafetyLevel: Value = Value( "visibility_library_enable_trusted_friends_user_list_safety_level" ) + val EnableTwitterDelegateUserListSafetyLevel: Value = Value( + "visibility_library_enable_twitter_delegate_user_list_safety_level" + ) val EnableTweetDetailSafetyLevel: Value = Value( "visibility_library_enable_tweet_detail_safety_level" ) @@ -869,8 +872,8 @@ private[visibility] object DeciderKey extends DeciderKeyEnum { "visibility_library_enable_short_circuiting_from_search_visibility_library" ) - val EnableNsfwTextTopicsDropRule: Value = Value( - "visibility_library_enable_nsfw_text_topics_drop_rule" + val EnableNsfwTextHighPrecisionDropRule: Value = Value( + "visibility_library_enable_nsfw_text_high_precision_drop_rule" ) val EnableSpammyTweetRuleVerdictLogging: Value = Value( diff --git a/visibilitylib/src/main/scala/com/twitter/visibility/configapi/configs/VisibilityDeciders.scala b/visibilitylib/src/main/scala/com/twitter/visibility/configapi/configs/VisibilityDeciders.scala index cc78fdb7e..e359d443d 100644 --- a/visibilitylib/src/main/scala/com/twitter/visibility/configapi/configs/VisibilityDeciders.scala +++ b/visibilitylib/src/main/scala/com/twitter/visibility/configapi/configs/VisibilityDeciders.scala @@ -198,6 +198,7 @@ private[visibility] object VisibilityDeciders { TopicRecommendations -> DeciderKey.EnableTopicRecommendationsSafetyLevel, TrendsRepresentativeTweet -> DeciderKey.EnableTrendsRepresentativeTweetSafetyLevel, TrustedFriendsUserList -> DeciderKey.EnableTrustedFriendsUserListSafetyLevel, + TwitterDelegateUserList -> DeciderKey.EnableTwitterDelegateUserListSafetyLevel, TweetDetail -> DeciderKey.EnableTweetDetailSafetyLevel, TweetDetailNonToo -> DeciderKey.EnableTweetDetailNonTooSafetyLevel, TweetEngagers -> DeciderKey.EnableTweetEngagersSafetyLevel, @@ -287,7 +288,7 @@ private[visibility] object VisibilityDeciders { RuleParams.EnableDropAllTrustedFriendsTweetsRuleParam -> DeciderKey.EnableDropAllTrustedFriendsTweetsRule, RuleParams.EnableDropTrustedFriendsTweetContentRuleParam -> DeciderKey.EnableDropTrustedFriendsTweetContentRule, RuleParams.EnableDropAllCollabInvitationTweetsRuleParam -> DeciderKey.EnableDropCollabInvitationTweetsRule, - RuleParams.EnableNsfwTextTopicsDropRuleParam -> DeciderKey.EnableNsfwTextTopicsDropRule, + RuleParams.EnableNsfwTextHighPrecisionDropRuleParam -> DeciderKey.EnableNsfwTextHighPrecisionDropRule, RuleParams.EnableLikelyIvsUserLabelDropRule -> DeciderKey.EnableLikelyIvsUserLabelDropRule, RuleParams.EnableCardUriRootDomainCardDenylistRule -> DeciderKey.EnableCardUriRootDomainDenylistRule, RuleParams.EnableCommunityNonMemberPollCardRule -> DeciderKey.EnableCommunityNonMemberPollCardRule, diff --git a/visibilitylib/src/main/scala/com/twitter/visibility/configapi/params/RuleParams.scala b/visibilitylib/src/main/scala/com/twitter/visibility/configapi/params/RuleParams.scala index 44c7797b9..a4e28e690 100644 --- a/visibilitylib/src/main/scala/com/twitter/visibility/configapi/params/RuleParams.scala +++ b/visibilitylib/src/main/scala/com/twitter/visibility/configapi/params/RuleParams.scala @@ -85,7 +85,7 @@ private[visibility] object RuleParams { object EnableDropAllCollabInvitationTweetsRuleParam extends RuleParam(false) - object EnableNsfwTextTopicsDropRuleParam extends RuleParam(false) + object EnableNsfwTextHighPrecisionDropRuleParam extends RuleParam(false) object EnableLikelyIvsUserLabelDropRule extends RuleParam(false) diff --git a/visibilitylib/src/main/scala/com/twitter/visibility/configapi/params/SafetyLevelParams.scala b/visibilitylib/src/main/scala/com/twitter/visibility/configapi/params/SafetyLevelParams.scala index a8c7d9f51..ae54ffd34 100644 --- a/visibilitylib/src/main/scala/com/twitter/visibility/configapi/params/SafetyLevelParams.scala +++ b/visibilitylib/src/main/scala/com/twitter/visibility/configapi/params/SafetyLevelParams.scala @@ -186,6 +186,7 @@ private[visibility] object SafetyLevelParams { object EnableTopicRecommendationsSafetyLevelParam extends SafetyLevelParam(false) object EnableTrendsRepresentativeTweetSafetyLevelParam extends SafetyLevelParam(false) object EnableTrustedFriendsUserListSafetyLevelParam extends SafetyLevelParam(false) + object EnableTwitterDelegateUserListSafetyLevelParam extends SafetyLevelParam(false) object EnableTweetDetailSafetyLevelParam extends SafetyLevelParam(false) object EnableTweetDetailNonTooSafetyLevelParam extends SafetyLevelParam(false) object EnableTweetDetailWithInjectionsHydrationSafetyLevelParam extends SafetyLevelParam(false) diff --git a/visibilitylib/src/main/scala/com/twitter/visibility/engine/VisibilityRuleEngine.scala b/visibilitylib/src/main/scala/com/twitter/visibility/engine/VisibilityRuleEngine.scala index 6043f3649..d1c33017b 100644 --- a/visibilitylib/src/main/scala/com/twitter/visibility/engine/VisibilityRuleEngine.scala +++ b/visibilitylib/src/main/scala/com/twitter/visibility/engine/VisibilityRuleEngine.scala @@ -143,7 +143,7 @@ class VisibilityRuleEngine private[VisibilityRuleEngine] ( builder.withRuleResult(rule, RuleResult(builder.verdict, ShortCircuited)) } else { - if (rule.fallbackActionBuilder.nonEmpty) { + if (failedFeatureDependencies.nonEmpty && rule.fallbackActionBuilder.nonEmpty) { metricsRecorder.recordRuleFallbackAction(rule.name) } diff --git a/visibilitylib/src/main/scala/com/twitter/visibility/models/SafetyLevel.scala b/visibilitylib/src/main/scala/com/twitter/visibility/models/SafetyLevel.scala index 9042b9328..805b17497 100644 --- a/visibilitylib/src/main/scala/com/twitter/visibility/models/SafetyLevel.scala +++ b/visibilitylib/src/main/scala/com/twitter/visibility/models/SafetyLevel.scala @@ -194,6 +194,7 @@ object SafetyLevel { ThriftSafetyLevel.TopicsLandingPageTopicRecommendations -> TopicsLandingPageTopicRecommendations, ThriftSafetyLevel.TrendsRepresentativeTweet -> TrendsRepresentativeTweet, ThriftSafetyLevel.TrustedFriendsUserList -> TrustedFriendsUserList, + ThriftSafetyLevel.TwitterDelegateUserList -> TwitterDelegateUserList, ThriftSafetyLevel.GryphonDecksAndColumns -> GryphonDecksAndColumns, ThriftSafetyLevel.TweetDetail -> TweetDetail, ThriftSafetyLevel.TweetDetailNonToo -> TweetDetailNonToo, @@ -772,6 +773,9 @@ object SafetyLevel { case object TrustedFriendsUserList extends SafetyLevel { override val enabledParam: SafetyLevelParam = EnableTrustedFriendsUserListSafetyLevelParam } + case object TwitterDelegateUserList extends SafetyLevel { + override val enabledParam: SafetyLevelParam = EnableTwitterDelegateUserListSafetyLevelParam + } case object TweetDetail extends SafetyLevel { override val enabledParam: SafetyLevelParam = EnableTweetDetailSafetyLevelParam } diff --git a/visibilitylib/src/main/scala/com/twitter/visibility/models/SafetyLevelGroup.scala b/visibilitylib/src/main/scala/com/twitter/visibility/models/SafetyLevelGroup.scala index e60daefd1..a9ebfa85c 100644 --- a/visibilitylib/src/main/scala/com/twitter/visibility/models/SafetyLevelGroup.scala +++ b/visibilitylib/src/main/scala/com/twitter/visibility/models/SafetyLevelGroup.scala @@ -379,13 +379,6 @@ object SafetyLevelGroup { ) } - case object ProfileMixer extends SafetyLevelGroup { - override val levels: Set[SafetyLevel] = Set( - ProfileMixerMedia, - ProfileMixerFavorites, - ) - } - case object Reactions extends SafetyLevelGroup { override val levels: Set[SafetyLevel] = Set( SignalsReactions, @@ -516,6 +509,10 @@ object SafetyLevelGroup { SafetyLevel.TimelineProfile, TimelineProfileAll, TimelineProfileSpaces, + TimelineMedia, + ProfileMixerMedia, + TimelineFavorites, + ProfileMixerFavorites ) } diff --git a/visibilitylib/src/main/scala/com/twitter/visibility/models/SpaceSafetyLabelType.scala b/visibilitylib/src/main/scala/com/twitter/visibility/models/SpaceSafetyLabelType.scala index 432650dfd..bab719e21 100644 --- a/visibilitylib/src/main/scala/com/twitter/visibility/models/SpaceSafetyLabelType.scala +++ b/visibilitylib/src/main/scala/com/twitter/visibility/models/SpaceSafetyLabelType.scala @@ -36,8 +36,8 @@ object SpaceSafetyLabelType extends SafetyLabelType { s.SpaceSafetyLabelType.HatefulHighRecall -> HatefulHighRecall, s.SpaceSafetyLabelType.ViolenceHighRecall -> ViolenceHighRecall, s.SpaceSafetyLabelType.HighToxicityModelScore -> HighToxicityModelScore, - s.SpaceSafetyLabelType.UkraineCrisisTopic -> UkraineCrisisTopic, - s.SpaceSafetyLabelType.DoNotPublicPublish -> DoNotPublicPublish, + s.SpaceSafetyLabelType.DeprecatedSpaceSafetyLabel14 -> Deprecated, + s.SpaceSafetyLabelType.DeprecatedSpaceSafetyLabel15 -> Deprecated, s.SpaceSafetyLabelType.Reserved16 -> Deprecated, s.SpaceSafetyLabelType.Reserved17 -> Deprecated, s.SpaceSafetyLabelType.Reserved18 -> Deprecated, @@ -69,10 +69,6 @@ object SpaceSafetyLabelType extends SafetyLabelType { case object ViolenceHighRecall extends SpaceSafetyLabelType case object HighToxicityModelScore extends SpaceSafetyLabelType - case object UkraineCrisisTopic extends SpaceSafetyLabelType - - case object DoNotPublicPublish extends SpaceSafetyLabelType - case object Deprecated extends SpaceSafetyLabelType case object Unknown extends SpaceSafetyLabelType diff --git a/visibilitylib/src/main/scala/com/twitter/visibility/rules/FreedomOfSpeechNotReach.scala b/visibilitylib/src/main/scala/com/twitter/visibility/rules/FreedomOfSpeechNotReach.scala index ba2861e60..03e094025 100644 --- a/visibilitylib/src/main/scala/com/twitter/visibility/rules/FreedomOfSpeechNotReach.scala +++ b/visibilitylib/src/main/scala/com/twitter/visibility/rules/FreedomOfSpeechNotReach.scala @@ -3,6 +3,7 @@ package com.twitter.visibility.rules import com.twitter.spam.rtf.thriftscala.SafetyResultReason import com.twitter.util.Memoize import com.twitter.visibility.common.actions.AppealableReason +import com.twitter.visibility.common.actions.AvoidReason.MightNotBeSuitableForAds import com.twitter.visibility.common.actions.LimitedEngagementReason import com.twitter.visibility.common.actions.SoftInterventionDisplayType import com.twitter.visibility.common.actions.SoftInterventionReason @@ -440,36 +441,6 @@ object FreedomOfSpeechNotReachActions { } } - case class ConversationSectionAbusiveQualityAction( - violationLevel: ViolationLevel = DefaultViolationLevel) - extends FreedomOfSpeechNotReachActionBuilder[ConversationSectionAbusiveQuality.type] { - - override def actionType: Class[_] = ConversationSectionAbusiveQuality.getClass - - override val actionSeverity = 5 - private def toRuleResult: Reason => RuleResult = Memoize { r => - RuleResult(ConversationSectionAbusiveQuality, Evaluated) - } - - def build(evaluationContext: EvaluationContext, featureMap: Map[Feature[_], _]): RuleResult = { - val appealableReason = - FreedomOfSpeechNotReach.extractTweetSafetyLabel(featureMap).map(_.labelType) match { - case Some(label) => - FreedomOfSpeechNotReach.eligibleTweetSafetyLabelTypesToAppealableReason( - label, - violationLevel) - case _ => - AppealableReason.Unspecified(violationLevel.level) - } - - toRuleResult(Reason.fromAppealableReason(appealableReason)) - } - - override def withViolationLevel(violationLevel: ViolationLevel) = { - copy(violationLevel = violationLevel) - } - } - case class SoftInterventionAvoidAction(violationLevel: ViolationLevel = DefaultViolationLevel) extends FreedomOfSpeechNotReachActionBuilder[TweetInterstitial] { @@ -662,6 +633,9 @@ object FreedomOfSpeechNotReachRules { override def enabled: Seq[RuleParam[Boolean]] = Seq(EnableFosnrRuleParam, FosnrRulesEnabledParam) + + override val fallbackActionBuilder: Option[ActionBuilder[_ <: Action]] = Some( + new ConstantActionBuilder(Avoid(Some(MightNotBeSuitableForAds)))) } case class ViewerIsNonFollowerNonAuthorAndTweetHasViolationOfLevel( @@ -678,6 +652,9 @@ object FreedomOfSpeechNotReachRules { override def enabled: Seq[RuleParam[Boolean]] = Seq(EnableFosnrRuleParam, FosnrRulesEnabledParam) + + override val fallbackActionBuilder: Option[ActionBuilder[_ <: Action]] = Some( + new ConstantActionBuilder(Avoid(Some(MightNotBeSuitableForAds)))) } case class ViewerIsNonAuthorAndTweetHasViolationOfLevel( @@ -692,6 +669,9 @@ object FreedomOfSpeechNotReachRules { override def enabled: Seq[RuleParam[Boolean]] = Seq(EnableFosnrRuleParam, FosnrRulesEnabledParam) + + override val fallbackActionBuilder: Option[ActionBuilder[_ <: Action]] = Some( + new ConstantActionBuilder(Avoid(Some(MightNotBeSuitableForAds)))) } case object TweetHasViolationOfAnyLevelFallbackDropRule diff --git a/visibilitylib/src/main/scala/com/twitter/visibility/rules/RuleBase.scala b/visibilitylib/src/main/scala/com/twitter/visibility/rules/RuleBase.scala index 66cbae0d1..e4b99a259 100644 --- a/visibilitylib/src/main/scala/com/twitter/visibility/rules/RuleBase.scala +++ b/visibilitylib/src/main/scala/com/twitter/visibility/rules/RuleBase.scala @@ -188,6 +188,7 @@ object RuleBase { TopicRecommendations -> TopicRecommendationsPolicy, TrendsRepresentativeTweet -> TrendsRepresentativeTweetPolicy, TrustedFriendsUserList -> TrustedFriendsUserListPolicy, + TwitterDelegateUserList -> TwitterDelegateUserListPolicy, TweetDetail -> TweetDetailPolicy, TweetDetailNonToo -> TweetDetailNonTooPolicy, TweetDetailWithInjectionsHydration -> TweetDetailWithInjectionsHydrationPolicy, diff --git a/visibilitylib/src/main/scala/com/twitter/visibility/rules/TweetLabelRules.scala b/visibilitylib/src/main/scala/com/twitter/visibility/rules/TweetLabelRules.scala index 11f2ef7f5..bcee096f5 100644 --- a/visibilitylib/src/main/scala/com/twitter/visibility/rules/TweetLabelRules.scala +++ b/visibilitylib/src/main/scala/com/twitter/visibility/rules/TweetLabelRules.scala @@ -144,6 +144,9 @@ object NsfwCardImageAvoidAllUsersTweetLabelRule action = Avoid(Some(AvoidReason.ContainsNsfwMedia)), ) { override def enabled: Seq[RuleParam[Boolean]] = Seq(EnableAvoidNsfwRulesParam) + + override val fallbackActionBuilder: Option[ActionBuilder[_ <: Action]] = Some( + new ConstantActionBuilder(Avoid(Some(MightNotBeSuitableForAds)))) } object NsfwCardImageAvoidAdPlacementAllUsersTweetLabelRule @@ -247,6 +250,9 @@ object GoreAndViolenceHighPrecisionAvoidAllUsersTweetLabelRule TweetSafetyLabelType.GoreAndViolenceHighPrecision ) { override def enabled: Seq[RuleParam[Boolean]] = Seq(EnableAvoidNsfwRulesParam) + + override val fallbackActionBuilder: Option[ActionBuilder[_ <: Action]] = Some( + new ConstantActionBuilder(Avoid(Some(MightNotBeSuitableForAds)))) } object GoreAndViolenceHighPrecisionAllUsersTweetLabelRule @@ -266,6 +272,9 @@ object NsfwReportedHeuristicsAvoidAllUsersTweetLabelRule TweetSafetyLabelType.NsfwReportedHeuristics ) { override def enabled: Seq[RuleParam[Boolean]] = Seq(EnableAvoidNsfwRulesParam) + + override val fallbackActionBuilder: Option[ActionBuilder[_ <: Action]] = Some( + new ConstantActionBuilder(Avoid(Some(MightNotBeSuitableForAds)))) } object NsfwReportedHeuristicsAvoidAdPlacementAllUsersTweetLabelRule @@ -274,6 +283,9 @@ object NsfwReportedHeuristicsAvoidAdPlacementAllUsersTweetLabelRule TweetSafetyLabelType.NsfwReportedHeuristics ) { override def enabled: Seq[RuleParam[Boolean]] = Seq(EnableAvoidNsfwRulesParam) + + override val fallbackActionBuilder: Option[ActionBuilder[_ <: Action]] = Some( + new ConstantActionBuilder(Avoid(Some(MightNotBeSuitableForAds)))) } object NsfwReportedHeuristicsAllUsersTweetLabelRule @@ -294,6 +306,9 @@ object GoreAndViolenceReportedHeuristicsAvoidAllUsersTweetLabelRule TweetSafetyLabelType.GoreAndViolenceReportedHeuristics ) { override def enabled: Seq[RuleParam[Boolean]] = Seq(EnableAvoidNsfwRulesParam) + + override val fallbackActionBuilder: Option[ActionBuilder[_ <: Action]] = Some( + new ConstantActionBuilder(Avoid(Some(MightNotBeSuitableForAds)))) } object GoreAndViolenceReportedHeuristicsAvoidAdPlacementAllUsersTweetLabelRule @@ -302,6 +317,9 @@ object GoreAndViolenceReportedHeuristicsAvoidAdPlacementAllUsersTweetLabelRule TweetSafetyLabelType.GoreAndViolenceReportedHeuristics ) { override def enabled: Seq[RuleParam[Boolean]] = Seq(EnableAvoidNsfwRulesParam) + + override val fallbackActionBuilder: Option[ActionBuilder[_ <: Action]] = Some( + new ConstantActionBuilder(Avoid(Some(MightNotBeSuitableForAds)))) } object GoreAndViolenceHighPrecisionAllUsersTweetLabelDropRule @@ -791,7 +809,7 @@ object SkipTweetDetailLimitedEngagementTweetLabelRule object DynamicProductAdDropTweetLabelRule extends TweetHasLabelRule(Drop(Unspecified), TweetSafetyLabelType.DynamicProductAd) -object NsfwTextTweetLabelTopicsDropRule +object NsfwTextHighPrecisionTweetLabelDropRule extends RuleWithConstantAction( Drop(Reason.Nsfw), And( @@ -803,7 +821,7 @@ object NsfwTextTweetLabelTopicsDropRule ) ) with DoesLogVerdict { - override def enabled: Seq[RuleParam[Boolean]] = Seq(EnableNsfwTextTopicsDropRuleParam) + override def enabled: Seq[RuleParam[Boolean]] = Seq(EnableNsfwTextHighPrecisionDropRuleParam) override def actionSourceBuilder: Option[RuleActionSourceBuilder] = Some( TweetSafetyLabelSourceBuilder(TweetSafetyLabelType.NsfwTextHighPrecision)) } @@ -832,7 +850,10 @@ object DoNotAmplifyTweetLabelAvoidRule extends TweetHasLabelRule( Avoid(), TweetSafetyLabelType.DoNotAmplify - ) + ) { + override val fallbackActionBuilder: Option[ActionBuilder[_ <: Action]] = Some( + new ConstantActionBuilder(Avoid(Some(MightNotBeSuitableForAds)))) +} object NsfaHighPrecisionTweetLabelAvoidRule extends TweetHasLabelRule( diff --git a/visibilitylib/src/main/scala/com/twitter/visibility/rules/VisibilityPolicy.scala b/visibilitylib/src/main/scala/com/twitter/visibility/rules/VisibilityPolicy.scala index 1ff0eaada..e1dcbf88a 100644 --- a/visibilitylib/src/main/scala/com/twitter/visibility/rules/VisibilityPolicy.scala +++ b/visibilitylib/src/main/scala/com/twitter/visibility/rules/VisibilityPolicy.scala @@ -776,7 +776,10 @@ case object MagicRecsPolicy tweetRules = MagicRecsPolicyOverrides.union( RecommendationsPolicy.tweetRules.filterNot(_ == SafetyCrisisLevel3DropRule), NotificationsIbisPolicy.tweetRules, - Seq(NsfaHighRecallTweetLabelRule, NsfwHighRecallTweetLabelRule), + Seq( + NsfaHighRecallTweetLabelRule, + NsfwHighRecallTweetLabelRule, + NsfwTextHighPrecisionTweetLabelDropRule), Seq( AuthorBlocksViewerDropRule, ViewerBlocksAuthorRule, @@ -1171,7 +1174,7 @@ case object ReturningUserExperiencePolicy NsfwHighRecallTweetLabelRule, NsfwVideoTweetLabelDropRule, NsfwTextTweetLabelDropRule, - NsfwTextTweetLabelTopicsDropRule, + NsfwTextHighPrecisionTweetLabelDropRule, SpamHighRecallTweetLabelDropRule, DuplicateContentTweetLabelDropRule, GoreAndViolenceTweetLabelRule, @@ -1785,6 +1788,14 @@ case object TimelineListsPolicy NsfwReportedHeuristicsAllUsersTweetLabelRule, GoreAndViolenceReportedHeuristicsAllUsersTweetLabelRule, NsfwCardImageAllUsersTweetLabelRule, + NsfwHighPrecisionTweetLabelAvoidRule, + NsfwHighRecallTweetLabelAvoidRule, + GoreAndViolenceHighPrecisionAvoidAllUsersTweetLabelRule, + NsfwReportedHeuristicsAvoidAllUsersTweetLabelRule, + GoreAndViolenceReportedHeuristicsAvoidAllUsersTweetLabelRule, + NsfwCardImageAvoidAllUsersTweetLabelRule, + DoNotAmplifyTweetLabelAvoidRule, + NsfaHighPrecisionTweetLabelAvoidRule, ) ++ LimitedEngagementBaseRules.tweetRules ) @@ -2132,7 +2143,13 @@ case object TimelineHomePolicy userRules = Seq( ViewerMutesAuthorRule, ViewerBlocksAuthorRule, - DeciderableAuthorBlocksViewerDropRule + DeciderableAuthorBlocksViewerDropRule, + ProtectedAuthorDropRule, + SuspendedAuthorRule, + DeactivatedAuthorRule, + ErasedAuthorRule, + OffboardedAuthorRule, + DropTakendownUserRule ), policyRuleParams = SensitiveMediaSettingsTimelineHomeBaseRules.policyRuleParams ) @@ -2171,7 +2188,13 @@ case object BaseTimelineHomePolicy userRules = Seq( ViewerMutesAuthorRule, ViewerBlocksAuthorRule, - DeciderableAuthorBlocksViewerDropRule + DeciderableAuthorBlocksViewerDropRule, + ProtectedAuthorDropRule, + SuspendedAuthorRule, + DeactivatedAuthorRule, + ErasedAuthorRule, + OffboardedAuthorRule, + DropTakendownUserRule ) ) @@ -2255,7 +2278,13 @@ case object TimelineHomeLatestPolicy userRules = Seq( ViewerMutesAuthorRule, ViewerBlocksAuthorRule, - DeciderableAuthorBlocksViewerDropRule + DeciderableAuthorBlocksViewerDropRule, + ProtectedAuthorDropRule, + SuspendedAuthorRule, + DeactivatedAuthorRule, + ErasedAuthorRule, + OffboardedAuthorRule, + DropTakendownUserRule ), policyRuleParams = SensitiveMediaSettingsTimelineHomeBaseRules.policyRuleParams ) @@ -3283,7 +3312,7 @@ case object TopicRecommendationsPolicy tweetRules = Seq( NsfwHighRecallTweetLabelRule, - NsfwTextTweetLabelTopicsDropRule + NsfwTextHighPrecisionTweetLabelDropRule ) ++ RecommendationsPolicy.tweetRules, userRules = RecommendationsPolicy.userRules @@ -3536,6 +3565,17 @@ case object TrustedFriendsUserListPolicy ) ) +case object TwitterDelegateUserListPolicy + extends VisibilityPolicy( + userRules = Seq( + ViewerBlocksAuthorRule, + ViewerIsAuthorDropRule, + DeactivatedAuthorRule, + AuthorBlocksViewerDropRule + ), + tweetRules = Seq(DropAllRule) + ) + case object QuickPromoteTweetEligibilityPolicy extends VisibilityPolicy( tweetRules = TweetDetailPolicy.tweetRules, diff --git a/visibilitylib/src/main/scala/com/twitter/visibility/rules/generators/TweetRuleGenerator.scala b/visibilitylib/src/main/scala/com/twitter/visibility/rules/generators/TweetRuleGenerator.scala index 6bdb965a1..90db70006 100644 --- a/visibilitylib/src/main/scala/com/twitter/visibility/rules/generators/TweetRuleGenerator.scala +++ b/visibilitylib/src/main/scala/com/twitter/visibility/rules/generators/TweetRuleGenerator.scala @@ -100,30 +100,6 @@ object TweetRuleGenerator { FreedomOfSpeechNotReachActions.SoftInterventionAvoidLimitedEngagementsAction( limitedActionStrings = Some(level3LimitedActions)) ) - .addSafetyLevelRule( - SafetyLevel.TimelineMedia, - FreedomOfSpeechNotReachActions - .SoftInterventionAvoidLimitedEngagementsAction(limitedActionStrings = - Some(level3LimitedActions)) - ) - .addSafetyLevelRule( - SafetyLevel.ProfileMixerMedia, - FreedomOfSpeechNotReachActions - .SoftInterventionAvoidLimitedEngagementsAction(limitedActionStrings = - Some(level3LimitedActions)) - ) - .addSafetyLevelRule( - SafetyLevel.TimelineFavorites, - FreedomOfSpeechNotReachActions - .SoftInterventionAvoidLimitedEngagementsAction(limitedActionStrings = - Some(level3LimitedActions)) - ) - .addSafetyLevelRule( - SafetyLevel.ProfileMixerFavorites, - FreedomOfSpeechNotReachActions - .SoftInterventionAvoidLimitedEngagementsAction(limitedActionStrings = - Some(level3LimitedActions)) - ) .build, UserType.Author -> TweetVisibilityPolicy .builder() @@ -159,30 +135,6 @@ object TweetRuleGenerator { .InterstitialLimitedEngagementsAvoidAction(limitedActionStrings = Some(level3LimitedActions)) ) - .addSafetyLevelRule( - SafetyLevel.TimelineMedia, - FreedomOfSpeechNotReachActions - .InterstitialLimitedEngagementsAvoidAction(limitedActionStrings = - Some(level3LimitedActions)) - ) - .addSafetyLevelRule( - SafetyLevel.ProfileMixerMedia, - FreedomOfSpeechNotReachActions - .InterstitialLimitedEngagementsAvoidAction(limitedActionStrings = - Some(level3LimitedActions)) - ) - .addSafetyLevelRule( - SafetyLevel.TimelineFavorites, - FreedomOfSpeechNotReachActions - .InterstitialLimitedEngagementsAvoidAction(limitedActionStrings = - Some(level3LimitedActions)) - ) - .addSafetyLevelRule( - SafetyLevel.ProfileMixerFavorites, - FreedomOfSpeechNotReachActions - .InterstitialLimitedEngagementsAvoidAction(limitedActionStrings = - Some(level3LimitedActions)) - ) .build, ), )