mirror of
https://github.com/twitter/the-algorithm.git
synced 2025-01-07 01:48:16 +01:00
Merge 858525b9d8
into 72eda9a24f
This commit is contained in:
commit
d03bf89cbf
@ -6,8 +6,8 @@ import sys
|
|||||||
from urllib.parse import urlsplit
|
from urllib.parse import urlsplit
|
||||||
|
|
||||||
import apache_beam as beam
|
import apache_beam as beam
|
||||||
from apache_beam.options.pipeline_options import PipelineOptions
|
|
||||||
import faiss
|
import faiss
|
||||||
|
from apache_beam.options.pipeline_options import PipelineOptions
|
||||||
|
|
||||||
|
|
||||||
def parse_d6w_config(argv=None):
|
def parse_d6w_config(argv=None):
|
||||||
@ -160,8 +160,8 @@ class MergeAndBuildIndex(beam.CombineFn):
|
|||||||
import subprocess
|
import subprocess
|
||||||
|
|
||||||
import faiss
|
import faiss
|
||||||
from google.cloud import storage
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from google.cloud import storage
|
||||||
|
|
||||||
client = storage.Client()
|
client = storage.Client()
|
||||||
bucket = client.get_bucket(self.bucket_name)
|
bucket = client.get_bucket(self.bucket_name)
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
# checkstyle: noqa
|
# checkstyle: noqa
|
||||||
import tensorflow.compat.v1 as tf
|
import tensorflow.compat.v1 as tf
|
||||||
|
|
||||||
from .constants import INDEX_BY_LABEL, LABEL_NAMES
|
from .constants import INDEX_BY_LABEL, LABEL_NAMES
|
||||||
|
|
||||||
# TODO: Read these from command line arguments, since they specify the existing example weights in the input data.
|
# TODO: Read these from command line arguments, since they specify the existing example weights in the input data.
|
||||||
|
@ -1,7 +1,9 @@
|
|||||||
# checkstyle: noqa
|
# checkstyle: noqa
|
||||||
import tensorflow.compat.v1 as tf
|
import tensorflow.compat.v1 as tf
|
||||||
|
|
||||||
from ..constants import EB_SCORE_IDX
|
from ..constants import EB_SCORE_IDX
|
||||||
|
|
||||||
|
|
||||||
# The rationale behind this logic is available at TQ-9678.
|
# The rationale behind this logic is available at TQ-9678.
|
||||||
def get_lolly_logits(labels):
|
def get_lolly_logits(labels):
|
||||||
'''
|
'''
|
||||||
|
@ -4,7 +4,6 @@ from .parsers import DBv2DataExampleParser
|
|||||||
from .reader import LollyModelReader
|
from .reader import LollyModelReader
|
||||||
from .scorer import LollyModelScorer
|
from .scorer import LollyModelScorer
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
lolly_model_reader = LollyModelReader(lolly_model_file_path=sys.argv[1])
|
lolly_model_reader = LollyModelReader(lolly_model_file_path=sys.argv[1])
|
||||||
lolly_model_scorer = LollyModelScorer(data_example_parser=DBv2DataExampleParser(lolly_model_reader))
|
lolly_model_scorer = LollyModelScorer(data_example_parser=DBv2DataExampleParser(lolly_model_reader))
|
||||||
|
@ -1,10 +1,13 @@
|
|||||||
# checkstyle: noqa
|
# checkstyle: noqa
|
||||||
import tensorflow.compat.v1 as tf
|
|
||||||
from collections import OrderedDict
|
from collections import OrderedDict
|
||||||
|
|
||||||
|
import tensorflow.compat.v1 as tf
|
||||||
|
|
||||||
|
import twml
|
||||||
|
|
||||||
from .constants import EB_SCORE_IDX
|
from .constants import EB_SCORE_IDX
|
||||||
from .lolly.data_helpers import get_lolly_scores
|
from .lolly.data_helpers import get_lolly_scores
|
||||||
|
|
||||||
import twml
|
|
||||||
|
|
||||||
def get_multi_binary_class_metric_fn(metrics, classes=None, class_dim=1):
|
def get_multi_binary_class_metric_fn(metrics, classes=None, class_dim=1):
|
||||||
"""
|
"""
|
||||||
|
@ -1,7 +1,8 @@
|
|||||||
from .hashing_utils import make_feature_id
|
import numpy as np
|
||||||
|
|
||||||
from twml.contrib.layers.hashing_discretizer import HashingDiscretizer
|
from twml.contrib.layers.hashing_discretizer import HashingDiscretizer
|
||||||
import numpy as np
|
|
||||||
|
from .hashing_utils import make_feature_id
|
||||||
|
|
||||||
|
|
||||||
class TFModelDiscretizerBuilder(object):
|
class TFModelDiscretizerBuilder(object):
|
||||||
|
@ -1,6 +1,5 @@
|
|||||||
from twitter.deepbird.io.util import _get_feature_id
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from twitter.deepbird.io.util import _get_feature_id
|
||||||
|
|
||||||
|
|
||||||
def numpy_hashing_uniform(the_id, bin_idx, output_bits):
|
def numpy_hashing_uniform(the_id, bin_idx, output_bits):
|
||||||
|
@ -1,9 +1,10 @@
|
|||||||
from .hashing_utils import make_feature_id, numpy_hashing_uniform
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow.compat.v1 as tf
|
import tensorflow.compat.v1 as tf
|
||||||
|
|
||||||
import twml
|
import twml
|
||||||
|
|
||||||
|
from .hashing_utils import make_feature_id, numpy_hashing_uniform
|
||||||
|
|
||||||
|
|
||||||
class TFModelWeightsInitializerBuilder(object):
|
class TFModelWeightsInitializerBuilder(object):
|
||||||
def __init__(self, num_bits):
|
def __init__(self, num_bits):
|
||||||
|
@ -1,26 +1,32 @@
|
|||||||
# checkstyle: noqa
|
# checkstyle: noqa
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
import tensorflow.compat.v1 as tf
|
import tensorflow.compat.v1 as tf
|
||||||
from tensorflow.python.estimator.export.export import build_raw_serving_input_receiver_fn
|
import tensorflow_hub as hub
|
||||||
|
from tensorflow.compat.v1 import logging
|
||||||
|
from tensorflow.python.estimator.export.export import (
|
||||||
|
build_raw_serving_input_receiver_fn,
|
||||||
|
)
|
||||||
from tensorflow.python.framework import dtypes
|
from tensorflow.python.framework import dtypes
|
||||||
from tensorflow.python.ops import array_ops
|
from tensorflow.python.ops import array_ops
|
||||||
import tensorflow_hub as hub
|
|
||||||
|
|
||||||
from datetime import datetime
|
|
||||||
from tensorflow.compat.v1 import logging
|
|
||||||
from twitter.deepbird.projects.timelines.configs import all_configs
|
from twitter.deepbird.projects.timelines.configs import all_configs
|
||||||
|
|
||||||
|
import twml
|
||||||
|
from twml.contrib.calibrators.common_calibrators import (
|
||||||
|
build_percentile_discretizer_graph,
|
||||||
|
calibrate_discretizer_and_export,
|
||||||
|
)
|
||||||
from twml.trainers import DataRecordTrainer
|
from twml.trainers import DataRecordTrainer
|
||||||
from twml.contrib.calibrators.common_calibrators import build_percentile_discretizer_graph
|
|
||||||
from twml.contrib.calibrators.common_calibrators import calibrate_discretizer_and_export
|
from .constants import PREDICTED_CLASSES, TARGET_LABEL_IDX
|
||||||
from .metrics import get_multi_binary_class_metric_fn
|
|
||||||
from .constants import TARGET_LABEL_IDX, PREDICTED_CLASSES
|
|
||||||
from .example_weights import add_weight_arguments, make_weights_tensor
|
from .example_weights import add_weight_arguments, make_weights_tensor
|
||||||
from .lolly.data_helpers import get_lolly_logits
|
from .lolly.data_helpers import get_lolly_logits
|
||||||
from .lolly.tf_model_initializer_builder import TFModelInitializerBuilder
|
|
||||||
from .lolly.reader import LollyModelReader
|
from .lolly.reader import LollyModelReader
|
||||||
|
from .lolly.tf_model_initializer_builder import TFModelInitializerBuilder
|
||||||
|
from .metrics import get_multi_binary_class_metric_fn
|
||||||
from .tf_model.discretizer_builder import TFModelDiscretizerBuilder
|
from .tf_model.discretizer_builder import TFModelDiscretizerBuilder
|
||||||
from .tf_model.weights_initializer_builder import TFModelWeightsInitializerBuilder
|
from .tf_model.weights_initializer_builder import TFModelWeightsInitializerBuilder
|
||||||
|
|
||||||
import twml
|
|
||||||
|
|
||||||
def get_feature_values(features_values, params):
|
def get_feature_values(features_values, params):
|
||||||
if params.lolly_model_tsv:
|
if params.lolly_model_tsv:
|
||||||
|
@ -1,19 +1,45 @@
|
|||||||
|
import datetime
|
||||||
|
import os
|
||||||
|
from dataclasses import asdict
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
import tensorflow_hub as hub
|
||||||
|
import utils
|
||||||
|
import wandb
|
||||||
|
|
||||||
|
try:
|
||||||
|
wandb_key = ...
|
||||||
|
wandb.login(...)
|
||||||
|
run = wandb.init(project='ptos_with_media',
|
||||||
|
group='new-split-trains',
|
||||||
|
notes='tweet text with only (num_media, precision_nsfw). on full train set, new split.',
|
||||||
|
entity='absv',
|
||||||
|
config=params,
|
||||||
|
name='tweet-text-w-nsfw-1.1',
|
||||||
|
sync_tensorboard=True)
|
||||||
|
except FileNotFoundError:
|
||||||
|
print('Wandb key not found')
|
||||||
|
run = wandb.init(mode='disabled')
|
||||||
|
|
||||||
|
|
||||||
|
from notebook_eval_utils import EvalConfig, SparseMultilabelEvaluator
|
||||||
|
from twitter.cuad.representation.models.optimization import create_optimizer
|
||||||
|
from twitter.cuad.representation.models.text_encoder import TextEncoder
|
||||||
|
from twitter.hmli.nimbus.modeling.feature_encoder import FeatureEncoder
|
||||||
|
from twitter.hmli.nimbus.modeling.feature_loader import BigQueryFeatureLoader
|
||||||
|
from twitter.hmli.nimbus.modeling.model_config import (
|
||||||
|
EncodingType,
|
||||||
|
Feature,
|
||||||
|
FeatureType,
|
||||||
|
Model,
|
||||||
|
)
|
||||||
|
|
||||||
physical_devices = tf.config.list_physical_devices('GPU')
|
physical_devices = tf.config.list_physical_devices('GPU')
|
||||||
for device in physical_devices:
|
for device in physical_devices:
|
||||||
tf.config.experimental.set_memory_growth(device, True)
|
tf.config.experimental.set_memory_growth(device, True)
|
||||||
|
|
||||||
from twitter.hmli.nimbus.modeling.model_config import FeatureType, EncodingType, Feature, Model, LogType
|
|
||||||
from twitter.hmli.nimbus.modeling.feature_loader import BigQueryFeatureLoader
|
|
||||||
from twitter.cuad.representation.models.text_encoder import TextEncoder
|
|
||||||
from twitter.cuad.representation.models.optimization import create_optimizer
|
|
||||||
from twitter.hmli.nimbus.modeling.feature_encoder import FeatureEncoder
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
import utils
|
|
||||||
|
|
||||||
cat_names = [
|
cat_names = [
|
||||||
...
|
...
|
||||||
]
|
]
|
||||||
@ -75,7 +101,6 @@ params = {
|
|||||||
'model_type': 'twitter_multilingual_bert_base_cased_mlm',
|
'model_type': 'twitter_multilingual_bert_base_cased_mlm',
|
||||||
'mixed_precision': True,
|
'mixed_precision': True,
|
||||||
}
|
}
|
||||||
params
|
|
||||||
|
|
||||||
def parse_labeled_data(row_dict):
|
def parse_labeled_data(row_dict):
|
||||||
label = [row_dict.pop(l) for l in labels]
|
label = [row_dict.pop(l) for l in labels]
|
||||||
@ -134,7 +159,9 @@ with mirrored_strategy.scope():
|
|||||||
)
|
)
|
||||||
pr_auc = tf.keras.metrics.AUC(curve="PR", num_thresholds=1000, multi_label=True, from_logits=True)
|
pr_auc = tf.keras.metrics.AUC(curve="PR", num_thresholds=1000, multi_label=True, from_logits=True)
|
||||||
|
|
||||||
custom_loss = lambda y_true, y_pred: utils.multilabel_weighted_loss(y_true, y_pred, weights=pos_weight_tensor)
|
def custom_loss(y_true, y_pred):
|
||||||
|
return utils.multilabel_weighted_loss(y_true, y_pred, weights=pos_weight_tensor)
|
||||||
|
|
||||||
optimizer = create_optimizer(
|
optimizer = create_optimizer(
|
||||||
init_lr=params["lr"],
|
init_lr=params["lr"],
|
||||||
num_train_steps=(params["epochs"] * params["steps_per_epoch"]),
|
num_train_steps=(params["epochs"] * params["steps_per_epoch"]),
|
||||||
@ -154,25 +181,6 @@ model.weights
|
|||||||
model.summary()
|
model.summary()
|
||||||
pr_auc.name
|
pr_auc.name
|
||||||
|
|
||||||
import getpass
|
|
||||||
import wandb
|
|
||||||
from wandb.keras import WandbCallback
|
|
||||||
try:
|
|
||||||
wandb_key = ...
|
|
||||||
wandb.login(...)
|
|
||||||
run = wandb.init(project='ptos_with_media',
|
|
||||||
group='new-split-trains',
|
|
||||||
notes='tweet text with only (num_media, precision_nsfw). on full train set, new split.',
|
|
||||||
entity='absv',
|
|
||||||
config=params,
|
|
||||||
name='tweet-text-w-nsfw-1.1',
|
|
||||||
sync_tensorboard=True)
|
|
||||||
except FileNotFoundError:
|
|
||||||
print('Wandb key not found')
|
|
||||||
run = wandb.init(mode='disabled')
|
|
||||||
import datetime
|
|
||||||
import os
|
|
||||||
|
|
||||||
start_train_time = datetime.datetime.now()
|
start_train_time = datetime.datetime.now()
|
||||||
print(start_train_time.strftime("%m-%d-%Y (%H:%M:%S)"))
|
print(start_train_time.strftime("%m-%d-%Y (%H:%M:%S)"))
|
||||||
checkpoint_path = os.path.join("...")
|
checkpoint_path = os.path.join("...")
|
||||||
@ -195,8 +203,6 @@ model.fit(train_ds, epochs=params["epochs"], validation_data=val_ds, callbacks=[
|
|||||||
steps_per_epoch=params["steps_per_epoch"],
|
steps_per_epoch=params["steps_per_epoch"],
|
||||||
verbose=2)
|
verbose=2)
|
||||||
|
|
||||||
import tensorflow_hub as hub
|
|
||||||
|
|
||||||
gs_model_path = ...
|
gs_model_path = ...
|
||||||
reloaded_keras_layer = hub.KerasLayer(gs_model_path)
|
reloaded_keras_layer = hub.KerasLayer(gs_model_path)
|
||||||
inputs = tf.keras.layers.Input(name="tweet__core__tweet__text", shape=(1,), dtype=tf.string)
|
inputs = tf.keras.layers.Input(name="tweet__core__tweet__text", shape=(1,), dtype=tf.string)
|
||||||
@ -233,9 +239,6 @@ test_media_not_nsfw = test.filter(lambda x, y: tf.logical_and(tf.equal(x["has_me
|
|||||||
for d in [test, test_only_media, test_only_nsfw, test_no_media, test_media_not_nsfw]:
|
for d in [test, test_only_media, test_only_nsfw, test_no_media, test_media_not_nsfw]:
|
||||||
print(d.reduce(0, lambda x, _: x + 1).numpy())
|
print(d.reduce(0, lambda x, _: x + 1).numpy())
|
||||||
|
|
||||||
from notebook_eval_utils import SparseMultilabelEvaluator, EvalConfig
|
|
||||||
from dataclasses import asdict
|
|
||||||
|
|
||||||
def display_metrics(probs, targets, labels=labels):
|
def display_metrics(probs, targets, labels=labels):
|
||||||
eval_config = EvalConfig(prediction_threshold=0.5, precision_k=0.9)
|
eval_config = EvalConfig(prediction_threshold=0.5, precision_k=0.9)
|
||||||
for eval_mode, y_mask in [("implicit", np.ones(targets.shape))]:
|
for eval_mode, y_mask in [("implicit", np.ones(targets.shape))]:
|
||||||
|
@ -1,21 +1,19 @@
|
|||||||
|
import glob
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
|
||||||
import kerastuner as kt
|
import kerastuner as kt
|
||||||
import math
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import random
|
|
||||||
import sklearn.metrics
|
import sklearn.metrics
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
from tqdm import tqdm
|
|
||||||
from matplotlib import pyplot as plt
|
|
||||||
from tensorflow.keras.models import Sequential
|
|
||||||
from tensorflow.keras.layers import Dense
|
|
||||||
from google.cloud import storage
|
from google.cloud import storage
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
from tensorflow.keras.layers import Dense
|
||||||
|
from tensorflow.keras.models import Sequential
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
physical_devices = tf.config.list_physical_devices('GPU')
|
physical_devices = tf.config.list_physical_devices('GPU')
|
||||||
physical_devices
|
|
||||||
|
|
||||||
tf.config.set_visible_devices([tf.config.PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU')], 'GPU')
|
tf.config.set_visible_devices([tf.config.PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU')], 'GPU')
|
||||||
tf.config.get_visible_devices('GPU')
|
tf.config.get_visible_devices('GPU')
|
||||||
@ -89,7 +87,7 @@ test_ds = test_ds.map(lambda x: preprocess_embedding_example(x, positive_label=p
|
|||||||
|
|
||||||
if use_sens_prev_data:
|
if use_sens_prev_data:
|
||||||
test_sens_prev_glob = f"{sens_prev_input_root}/test/tfrecord/*.tfrecord"
|
test_sens_prev_glob = f"{sens_prev_input_root}/test/tfrecord/*.tfrecord"
|
||||||
test_sens_prev_files = tf.io.gfile.glob(test_sens_prev_glob)
|
test_sens_prev_files = tf.io.gfile.glob(test_sens_prev_glob)
|
||||||
|
|
||||||
if not len(test_sens_prev_files):
|
if not len(test_sens_prev_files):
|
||||||
raise ValueError(f"Did not find any eval files matching {test_sens_prev_glob}")
|
raise ValueError(f"Did not find any eval files matching {test_sens_prev_glob}")
|
||||||
@ -109,12 +107,12 @@ train_ds = train_ds.repeat()
|
|||||||
|
|
||||||
if has_validation_data:
|
if has_validation_data:
|
||||||
eval_glob = f"{input_root}/validation/tfrecord/*.tfrecord"
|
eval_glob = f"{input_root}/validation/tfrecord/*.tfrecord"
|
||||||
eval_files = tf.io.gfile.glob(eval_glob)
|
eval_files = tf.io.gfile.glob(eval_glob)
|
||||||
|
|
||||||
if use_sens_prev_data:
|
if use_sens_prev_data:
|
||||||
eval_sens_prev_glob = f"{sens_prev_input_root}/validation/tfrecord/*.tfrecord"
|
eval_sens_prev_glob = f"{sens_prev_input_root}/validation/tfrecord/*.tfrecord"
|
||||||
eval_sens_prev_files = tf.io.gfile.glob(eval_sens_prev_glob)
|
eval_sens_prev_files = tf.io.gfile.glob(eval_sens_prev_glob)
|
||||||
eval_files = eval_files + eval_sens_prev_files
|
eval_files = eval_files + eval_sens_prev_files
|
||||||
|
|
||||||
|
|
||||||
if not len(eval_files):
|
if not len(eval_files):
|
||||||
@ -428,7 +426,7 @@ ptAt50fmt = "%.4f" % ptAt50[1]
|
|||||||
ptAt90fmt = "%.4f" % ptAt90[1]
|
ptAt90fmt = "%.4f" % ptAt90[1]
|
||||||
aucFmt = "%.4f" % auc_precision_recall
|
aucFmt = "%.4f" % auc_precision_recall
|
||||||
plt.title(
|
plt.title(
|
||||||
f"Keras (nsfw MU test)\nAUC={aucFmt}\np={ptAt50fmt} @ r=0.5\np={ptAt90fmt} @ r=0.9\nN_train={...}} ({...} pos), N_test={n_test} ({n_test_pos} pos)",
|
f"Keras (nsfw MU test)\nAUC={aucFmt}\np={ptAt50fmt} @ r=0.5\np={ptAt90fmt} @ r=0.9\nN_train={...} ({...} pos), N_test={n_test} ({n_test_pos} pos)",
|
||||||
size=20
|
size=20
|
||||||
)
|
)
|
||||||
plt.subplots_adjust(top=0.72)
|
plt.subplots_adjust(top=0.72)
|
||||||
|
@ -1,14 +1,16 @@
|
|||||||
from datetime import datetime
|
|
||||||
from functools import reduce
|
|
||||||
import os
|
import os
|
||||||
import pandas as pd
|
|
||||||
import re
|
|
||||||
from sklearn.metrics import average_precision_score, classification_report, precision_recall_curve, PrecisionRecallDisplay
|
|
||||||
from sklearn.model_selection import train_test_split
|
|
||||||
import tensorflow as tf
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import re
|
import re
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
import tensorflow as tf
|
||||||
|
from sklearn.metrics import (
|
||||||
|
average_precision_score,
|
||||||
|
classification_report,
|
||||||
|
precision_recall_curve,
|
||||||
|
)
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
from twitter.cuad.representation.models.optimization import create_optimizer
|
from twitter.cuad.representation.models.optimization import create_optimizer
|
||||||
from twitter.cuad.representation.models.text_encoder import TextEncoder
|
from twitter.cuad.representation.models.text_encoder import TextEncoder
|
||||||
|
|
||||||
|
@ -1,10 +1,8 @@
|
|||||||
from abc import ABC
|
|
||||||
import re
|
import re
|
||||||
|
from abc import ABC
|
||||||
from toxicity_ml_pipeline.settings.hcomp_settings import TOXIC_35
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from toxicity_ml_pipeline.settings.hcomp_settings import TOXIC_35
|
||||||
|
|
||||||
TOXIC_35_set = set(TOXIC_35)
|
TOXIC_35_set = set(TOXIC_35)
|
||||||
|
|
||||||
@ -84,7 +82,7 @@ class DefaultENNoPreprocessor(DataframeCleaner):
|
|||||||
else:
|
else:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
if "filter_low_agreements" in kwargs and kwargs["filter_low_agreements"] == True:
|
if "filter_low_agreements" in kwargs and kwargs["filter_low_agreements"] is True:
|
||||||
df.drop(df[(df.agreement_rate <= 0.6)].index, axis=0, inplace=True)
|
df.drop(df[(df.agreement_rate <= 0.6)].index, axis=0, inplace=True)
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
@ -287,7 +287,7 @@ class ENLoaderWithSampling(ENLoader):
|
|||||||
class I18nLoader(DataframeLoader):
|
class I18nLoader(DataframeLoader):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__(project=...)
|
super().__init__(project=...)
|
||||||
from archive.settings.... import ACCEPTED_LANGUAGES, QUERY_SETTINGS
|
from archive.settings import ACCEPTED_LANGUAGES, QUERY_SETTINGS
|
||||||
|
|
||||||
self.accepted_languages = ACCEPTED_LANGUAGES
|
self.accepted_languages = ACCEPTED_LANGUAGES
|
||||||
self.query_settings = dict(QUERY_SETTINGS)
|
self.query_settings = dict(QUERY_SETTINGS)
|
||||||
|
@ -1,6 +1,10 @@
|
|||||||
from importlib import import_module
|
|
||||||
import os
|
import os
|
||||||
|
from importlib import import_module
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pandas
|
||||||
|
import tensorflow as tf
|
||||||
|
from sklearn.model_selection import StratifiedKFold
|
||||||
from toxicity_ml_pipeline.settings.default_settings_tox import (
|
from toxicity_ml_pipeline.settings.default_settings_tox import (
|
||||||
INNER_CV,
|
INNER_CV,
|
||||||
LOCAL_DIR,
|
LOCAL_DIR,
|
||||||
@ -12,12 +16,6 @@ from toxicity_ml_pipeline.settings.default_settings_tox import (
|
|||||||
)
|
)
|
||||||
from toxicity_ml_pipeline.utils.helpers import execute_command
|
from toxicity_ml_pipeline.utils.helpers import execute_command
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pandas
|
|
||||||
from sklearn.model_selection import StratifiedKFold
|
|
||||||
import tensorflow as tf
|
|
||||||
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from transformers import AutoTokenizer, DataCollatorWithPadding
|
from transformers import AutoTokenizer, DataCollatorWithPadding
|
||||||
except ModuleNotFoundError:
|
except ModuleNotFoundError:
|
||||||
|
@ -1,14 +1,13 @@
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
from toxicity_ml_pipeline.settings.default_settings_tox import LOCAL_DIR, MAX_SEQ_LENGTH
|
from toxicity_ml_pipeline.settings.default_settings_tox import LOCAL_DIR, MAX_SEQ_LENGTH
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from toxicity_ml_pipeline.optim.losses import MaskedBCE
|
from toxicity_ml_pipeline.optim.losses import MaskedBCE
|
||||||
except ImportError:
|
except ImportError:
|
||||||
print('No MaskedBCE loss')
|
print('No MaskedBCE loss')
|
||||||
from toxicity_ml_pipeline.utils.helpers import execute_command
|
|
||||||
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
from toxicity_ml_pipeline.utils.helpers import execute_command
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from twitter.cuad.representation.models.text_encoder import TextEncoder
|
from twitter.cuad.representation.models.text_encoder import TextEncoder
|
||||||
@ -102,7 +101,7 @@ def get_loss(loss_name, from_logits, **kwargs):
|
|||||||
multitask = kwargs.get("multitask", False)
|
multitask = kwargs.get("multitask", False)
|
||||||
if from_logits or multitask:
|
if from_logits or multitask:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
print(f'Masked Binary Cross Entropy')
|
print('Masked Binary Cross Entropy')
|
||||||
return MaskedBCE()
|
return MaskedBCE()
|
||||||
|
|
||||||
if loss_name == "inv_kl_loss":
|
if loss_name == "inv_kl_loss":
|
||||||
|
@ -1,14 +1,16 @@
|
|||||||
from collections import defaultdict
|
|
||||||
import os
|
import os
|
||||||
|
from collections import defaultdict
|
||||||
|
|
||||||
from toxicity_ml_pipeline.settings.default_settings_tox import REMOTE_LOGDIR
|
|
||||||
from toxicity_ml_pipeline.settings.default_settings_abs import LABEL_NAMES
|
|
||||||
from toxicity_ml_pipeline.utils.absv_utils import parse_labeled_data
|
|
||||||
from toxicity_ml_pipeline.utils.helpers import compute_precision_fixed_recall, execute_command
|
|
||||||
|
|
||||||
from sklearn.metrics import average_precision_score, roc_auc_score
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import wandb
|
import wandb
|
||||||
|
from sklearn.metrics import average_precision_score, roc_auc_score
|
||||||
|
from toxicity_ml_pipeline.settings.default_settings_abs import LABEL_NAMES
|
||||||
|
from toxicity_ml_pipeline.settings.default_settings_tox import REMOTE_LOGDIR
|
||||||
|
from toxicity_ml_pipeline.utils.absv_utils import parse_labeled_data
|
||||||
|
from toxicity_ml_pipeline.utils.helpers import (
|
||||||
|
compute_precision_fixed_recall,
|
||||||
|
execute_command,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class NothingCallback(tf.keras.callbacks.Callback):
|
class NothingCallback(tf.keras.callbacks.Callback):
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from keras.utils import tf_utils
|
|
||||||
from keras.utils import losses_utils
|
|
||||||
from keras import backend
|
from keras import backend
|
||||||
|
from keras.utils import losses_utils, tf_utils
|
||||||
|
|
||||||
|
|
||||||
def inv_kl_divergence(y_true, y_pred):
|
def inv_kl_divergence(y_true, y_pred):
|
||||||
y_pred = tf.convert_to_tensor(y_pred)
|
y_pred = tf.convert_to_tensor(y_pred)
|
||||||
|
@ -1,8 +1,7 @@
|
|||||||
from toxicity_ml_pipeline.load_model import reload_model_weights
|
|
||||||
from toxicity_ml_pipeline.utils.helpers import load_inference_func, upload_model
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
from toxicity_ml_pipeline.load_model import reload_model_weights
|
||||||
|
from toxicity_ml_pipeline.utils.helpers import load_inference_func, upload_model
|
||||||
|
|
||||||
|
|
||||||
def score(language, df, gcs_model_path, batch_size=64, text_col="text", kw="", **kwargs):
|
def score(language, df, gcs_model_path, batch_size=64, text_col="text", kw="", **kwargs):
|
||||||
|
@ -1,6 +1,5 @@
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
|
|
||||||
TEAM_PROJECT = "twttr-toxicity-prod"
|
TEAM_PROJECT = "twttr-toxicity-prod"
|
||||||
try:
|
try:
|
||||||
from google.cloud import bigquery
|
from google.cloud import bigquery
|
||||||
@ -16,7 +15,7 @@ else:
|
|||||||
CLIENT = None
|
CLIENT = None
|
||||||
print("Issue at logging time", e)
|
print("Issue at logging time", e)
|
||||||
|
|
||||||
TRAINING_DATA_LOCATION = f"..."
|
TRAINING_DATA_LOCATION = "..."
|
||||||
GCS_ADDRESS = "..."
|
GCS_ADDRESS = "..."
|
||||||
LOCAL_DIR = os.getcwd()
|
LOCAL_DIR = os.getcwd()
|
||||||
REMOTE_LOGDIR = "{GCS_ADDRESS}/logs"
|
REMOTE_LOGDIR = "{GCS_ADDRESS}/logs"
|
||||||
|
@ -1,14 +1,16 @@
|
|||||||
|
import os
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from importlib import import_module
|
from importlib import import_module
|
||||||
import os
|
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
from toxicity_ml_pipeline.data.data_preprocessing import (
|
from toxicity_ml_pipeline.data.data_preprocessing import (
|
||||||
DefaultENNoPreprocessor,
|
DefaultENNoPreprocessor,
|
||||||
DefaultENPreprocessor,
|
DefaultENPreprocessor,
|
||||||
)
|
)
|
||||||
from toxicity_ml_pipeline.data.dataframe_loader import ENLoader, ENLoaderWithSampling
|
from toxicity_ml_pipeline.data.dataframe_loader import ENLoader, ENLoaderWithSampling
|
||||||
from toxicity_ml_pipeline.data.mb_generator import BalancedMiniBatchLoader
|
from toxicity_ml_pipeline.data.mb_generator import BalancedMiniBatchLoader
|
||||||
from toxicity_ml_pipeline.load_model import load, get_last_layer
|
from toxicity_ml_pipeline.load_model import get_last_layer, load
|
||||||
from toxicity_ml_pipeline.optim.callbacks import (
|
from toxicity_ml_pipeline.optim.callbacks import (
|
||||||
AdditionalResultLogger,
|
AdditionalResultLogger,
|
||||||
ControlledStoppingCheckpointCallback,
|
ControlledStoppingCheckpointCallback,
|
||||||
@ -19,6 +21,8 @@ from toxicity_ml_pipeline.optim.schedulers import WarmUp
|
|||||||
from toxicity_ml_pipeline.settings.default_settings_abs import GCS_ADDRESS as ABS_GCS
|
from toxicity_ml_pipeline.settings.default_settings_abs import GCS_ADDRESS as ABS_GCS
|
||||||
from toxicity_ml_pipeline.settings.default_settings_tox import (
|
from toxicity_ml_pipeline.settings.default_settings_tox import (
|
||||||
GCS_ADDRESS as TOX_GCS,
|
GCS_ADDRESS as TOX_GCS,
|
||||||
|
)
|
||||||
|
from toxicity_ml_pipeline.settings.default_settings_tox import (
|
||||||
MODEL_DIR,
|
MODEL_DIR,
|
||||||
RANDOM_SEED,
|
RANDOM_SEED,
|
||||||
REMOTE_LOGDIR,
|
REMOTE_LOGDIR,
|
||||||
@ -26,10 +30,6 @@ from toxicity_ml_pipeline.settings.default_settings_tox import (
|
|||||||
)
|
)
|
||||||
from toxicity_ml_pipeline.utils.helpers import check_gpu, set_seeds, upload_model
|
from toxicity_ml_pipeline.utils.helpers import check_gpu, set_seeds, upload_model
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import tensorflow as tf
|
|
||||||
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from tensorflow_addons.optimizers import AdamW
|
from tensorflow_addons.optimizers import AdamW
|
||||||
except ModuleNotFoundError:
|
except ModuleNotFoundError:
|
||||||
@ -139,9 +139,9 @@ class Trainer(object):
|
|||||||
)
|
)
|
||||||
print("------- Experiment name: ", experiment_name)
|
print("------- Experiment name: ", experiment_name)
|
||||||
self.logdir = (
|
self.logdir = (
|
||||||
f"..."
|
"..."
|
||||||
if self.test
|
if self.test
|
||||||
else f"..."
|
else "..."
|
||||||
)
|
)
|
||||||
self.checkpoint_path = f"{self.model_dir}/{experiment_name}"
|
self.checkpoint_path = f"{self.model_dir}/{experiment_name}"
|
||||||
|
|
||||||
|
@ -3,11 +3,9 @@ import os
|
|||||||
import random as python_random
|
import random as python_random
|
||||||
import subprocess
|
import subprocess
|
||||||
|
|
||||||
from toxicity_ml_pipeline.settings.default_settings_tox import LOCAL_DIR
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from sklearn.metrics import precision_recall_curve
|
from sklearn.metrics import precision_recall_curve
|
||||||
|
from toxicity_ml_pipeline.settings.default_settings_tox import LOCAL_DIR
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
Loading…
Reference in New Issue
Block a user