diff --git a/src/python/twitter/deepbird/projects/timelines/scripts/models/earlybird/lolly/score.py b/src/python/twitter/deepbird/projects/timelines/scripts/models/earlybird/lolly/score.py index 5692616c2..13bbbf5c9 100644 --- a/src/python/twitter/deepbird/projects/timelines/scripts/models/earlybird/lolly/score.py +++ b/src/python/twitter/deepbird/projects/timelines/scripts/models/earlybird/lolly/score.py @@ -10,4 +10,4 @@ if __name__ == "__main__": lolly_model_scorer = LollyModelScorer(data_example_parser=DBv2DataExampleParser(lolly_model_reader)) score = lolly_model_scorer.score(data_example=sys.argv[2]) - print(score) + diff --git a/trust_and_safety_models/abusive/abusive_model.py b/trust_and_safety_models/abusive/abusive_model.py index 06fff4ed2..fe83a7f88 100644 --- a/trust_and_safety_models/abusive/abusive_model.py +++ b/trust_and_safety_models/abusive/abusive_model.py @@ -31,7 +31,7 @@ ptos_prototype = Model( export_path="...", features=features, ) -print(ptos_prototype) + cq_loader = BigQueryFeatureLoader(gcp_project=COMPUTE_PROJECT) labels = [ @@ -58,7 +58,6 @@ SELECT ... """ -print(train_query) train = cq_loader.load_features(ptos_prototype, "", "", custom_query=train_query) val = cq_loader.load_features(ptos_prototype, "", "", custom_query=val_query) print(train.describe(model=ptos_prototype)) @@ -105,7 +104,7 @@ def get_positive_weights(): return pos_weight_tensor pos_weight_tensor = get_positive_weights() -print(pos_weight_tensor) + class TextEncoderPooledOutput(TextEncoder): def call(self, x): @@ -224,7 +223,6 @@ SELECT test = cq_loader.load_features(ptos_prototype, "", "", custom_query=test_query) test = test.to_tf_dataset().map(parse_labeled_data) -print(test) test_only_media = test.filter(lambda x, y: tf.equal(x["has_media"], True)) test_only_nsfw = test.filter(lambda x, y: tf.greater_equal(x["precision_nsfw"], 0.95)) @@ -268,7 +266,6 @@ for name, df in subsets.items(): metrics[name] = eval_model(candidate_model, df) [(name, m.pr_auc) for name, m in metrics.items()] for name, x in [(name, m.pr_auc.to_string(index=False).strip().split("\n")) for name, m in metrics.items()]: - print(name) for y in x: print(y.strip(), end="\t") print(".") diff --git a/trust_and_safety_models/nsfw/nsfw_media.py b/trust_and_safety_models/nsfw/nsfw_media.py index b5dfebb65..8734ef5c5 100644 --- a/trust_and_safety_models/nsfw/nsfw_media.py +++ b/trust_and_safety_models/nsfw/nsfw_media.py @@ -406,7 +406,6 @@ precision, recall, thresholds = pr auc_precision_recall = sklearn.metrics.auc(recall, precision) -print(auc_precision_recall) plt.figure(figsize=(15, 10)) plt.plot(recall, precision) @@ -415,12 +414,10 @@ plt.xlabel("recall") plt.ylabel("precision") ptAt50 = get_point_for_recall(0.5, recall, precision) -print(ptAt50) plt.plot( [ptAt50[0],ptAt50[0]], [0,ptAt50[1]], 'r') plt.plot([0, ptAt50[0]], [ptAt50[1], ptAt50[1]], 'r') ptAt90 = get_point_for_recall(0.9, recall, precision) -print(ptAt90) plt.plot( [ptAt90[0],ptAt90[0]], [0,ptAt90[1]], 'b') plt.plot([0, ptAt90[0]], [ptAt90[1], ptAt90[1]], 'b') @@ -437,7 +434,6 @@ plt.savefig('recall_precision_nsfw_Keras_with_twitter_CLIP_MU_test.pdf') precision, recall, thresholds = pr_sens_prev auc_precision_recall = sklearn.metrics.auc(recall, precision) -print(auc_precision_recall) plt.figure(figsize=(15, 10)) plt.plot(recall, precision) @@ -446,12 +442,10 @@ plt.xlabel("recall") plt.ylabel("precision") ptAt50 = get_point_for_recall(0.5, recall, precision) -print(ptAt50) plt.plot( [ptAt50[0],ptAt50[0]], [0,ptAt50[1]], 'r') plt.plot([0, ptAt50[0]], [ptAt50[1], ptAt50[1]], 'r') ptAt90 = get_point_for_recall(0.9, recall, precision) -print(ptAt90) plt.plot( [ptAt90[0],ptAt90[0]], [0,ptAt90[1]], 'b') plt.plot([0, ptAt90[0]], [ptAt90[1], ptAt90[1]], 'b') diff --git a/trust_and_safety_models/toxicity/train.py b/trust_and_safety_models/toxicity/train.py index de450ee7b..3d9ca4e35 100644 --- a/trust_and_safety_models/toxicity/train.py +++ b/trust_and_safety_models/toxicity/train.py @@ -98,7 +98,6 @@ class Trainer(object): for var, default_value in experiment_settings["default"].items(): override_val = experiment_settings[experiment_id].get(var, default_value) - print("Setting ", var, override_val) self.__setattr__(var, override_val) self.content_loss_weight = content_loss_weight if self.dual_head else None