mirror of
https://github.com/twitter/the-algorithm.git
synced 2025-01-05 09:01:54 +01:00
Compare commits
2 Commits
32dce96b64
...
5af967d834
Author | SHA1 | Date | |
---|---|---|---|
|
5af967d834 | ||
|
7be5868b01 |
@ -0,0 +1,112 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.onboarding.relevance.candidates.thriftscala.InterestBasedUserRecommendations
|
||||
import com.twitter.onboarding.relevance.candidates.thriftscala.UTTInterest
|
||||
import com.twitter.onboarding.relevance.source.UttAccountRecommendationsScalaDataset
|
||||
import com.twitter.scalding.Args
|
||||
import com.twitter.scalding.DateRange
|
||||
import com.twitter.scalding.Days
|
||||
import com.twitter.scalding.Duration
|
||||
import com.twitter.scalding.Execution
|
||||
import com.twitter.scalding.RichDate
|
||||
import com.twitter.scalding.UniqueID
|
||||
import com.twitter.scalding.typed.TypedPipe
|
||||
import com.twitter.scalding.typed.UnsortedGrouped
|
||||
import com.twitter.scalding_internal.dalv2.DAL
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.dalv2.remote_access.ExplicitLocation
|
||||
import com.twitter.scalding_internal.dalv2.remote_access.ProcAtla
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.ModelVersions
|
||||
import com.twitter.simclusters_v2.common.SimClustersEmbedding
|
||||
import com.twitter.simclusters_v2.hdfs_sources.AdhocKeyValSources
|
||||
import com.twitter.simclusters_v2.hdfs_sources.ProducerEmbeddingSources
|
||||
import com.twitter.simclusters_v2.hdfs_sources.SemanticCoreEmbeddingsFromProducerScalaDataset
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.thriftscala
|
||||
import com.twitter.simclusters_v2.thriftscala.EmbeddingType
|
||||
import com.twitter.simclusters_v2.thriftscala.InternalId
|
||||
import com.twitter.simclusters_v2.thriftscala.ModelVersion
|
||||
import com.twitter.simclusters_v2.thriftscala.SimClusterWithScore
|
||||
import com.twitter.simclusters_v2.thriftscala.SimClustersEmbeddingId
|
||||
import com.twitter.simclusters_v2.thriftscala.TopSimClustersWithScore
|
||||
import com.twitter.wtf.scalding.jobs.common.AdhocExecutionApp
|
||||
import com.twitter.wtf.scalding.jobs.common.ScheduledExecutionApp
|
||||
import com.twitter.wtf.scalding.jobs.common.StatsUtil.*
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
/*
|
||||
$ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_embedding_from_producer_embedding-adhoc
|
||||
|
||||
$ scalding remote run \
|
||||
--main-class com.twitter.simclusters_v2.scalding.embedding.EntityEmbeddingFromProducerEmbeddingAdhocJob \
|
||||
--target src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_embedding_from_producer_embedding-adhoc \
|
||||
--user recos-platform \
|
||||
-- --date 2019-10-23 --model_version 20M_145K_updated
|
||||
*/
|
||||
object EntityEmbeddingFromProducerEmbeddingAdhocJob extends AdhocExecutionApp {
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
// step 1: read in (entity, producer) pairs and remove duplicates
|
||||
val topK = args.getOrElse("top_k", "100").toInt
|
||||
|
||||
val modelVersion = ModelVersions.toModelVersion(
|
||||
args.getOrElse("model_version", ModelVersions.Model20M145KUpdated))
|
||||
|
||||
val entityKnownForProducers =
|
||||
EntityEmbeddingFromProducerEmbeddingJob
|
||||
.getNormalizedEntityProducerMatrix(dateRange.embiggen(Days(7)))
|
||||
.count("num unique entity producer pairs").map {
|
||||
case (entityId, producerId, score) => (producerId, (entityId, score))
|
||||
}
|
||||
|
||||
// step 2: read in producer to simclusters embeddings
|
||||
|
||||
val producersEmbeddingsFollowBased =
|
||||
ProducerEmbeddingSources.producerEmbeddingSourceLegacy(
|
||||
EmbeddingType.ProducerFollowBasedSemanticCoreEntity,
|
||||
modelVersion)(dateRange.embiggen(Days(7)))
|
||||
|
||||
val producersEmbeddingsFavBased =
|
||||
ProducerEmbeddingSources.producerEmbeddingSourceLegacy(
|
||||
EmbeddingType.ProducerFavBasedSemanticCoreEntity,
|
||||
modelVersion)(dateRange.embiggen(Days(7)))
|
||||
|
||||
// step 3: join producer embedding with entity, producer pairs and reformat result into format [SimClustersEmbeddingId, SimClustersEmbedding]
|
||||
val producerBasedEntityEmbeddingsFollowBased =
|
||||
EntityEmbeddingFromProducerEmbeddingJob
|
||||
.computeEmbedding(
|
||||
producersEmbeddingsFollowBased,
|
||||
entityKnownForProducers,
|
||||
topK,
|
||||
modelVersion,
|
||||
EmbeddingType.ProducerFollowBasedSemanticCoreEntity).toTypedPipe.count(
|
||||
"follow_based_entity_count")
|
||||
|
||||
val producerBasedEntityEmbeddingsFavBased =
|
||||
EntityEmbeddingFromProducerEmbeddingJob
|
||||
.computeEmbedding(
|
||||
producersEmbeddingsFavBased,
|
||||
entityKnownForProducers,
|
||||
topK,
|
||||
modelVersion,
|
||||
EmbeddingType.ProducerFavBasedSemanticCoreEntity).toTypedPipe.count(
|
||||
"fav_based_entity_count")
|
||||
|
||||
val producerBasedEntityEmbeddings =
|
||||
producerBasedEntityEmbeddingsFollowBased ++ producerBasedEntityEmbeddingsFavBased
|
||||
|
||||
// step 4 write results to file
|
||||
producerBasedEntityEmbeddings
|
||||
.count("total_count").writeExecution(
|
||||
AdhocKeyValSources.entityToClustersSource(
|
||||
getHdfsPath(isAdhoc = true, isManhattanKeyVal = true, modelVersion, "producer")))
|
||||
}
|
||||
|
||||
}
|
@ -35,149 +35,6 @@ import com.twitter.wtf.scalding.jobs.common.ScheduledExecutionApp
|
||||
import com.twitter.wtf.scalding.jobs.common.StatsUtil._
|
||||
import java.util.TimeZone
|
||||
|
||||
/*
|
||||
$ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_embedding_from_producer_embedding-adhoc
|
||||
|
||||
$ scalding remote run \
|
||||
--main-class com.twitter.simclusters_v2.scalding.embedding.EntityEmbeddingFromProducerEmbeddingAdhocJob \
|
||||
--target src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_embedding_from_producer_embedding-adhoc \
|
||||
--user recos-platform \
|
||||
-- --date 2019-10-23 --model_version 20M_145K_updated
|
||||
*/
|
||||
object EntityEmbeddingFromProducerEmbeddingAdhocJob extends AdhocExecutionApp {
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
// step 1: read in (entity, producer) pairs and remove duplicates
|
||||
val topK = args.getOrElse("top_k", "100").toInt
|
||||
|
||||
val modelVersion = ModelVersions.toModelVersion(
|
||||
args.getOrElse("model_version", ModelVersions.Model20M145KUpdated))
|
||||
|
||||
val entityKnownForProducers =
|
||||
EntityEmbeddingFromProducerEmbeddingJob
|
||||
.getNormalizedEntityProducerMatrix(dateRange.embiggen(Days(7)))
|
||||
.count("num unique entity producer pairs").map {
|
||||
case (entityId, producerId, score) => (producerId, (entityId, score))
|
||||
}
|
||||
|
||||
// step 2: read in producer to simclusters embeddings
|
||||
|
||||
val producersEmbeddingsFollowBased =
|
||||
ProducerEmbeddingSources.producerEmbeddingSourceLegacy(
|
||||
EmbeddingType.ProducerFollowBasedSemanticCoreEntity,
|
||||
modelVersion)(dateRange.embiggen(Days(7)))
|
||||
|
||||
val producersEmbeddingsFavBased =
|
||||
ProducerEmbeddingSources.producerEmbeddingSourceLegacy(
|
||||
EmbeddingType.ProducerFavBasedSemanticCoreEntity,
|
||||
modelVersion)(dateRange.embiggen(Days(7)))
|
||||
|
||||
// step 3: join producer embedding with entity, producer pairs and reformat result into format [SimClustersEmbeddingId, SimClustersEmbedding]
|
||||
val producerBasedEntityEmbeddingsFollowBased =
|
||||
EntityEmbeddingFromProducerEmbeddingJob
|
||||
.computeEmbedding(
|
||||
producersEmbeddingsFollowBased,
|
||||
entityKnownForProducers,
|
||||
topK,
|
||||
modelVersion,
|
||||
EmbeddingType.ProducerFollowBasedSemanticCoreEntity).toTypedPipe.count(
|
||||
"follow_based_entity_count")
|
||||
|
||||
val producerBasedEntityEmbeddingsFavBased =
|
||||
EntityEmbeddingFromProducerEmbeddingJob
|
||||
.computeEmbedding(
|
||||
producersEmbeddingsFavBased,
|
||||
entityKnownForProducers,
|
||||
topK,
|
||||
modelVersion,
|
||||
EmbeddingType.ProducerFavBasedSemanticCoreEntity).toTypedPipe.count(
|
||||
"fav_based_entity_count")
|
||||
|
||||
val producerBasedEntityEmbeddings =
|
||||
producerBasedEntityEmbeddingsFollowBased ++ producerBasedEntityEmbeddingsFavBased
|
||||
|
||||
// step 4 write results to file
|
||||
producerBasedEntityEmbeddings
|
||||
.count("total_count").writeExecution(
|
||||
AdhocKeyValSources.entityToClustersSource(
|
||||
getHdfsPath(isAdhoc = true, isManhattanKeyVal = true, modelVersion, "producer")))
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
$ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_embedding_from_producer_embedding_job
|
||||
$ capesospy-v2 update \
|
||||
--build_locally \
|
||||
--start_cron entity_embedding_from_producer_embedding_job src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object EntityEmbeddingFromProducerEmbeddingScheduledJob extends ScheduledExecutionApp {
|
||||
override def firstTime: RichDate = RichDate("2019-10-16")
|
||||
|
||||
override def batchIncrement: Duration = Days(7)
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
// parse args: modelVersion, topK
|
||||
val topK = args.getOrElse("top_k", "100").toInt
|
||||
// only support dec11 now since updated model is not productionized for producer embedding
|
||||
val modelVersion =
|
||||
ModelVersions.toModelVersion(
|
||||
args.getOrElse("model_version", ModelVersions.Model20M145KUpdated))
|
||||
|
||||
val entityKnownForProducers =
|
||||
EntityEmbeddingFromProducerEmbeddingJob
|
||||
.getNormalizedEntityProducerMatrix(dateRange.embiggen(Days(7)))
|
||||
.count("num unique entity producer pairs").map {
|
||||
case (entityId, producerId, score) => (producerId, (entityId, score))
|
||||
}
|
||||
|
||||
val favBasedEmbeddings = EntityEmbeddingFromProducerEmbeddingJob
|
||||
.computeEmbedding(
|
||||
ProducerEmbeddingSources.producerEmbeddingSourceLegacy(
|
||||
EmbeddingType.ProducerFavBasedSemanticCoreEntity,
|
||||
modelVersion)(dateRange.embiggen(Days(7))),
|
||||
entityKnownForProducers,
|
||||
topK,
|
||||
modelVersion,
|
||||
EmbeddingType.ProducerFavBasedSemanticCoreEntity
|
||||
).toTypedPipe.count("follow_based_entity_count")
|
||||
|
||||
val followBasedEmbeddings = EntityEmbeddingFromProducerEmbeddingJob
|
||||
.computeEmbedding(
|
||||
ProducerEmbeddingSources.producerEmbeddingSourceLegacy(
|
||||
EmbeddingType.ProducerFollowBasedSemanticCoreEntity,
|
||||
modelVersion)(dateRange.embiggen(Days(7))),
|
||||
entityKnownForProducers,
|
||||
topK,
|
||||
modelVersion,
|
||||
EmbeddingType.ProducerFollowBasedSemanticCoreEntity
|
||||
).toTypedPipe.count("fav_based_entity_count")
|
||||
|
||||
val embedding = favBasedEmbeddings ++ followBasedEmbeddings
|
||||
|
||||
embedding
|
||||
.count("total_count")
|
||||
.map {
|
||||
case (embeddingId, embedding) => KeyVal(embeddingId, embedding)
|
||||
}.writeDALVersionedKeyValExecution(
|
||||
SemanticCoreEmbeddingsFromProducerScalaDataset,
|
||||
D.Suffix(getHdfsPath(isAdhoc = false, isManhattanKeyVal = true, modelVersion, "producer"))
|
||||
)
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
private object EntityEmbeddingFromProducerEmbeddingJob {
|
||||
def computeEmbedding(
|
||||
|
@ -0,0 +1,105 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.onboarding.relevance.candidates.thriftscala.InterestBasedUserRecommendations
|
||||
import com.twitter.onboarding.relevance.candidates.thriftscala.UTTInterest
|
||||
import com.twitter.onboarding.relevance.source.UttAccountRecommendationsScalaDataset
|
||||
import com.twitter.scalding.Args
|
||||
import com.twitter.scalding.DateRange
|
||||
import com.twitter.scalding.Days
|
||||
import com.twitter.scalding.Duration
|
||||
import com.twitter.scalding.Execution
|
||||
import com.twitter.scalding.RichDate
|
||||
import com.twitter.scalding.UniqueID
|
||||
import com.twitter.scalding.typed.TypedPipe
|
||||
import com.twitter.scalding.typed.UnsortedGrouped
|
||||
import com.twitter.scalding_internal.dalv2.DAL
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite._
|
||||
import com.twitter.scalding_internal.dalv2.remote_access.ExplicitLocation
|
||||
import com.twitter.scalding_internal.dalv2.remote_access.ProcAtla
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.ModelVersions
|
||||
import com.twitter.simclusters_v2.common.SimClustersEmbedding
|
||||
import com.twitter.simclusters_v2.hdfs_sources.AdhocKeyValSources
|
||||
import com.twitter.simclusters_v2.hdfs_sources.ProducerEmbeddingSources
|
||||
import com.twitter.simclusters_v2.hdfs_sources.SemanticCoreEmbeddingsFromProducerScalaDataset
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil._
|
||||
import com.twitter.simclusters_v2.thriftscala
|
||||
import com.twitter.simclusters_v2.thriftscala.EmbeddingType
|
||||
import com.twitter.simclusters_v2.thriftscala.InternalId
|
||||
import com.twitter.simclusters_v2.thriftscala.ModelVersion
|
||||
import com.twitter.simclusters_v2.thriftscala.SimClusterWithScore
|
||||
import com.twitter.simclusters_v2.thriftscala.SimClustersEmbeddingId
|
||||
import com.twitter.simclusters_v2.thriftscala.TopSimClustersWithScore
|
||||
import com.twitter.wtf.scalding.jobs.common.AdhocExecutionApp
|
||||
import com.twitter.wtf.scalding.jobs.common.ScheduledExecutionApp
|
||||
import com.twitter.wtf.scalding.jobs.common.StatsUtil._
|
||||
import java.util.TimeZone
|
||||
|
||||
/*
|
||||
$ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_embedding_from_producer_embedding_job
|
||||
$ capesospy-v2 update \
|
||||
--build_locally \
|
||||
--start_cron entity_embedding_from_producer_embedding_job src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object EntityEmbeddingFromProducerEmbeddingScheduledJob extends ScheduledExecutionApp {
|
||||
override def firstTime: RichDate = RichDate("2019-10-16")
|
||||
|
||||
override def batchIncrement: Duration = Days(7)
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
// parse args: modelVersion, topK
|
||||
val topK = args.getOrElse("top_k", "100").toInt
|
||||
// only support dec11 now since updated model is not productionized for producer embedding
|
||||
val modelVersion =
|
||||
ModelVersions.toModelVersion(
|
||||
args.getOrElse("model_version", ModelVersions.Model20M145KUpdated))
|
||||
|
||||
val entityKnownForProducers =
|
||||
EntityEmbeddingFromProducerEmbeddingJob
|
||||
.getNormalizedEntityProducerMatrix(dateRange.embiggen(Days(7)))
|
||||
.count("num unique entity producer pairs").map {
|
||||
case (entityId, producerId, score) => (producerId, (entityId, score))
|
||||
}
|
||||
|
||||
val favBasedEmbeddings = EntityEmbeddingFromProducerEmbeddingJob
|
||||
.computeEmbedding(
|
||||
ProducerEmbeddingSources.producerEmbeddingSourceLegacy(
|
||||
EmbeddingType.ProducerFavBasedSemanticCoreEntity,
|
||||
modelVersion)(dateRange.embiggen(Days(7))),
|
||||
entityKnownForProducers,
|
||||
topK,
|
||||
modelVersion,
|
||||
EmbeddingType.ProducerFavBasedSemanticCoreEntity
|
||||
).toTypedPipe.count("follow_based_entity_count")
|
||||
|
||||
val followBasedEmbeddings = EntityEmbeddingFromProducerEmbeddingJob
|
||||
.computeEmbedding(
|
||||
ProducerEmbeddingSources.producerEmbeddingSourceLegacy(
|
||||
EmbeddingType.ProducerFollowBasedSemanticCoreEntity,
|
||||
modelVersion)(dateRange.embiggen(Days(7))),
|
||||
entityKnownForProducers,
|
||||
topK,
|
||||
modelVersion,
|
||||
EmbeddingType.ProducerFollowBasedSemanticCoreEntity
|
||||
).toTypedPipe.count("fav_based_entity_count")
|
||||
|
||||
val embedding = favBasedEmbeddings ++ followBasedEmbeddings
|
||||
|
||||
embedding
|
||||
.count("total_count")
|
||||
.map {
|
||||
case (embeddingId, embedding) => KeyVal(embeddingId, embedding)
|
||||
}.writeDALVersionedKeyValExecution(
|
||||
SemanticCoreEmbeddingsFromProducerScalaDataset,
|
||||
D.Suffix(getHdfsPath(isAdhoc = false, isManhattanKeyVal = true, modelVersion, "producer"))
|
||||
)
|
||||
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,126 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.recos.entities.thriftscala.{Entity, Hashtag, SemanticCoreEntity}
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.{ModelVersions, SimClustersEmbedding}
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.{EmbeddingUtil, EntityEmbeddingUtil, SimClustersEmbeddingJob}
|
||||
import com.twitter.simclusters_v2.thriftscala.{SimClustersEmbedding as ThriftSimClustersEmbedding, *}
|
||||
import com.twitter.wtf.entity_real_graph.common.EntityUtil
|
||||
import com.twitter.wtf.entity_real_graph.thriftscala.EntityType
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, DataSources, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_embeddings_job-adhoc
|
||||
*
|
||||
* ---------------------- Deploy to atla ----------------------
|
||||
* $ scalding remote run \
|
||||
--main-class com.twitter.simclusters_v2.scalding.embedding.EntityToSimClustersEmbeddingAdhocApp \
|
||||
--target src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_embeddings_job-adhoc \
|
||||
--user recos-platform \
|
||||
-- --date 2019-09-09 --model-version 20M_145K_updated --entity-type SemanticCore
|
||||
*/
|
||||
object EntityToSimClustersEmbeddingAdhocApp extends AdhocExecutionApp {
|
||||
|
||||
import EmbeddingUtil.*
|
||||
import EntityEmbeddingUtil.*
|
||||
import EntityToSimClustersEmbeddingsJob.*
|
||||
import SimClustersEmbeddingJob.*
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val jobConfig = EntityEmbeddingsJobConfig(args, isAdhoc = true)
|
||||
|
||||
val numReducers = args.getOrElse("m", "1000").toInt
|
||||
|
||||
/*
|
||||
Using the ERG daily dataset in the adhoc job for quick prototyping, note that there may be
|
||||
issues with scaling the job when productionizing on ERG aggregated dataset.
|
||||
*/
|
||||
val entityRealGraphSource = DataSources.entityRealGraphDailyDataSetSource
|
||||
|
||||
val entityUserMatrix: TypedPipe[(Entity, (UserId, Double))] =
|
||||
(jobConfig.entityType match {
|
||||
case EntityType.SemanticCore =>
|
||||
getEntityUserMatrix(entityRealGraphSource, jobConfig.halfLife, EntityType.SemanticCore)
|
||||
case EntityType.Hashtag =>
|
||||
getEntityUserMatrix(entityRealGraphSource, jobConfig.halfLife, EntityType.Hashtag)
|
||||
case _ =>
|
||||
throw new IllegalArgumentException(
|
||||
s"Argument [--entity-type] must be provided. Supported options [${EntityType.SemanticCore.name}, ${EntityType.Hashtag.name}]")
|
||||
}).forceToDisk
|
||||
|
||||
val normalizedUserEntityMatrix =
|
||||
getNormalizedTransposeInputMatrix(entityUserMatrix, numReducers = Some(numReducers))
|
||||
|
||||
//determine which data source to use based on model version
|
||||
val simClustersSource = jobConfig.modelVersion match {
|
||||
case ModelVersion.Model20m145kUpdated =>
|
||||
InterestedInSources.simClustersInterestedInUpdatedSource(dateRange, timeZone)
|
||||
case _ =>
|
||||
InterestedInSources.simClustersInterestedInDec11Source(dateRange, timeZone)
|
||||
}
|
||||
|
||||
val embeddings = computeEmbeddings(
|
||||
simClustersSource,
|
||||
normalizedUserEntityMatrix,
|
||||
scoreExtractors,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
toSimClustersEmbeddingId(jobConfig.modelVersion),
|
||||
numReducers = Some(numReducers * 2)
|
||||
)
|
||||
|
||||
val topKEmbeddings =
|
||||
embeddings.group
|
||||
.sortedReverseTake(jobConfig.topK)(Ordering.by(_._2))
|
||||
.withReducers(numReducers)
|
||||
|
||||
writeOutput(embeddings, topKEmbeddings, jobConfig)
|
||||
}
|
||||
|
||||
def writeOutput(
|
||||
embeddings: TypedPipe[(SimClustersEmbeddingId, (ClusterId, EmbeddingScore))],
|
||||
topKEmbeddings: TypedPipe[(SimClustersEmbeddingId, Seq[(ClusterId, EmbeddingScore)])],
|
||||
jobConfig: EntityEmbeddingsJobConfig
|
||||
): Execution[Unit] = {
|
||||
|
||||
val toSimClusterEmbeddingExec = topKEmbeddings
|
||||
.mapValues(SimClustersEmbedding.apply(_).toThrift)
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.entityToClustersSource(
|
||||
EntityToSimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = true,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType)))
|
||||
|
||||
val fromSimClusterEmbeddingExec =
|
||||
toReverseIndexSimClusterEmbedding(embeddings, jobConfig.topK)
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.clusterToEntitiesSource(
|
||||
EntityToSimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = true,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = true,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType)))
|
||||
|
||||
Execution.zip(toSimClusterEmbeddingExec, fromSimClusterEmbeddingExec).unit
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -0,0 +1,169 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.recos.entities.thriftscala.{Entity, Hashtag, SemanticCoreEntity}
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.{ModelVersions, SimClustersEmbedding}
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.{EmbeddingUtil, EntityEmbeddingUtil, SimClustersEmbeddingJob}
|
||||
import com.twitter.simclusters_v2.thriftscala.{SimClustersEmbedding as ThriftSimClustersEmbedding, *}
|
||||
import com.twitter.wtf.entity_real_graph.common.EntityUtil
|
||||
import com.twitter.wtf.entity_real_graph.thriftscala.EntityType
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, DataSources, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
|
||||
trait EntityToSimClustersEmbeddingApp extends ScheduledExecutionApp {
|
||||
|
||||
import EmbeddingUtil.*
|
||||
import EntityEmbeddingUtil.*
|
||||
import EntityToSimClustersEmbeddingsJob.*
|
||||
import SimClustersEmbeddingJob.*
|
||||
|
||||
override val firstTime: RichDate = RichDate("2023-01-01")
|
||||
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val jobConfig = EntityEmbeddingsJobConfig(args, isAdhoc = false)
|
||||
|
||||
val embeddingsDataset = EntityEmbeddingsSources.getEntityEmbeddingsDataset(
|
||||
jobConfig.entityType,
|
||||
ModelVersions.toKnownForModelVersion(jobConfig.modelVersion)
|
||||
)
|
||||
|
||||
val reverseIndexEmbeddingsDataset =
|
||||
EntityEmbeddingsSources.getReverseIndexedEntityEmbeddingsDataset(
|
||||
jobConfig.entityType,
|
||||
ModelVersions.toKnownForModelVersion(jobConfig.modelVersion)
|
||||
)
|
||||
|
||||
val entityRealGraphSource =
|
||||
DataSources.entityRealGraphAggregationDataSetSource(dateRange.embiggen(Days(7)))
|
||||
|
||||
val entityUserMatrix: TypedPipe[(Entity, (UserId, Double))] =
|
||||
getEntityUserMatrix(
|
||||
entityRealGraphSource,
|
||||
jobConfig.halfLife,
|
||||
jobConfig.entityType).forceToDisk
|
||||
|
||||
val normalizedUserEntityMatrix = getNormalizedTransposeInputMatrix(entityUserMatrix)
|
||||
|
||||
val simClustersEmbedding = jobConfig.modelVersion match {
|
||||
case ModelVersion.Model20m145k2020 =>
|
||||
val simClustersSource2020 =
|
||||
InterestedInSources.simClustersInterestedIn2020Source(dateRange, timeZone)
|
||||
computeEmbeddings(
|
||||
simClustersSource2020,
|
||||
normalizedUserEntityMatrix,
|
||||
scoreExtractors,
|
||||
ModelVersion.Model20m145k2020,
|
||||
toSimClustersEmbeddingId(ModelVersion.Model20m145k2020)
|
||||
)
|
||||
case modelVersion =>
|
||||
throw new IllegalArgumentException(s"Model Version ${modelVersion.name} not supported")
|
||||
}
|
||||
|
||||
val topKEmbeddings =
|
||||
simClustersEmbedding.group.sortedReverseTake(jobConfig.topK)(Ordering.by(_._2))
|
||||
|
||||
val simClustersEmbeddingsExec =
|
||||
writeOutput(
|
||||
simClustersEmbedding,
|
||||
topKEmbeddings,
|
||||
jobConfig,
|
||||
embeddingsDataset,
|
||||
reverseIndexEmbeddingsDataset)
|
||||
|
||||
// We don't support embeddingsLite for the 2020 model version.
|
||||
val embeddingsLiteExec = if (jobConfig.modelVersion == ModelVersion.Model20m145kUpdated) {
|
||||
topKEmbeddings
|
||||
.collect {
|
||||
case (
|
||||
SimClustersEmbeddingId(
|
||||
EmbeddingType.FavBasedSematicCoreEntity,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
InternalId.EntityId(entityId)),
|
||||
clustersWithScores) =>
|
||||
entityId -> clustersWithScores
|
||||
}
|
||||
.flatMap {
|
||||
case (entityId, clustersWithScores) =>
|
||||
clustersWithScores.map {
|
||||
case (clusterId, score) => EmbeddingsLite(entityId, clusterId, score)
|
||||
}
|
||||
case _ => Nil
|
||||
}.writeDALSnapshotExecution(
|
||||
SimclustersV2EmbeddingsLiteScalaDataset,
|
||||
D.Daily,
|
||||
D.Suffix(embeddingsLitePath(ModelVersion.Model20m145kUpdated, "fav_based")),
|
||||
D.EBLzo(),
|
||||
dateRange.end)
|
||||
} else {
|
||||
Execution.unit
|
||||
}
|
||||
|
||||
Execution
|
||||
.zip(simClustersEmbeddingsExec, embeddingsLiteExec).unit
|
||||
}
|
||||
|
||||
private def writeOutput(
|
||||
embeddings: TypedPipe[(SimClustersEmbeddingId, (ClusterId, EmbeddingScore))],
|
||||
topKEmbeddings: TypedPipe[(SimClustersEmbeddingId, Seq[(ClusterId, EmbeddingScore)])],
|
||||
jobConfig: EntityEmbeddingsJobConfig,
|
||||
clusterEmbeddingsDataset: KeyValDALDataset[
|
||||
KeyVal[SimClustersEmbeddingId, ThriftSimClustersEmbedding]
|
||||
],
|
||||
entityEmbeddingsDataset: KeyValDALDataset[KeyVal[SimClustersEmbeddingId, InternalIdEmbedding]]
|
||||
): Execution[Unit] = {
|
||||
|
||||
val toSimClustersEmbeddings =
|
||||
topKEmbeddings
|
||||
.mapValues(SimClustersEmbedding.apply(_).toThrift)
|
||||
.map {
|
||||
case (entityId, topSimClusters) => KeyVal(entityId, topSimClusters)
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
clusterEmbeddingsDataset,
|
||||
D.Suffix(
|
||||
EntityToSimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType))
|
||||
)
|
||||
|
||||
val fromSimClustersEmbeddings =
|
||||
toReverseIndexSimClusterEmbedding(embeddings, jobConfig.topK)
|
||||
.map {
|
||||
case (embeddingId, internalIdsWithScore) =>
|
||||
KeyVal(embeddingId, internalIdsWithScore)
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
entityEmbeddingsDataset,
|
||||
D.Suffix(
|
||||
EntityToSimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = true,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType))
|
||||
)
|
||||
|
||||
Execution.zip(toSimClustersEmbeddings, fromSimClustersEmbeddings).unit
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -25,271 +25,6 @@ import com.twitter.wtf.scalding.jobs.common.DataSources
|
||||
import com.twitter.wtf.scalding.jobs.common.ScheduledExecutionApp
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_embeddings_job-adhoc
|
||||
*
|
||||
* ---------------------- Deploy to atla ----------------------
|
||||
* $ scalding remote run \
|
||||
--main-class com.twitter.simclusters_v2.scalding.embedding.EntityToSimClustersEmbeddingAdhocApp \
|
||||
--target src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_embeddings_job-adhoc \
|
||||
--user recos-platform \
|
||||
-- --date 2019-09-09 --model-version 20M_145K_updated --entity-type SemanticCore
|
||||
*/
|
||||
object EntityToSimClustersEmbeddingAdhocApp extends AdhocExecutionApp {
|
||||
|
||||
import EmbeddingUtil._
|
||||
import EntityEmbeddingUtil._
|
||||
import EntityToSimClustersEmbeddingsJob._
|
||||
import EntityUtil._
|
||||
import SimClustersEmbeddingJob._
|
||||
|
||||
def writeOutput(
|
||||
embeddings: TypedPipe[(SimClustersEmbeddingId, (ClusterId, EmbeddingScore))],
|
||||
topKEmbeddings: TypedPipe[(SimClustersEmbeddingId, Seq[(ClusterId, EmbeddingScore)])],
|
||||
jobConfig: EntityEmbeddingsJobConfig
|
||||
): Execution[Unit] = {
|
||||
|
||||
val toSimClusterEmbeddingExec = topKEmbeddings
|
||||
.mapValues(SimClustersEmbedding.apply(_).toThrift)
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.entityToClustersSource(
|
||||
EntityToSimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = true,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType)))
|
||||
|
||||
val fromSimClusterEmbeddingExec =
|
||||
toReverseIndexSimClusterEmbedding(embeddings, jobConfig.topK)
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.clusterToEntitiesSource(
|
||||
EntityToSimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = true,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = true,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType)))
|
||||
|
||||
Execution.zip(toSimClusterEmbeddingExec, fromSimClusterEmbeddingExec).unit
|
||||
}
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val jobConfig = EntityEmbeddingsJobConfig(args, isAdhoc = true)
|
||||
|
||||
val numReducers = args.getOrElse("m", "1000").toInt
|
||||
|
||||
/*
|
||||
Using the ERG daily dataset in the adhoc job for quick prototyping, note that there may be
|
||||
issues with scaling the job when productionizing on ERG aggregated dataset.
|
||||
*/
|
||||
val entityRealGraphSource = DataSources.entityRealGraphDailyDataSetSource
|
||||
|
||||
val entityUserMatrix: TypedPipe[(Entity, (UserId, Double))] =
|
||||
(jobConfig.entityType match {
|
||||
case EntityType.SemanticCore =>
|
||||
getEntityUserMatrix(entityRealGraphSource, jobConfig.halfLife, EntityType.SemanticCore)
|
||||
case EntityType.Hashtag =>
|
||||
getEntityUserMatrix(entityRealGraphSource, jobConfig.halfLife, EntityType.Hashtag)
|
||||
case _ =>
|
||||
throw new IllegalArgumentException(
|
||||
s"Argument [--entity-type] must be provided. Supported options [${EntityType.SemanticCore.name}, ${EntityType.Hashtag.name}]")
|
||||
}).forceToDisk
|
||||
|
||||
val normalizedUserEntityMatrix =
|
||||
getNormalizedTransposeInputMatrix(entityUserMatrix, numReducers = Some(numReducers))
|
||||
|
||||
//determine which data source to use based on model version
|
||||
val simClustersSource = jobConfig.modelVersion match {
|
||||
case ModelVersion.Model20m145kUpdated =>
|
||||
InterestedInSources.simClustersInterestedInUpdatedSource(dateRange, timeZone)
|
||||
case _ =>
|
||||
InterestedInSources.simClustersInterestedInDec11Source(dateRange, timeZone)
|
||||
}
|
||||
|
||||
val embeddings = computeEmbeddings(
|
||||
simClustersSource,
|
||||
normalizedUserEntityMatrix,
|
||||
scoreExtractors,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
toSimClustersEmbeddingId(jobConfig.modelVersion),
|
||||
numReducers = Some(numReducers * 2)
|
||||
)
|
||||
|
||||
val topKEmbeddings =
|
||||
embeddings.group
|
||||
.sortedReverseTake(jobConfig.topK)(Ordering.by(_._2))
|
||||
.withReducers(numReducers)
|
||||
|
||||
writeOutput(embeddings, topKEmbeddings, jobConfig)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:semantic_core_entity_embeddings_2020_job
|
||||
* $ capesospy-v2 update \
|
||||
--build_locally \
|
||||
--start_cron semantic_core_entity_embeddings_2020_job src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object SemanticCoreEntityEmbeddings2020App extends EntityToSimClustersEmbeddingApp
|
||||
|
||||
trait EntityToSimClustersEmbeddingApp extends ScheduledExecutionApp {
|
||||
|
||||
import EmbeddingUtil._
|
||||
import EntityEmbeddingUtil._
|
||||
import EntityToSimClustersEmbeddingsJob._
|
||||
import EntityUtil._
|
||||
import SimClustersEmbeddingJob._
|
||||
|
||||
override val firstTime: RichDate = RichDate("2023-01-01")
|
||||
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
private def writeOutput(
|
||||
embeddings: TypedPipe[(SimClustersEmbeddingId, (ClusterId, EmbeddingScore))],
|
||||
topKEmbeddings: TypedPipe[(SimClustersEmbeddingId, Seq[(ClusterId, EmbeddingScore)])],
|
||||
jobConfig: EntityEmbeddingsJobConfig,
|
||||
clusterEmbeddingsDataset: KeyValDALDataset[
|
||||
KeyVal[SimClustersEmbeddingId, ThriftSimClustersEmbedding]
|
||||
],
|
||||
entityEmbeddingsDataset: KeyValDALDataset[KeyVal[SimClustersEmbeddingId, InternalIdEmbedding]]
|
||||
): Execution[Unit] = {
|
||||
|
||||
val toSimClustersEmbeddings =
|
||||
topKEmbeddings
|
||||
.mapValues(SimClustersEmbedding.apply(_).toThrift)
|
||||
.map {
|
||||
case (entityId, topSimClusters) => KeyVal(entityId, topSimClusters)
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
clusterEmbeddingsDataset,
|
||||
D.Suffix(
|
||||
EntityToSimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType))
|
||||
)
|
||||
|
||||
val fromSimClustersEmbeddings =
|
||||
toReverseIndexSimClusterEmbedding(embeddings, jobConfig.topK)
|
||||
.map {
|
||||
case (embeddingId, internalIdsWithScore) =>
|
||||
KeyVal(embeddingId, internalIdsWithScore)
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
entityEmbeddingsDataset,
|
||||
D.Suffix(
|
||||
EntityToSimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = true,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType))
|
||||
)
|
||||
|
||||
Execution.zip(toSimClustersEmbeddings, fromSimClustersEmbeddings).unit
|
||||
}
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val jobConfig = EntityEmbeddingsJobConfig(args, isAdhoc = false)
|
||||
|
||||
val embeddingsDataset = EntityEmbeddingsSources.getEntityEmbeddingsDataset(
|
||||
jobConfig.entityType,
|
||||
ModelVersions.toKnownForModelVersion(jobConfig.modelVersion)
|
||||
)
|
||||
|
||||
val reverseIndexEmbeddingsDataset =
|
||||
EntityEmbeddingsSources.getReverseIndexedEntityEmbeddingsDataset(
|
||||
jobConfig.entityType,
|
||||
ModelVersions.toKnownForModelVersion(jobConfig.modelVersion)
|
||||
)
|
||||
|
||||
val entityRealGraphSource =
|
||||
DataSources.entityRealGraphAggregationDataSetSource(dateRange.embiggen(Days(7)))
|
||||
|
||||
val entityUserMatrix: TypedPipe[(Entity, (UserId, Double))] =
|
||||
getEntityUserMatrix(
|
||||
entityRealGraphSource,
|
||||
jobConfig.halfLife,
|
||||
jobConfig.entityType).forceToDisk
|
||||
|
||||
val normalizedUserEntityMatrix = getNormalizedTransposeInputMatrix(entityUserMatrix)
|
||||
|
||||
val simClustersEmbedding = jobConfig.modelVersion match {
|
||||
case ModelVersion.Model20m145k2020 =>
|
||||
val simClustersSource2020 =
|
||||
InterestedInSources.simClustersInterestedIn2020Source(dateRange, timeZone)
|
||||
computeEmbeddings(
|
||||
simClustersSource2020,
|
||||
normalizedUserEntityMatrix,
|
||||
scoreExtractors,
|
||||
ModelVersion.Model20m145k2020,
|
||||
toSimClustersEmbeddingId(ModelVersion.Model20m145k2020)
|
||||
)
|
||||
case modelVersion =>
|
||||
throw new IllegalArgumentException(s"Model Version ${modelVersion.name} not supported")
|
||||
}
|
||||
|
||||
val topKEmbeddings =
|
||||
simClustersEmbedding.group.sortedReverseTake(jobConfig.topK)(Ordering.by(_._2))
|
||||
|
||||
val simClustersEmbeddingsExec =
|
||||
writeOutput(
|
||||
simClustersEmbedding,
|
||||
topKEmbeddings,
|
||||
jobConfig,
|
||||
embeddingsDataset,
|
||||
reverseIndexEmbeddingsDataset)
|
||||
|
||||
// We don't support embeddingsLite for the 2020 model version.
|
||||
val embeddingsLiteExec = if (jobConfig.modelVersion == ModelVersion.Model20m145kUpdated) {
|
||||
topKEmbeddings
|
||||
.collect {
|
||||
case (
|
||||
SimClustersEmbeddingId(
|
||||
EmbeddingType.FavBasedSematicCoreEntity,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
InternalId.EntityId(entityId)),
|
||||
clustersWithScores) =>
|
||||
entityId -> clustersWithScores
|
||||
}
|
||||
.flatMap {
|
||||
case (entityId, clustersWithScores) =>
|
||||
clustersWithScores.map {
|
||||
case (clusterId, score) => EmbeddingsLite(entityId, clusterId, score)
|
||||
}
|
||||
case _ => Nil
|
||||
}.writeDALSnapshotExecution(
|
||||
SimclustersV2EmbeddingsLiteScalaDataset,
|
||||
D.Daily,
|
||||
D.Suffix(embeddingsLitePath(ModelVersion.Model20m145kUpdated, "fav_based")),
|
||||
D.EBLzo(),
|
||||
dateRange.end)
|
||||
} else {
|
||||
Execution.unit
|
||||
}
|
||||
|
||||
Execution
|
||||
.zip(simClustersEmbeddingsExec, embeddingsLiteExec).unit
|
||||
}
|
||||
}
|
||||
|
||||
object EntityToSimClustersEmbeddingsJob {
|
||||
|
||||
def toSimClustersEmbeddingId(
|
||||
|
@ -1,32 +1,18 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.dal.client.dataset.SnapshotDALDataset
|
||||
import com.twitter.scalding.DateRange
|
||||
import com.twitter.scalding.Days
|
||||
import com.twitter.scalding.UniqueID
|
||||
import com.twitter.scalding._
|
||||
import com.twitter.dal.client.dataset.{KeyValDALDataset, SnapshotDALDataset}
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding.typed.TypedPipe
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.D
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.ExplicitEndTime
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.WriteExtension
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.{D, ExplicitEndTime, WriteExtension}
|
||||
import com.twitter.scalding_internal.job.RequiredBinaryComparators.ordSer
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.Country
|
||||
import com.twitter.simclusters_v2.common.Language
|
||||
import com.twitter.simclusters_v2.common.Timestamp
|
||||
import com.twitter.simclusters_v2.common.TweetId
|
||||
import com.twitter.simclusters_v2.common.UserId
|
||||
import com.twitter.simclusters_v2.hdfs_sources.InterestedInSources
|
||||
import com.twitter.simclusters_v2.common.*
|
||||
import com.twitter.simclusters_v2.hdfs_sources.{InterestedInSources, SimclustersV2GlobalLanguageEmbeddingScalaDataset, SimclustersV2GlobalLanguageEmbeddingThriftScalaDataset}
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.ExternalDataSources
|
||||
import com.twitter.simclusters_v2.thriftscala.ClustersUserIsInterestedIn
|
||||
import com.twitter.simclusters_v2.thriftscala.InternalId.ClusterId
|
||||
import com.twitter.simclusters_v2.thriftscala.ModelVersion
|
||||
import com.twitter.simclusters_v2.thriftscala.UserToInterestedInClusterScores
|
||||
import com.twitter.simclusters_v2.thriftscala.{ClustersUserIsInterestedIn, LanguageToClusters, ModelVersion, UserToInterestedInClusterScores}
|
||||
import com.twitter.wtf.scalding.jobs.common.ScheduledExecutionApp
|
||||
import com.twitter.simclusters_v2.hdfs_sources.SimclustersV2GlobalLanguageEmbeddingScalaDataset
|
||||
import com.twitter.simclusters_v2.hdfs_sources.SimclustersV2GlobalLanguageEmbeddingThriftScalaDataset
|
||||
import com.twitter.simclusters_v2.thriftscala.LanguageToClusters
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
@ -0,0 +1,130 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.recos.entities.thriftscala.{Entity, Hashtag, SemanticCoreEntity}
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.{ModelVersions, SimClustersEmbedding}
|
||||
import com.twitter.simclusters_v2.hdfs_sources.{AdhocKeyValSources, EntityEmbeddingsSources, InterestedInSources}
|
||||
import com.twitter.simclusters_v2.hdfs_sources.presto_hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.LocaleEntitySimClustersEmbeddingsJob.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EntityEmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.{EmbeddingUtil, ExternalDataSources}
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob.*
|
||||
import com.twitter.simclusters_v2.thriftscala.{SimClustersEmbedding as ThriftSimClustersEmbedding, *}
|
||||
import com.twitter.wtf.entity_real_graph.common.EntityUtil
|
||||
import com.twitter.wtf.entity_real_graph.thriftscala.{Edge, EntityType}
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, DataSources, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_per_language_embeddings_job-adhoc
|
||||
*
|
||||
* ---------------------- Deploy to atla ----------------------
|
||||
* $ scalding remote run \
|
||||
--main-class com.twitter.simclusters_v2.scalding.embedding.LocaleEntitySimClustersEmbeddingAdhocApp \
|
||||
--target src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_per_language_embeddings_job-adhoc \
|
||||
--user recos-platform \
|
||||
-- --date 2019-12-17 --model-version 20M_145K_updated --entity-type SemanticCore
|
||||
*/
|
||||
object LocaleEntitySimClustersEmbeddingAdhocApp extends AdhocExecutionApp {
|
||||
|
||||
// Import implicits
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val jobConfig = EntityEmbeddingsJobConfig(args, isAdhoc = true)
|
||||
|
||||
val numReducers = args.getOrElse("m", "2000").toInt
|
||||
|
||||
/*
|
||||
Can use the ERG daily dataset in the adhoc job for quick prototyping, note that there may be
|
||||
issues with scaling the job when productionizing on ERG aggregated dataset.
|
||||
*/
|
||||
val userEntityMatrix: TypedPipe[(UserId, (Entity, Double))] =
|
||||
getUserEntityMatrix(
|
||||
jobConfig,
|
||||
DataSources.entityRealGraphAggregationDataSetSource(dateRange.embiggen(Days(7))),
|
||||
Some(ExternalDataSources.uttEntitiesSource())
|
||||
).forceToDisk
|
||||
|
||||
//determine which data source to use based on model version
|
||||
val simClustersSource = jobConfig.modelVersion match {
|
||||
case ModelVersion.Model20m145kUpdated =>
|
||||
InterestedInSources.simClustersInterestedInUpdatedSource(dateRange, timeZone)
|
||||
case modelVersion =>
|
||||
throw new IllegalArgumentException(
|
||||
s"SimClusters model version not supported ${modelVersion.name}")
|
||||
}
|
||||
|
||||
val entityPerLanguage = userEntityMatrix.join(ExternalDataSources.userSource).map {
|
||||
case (userId, ((entity, score), (_, language))) =>
|
||||
((entity, language), (userId, score))
|
||||
}
|
||||
|
||||
val normalizedUserEntityMatrix =
|
||||
getNormalizedTransposeInputMatrix(entityPerLanguage, numReducers = Some(numReducers))
|
||||
|
||||
val embeddings = computeEmbeddings[(Entity, String)](
|
||||
simClustersSource,
|
||||
normalizedUserEntityMatrix,
|
||||
scoreExtractors,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
toSimClustersEmbeddingId(jobConfig.modelVersion),
|
||||
numReducers = Some(numReducers * 2)
|
||||
)
|
||||
|
||||
val topKEmbeddings =
|
||||
embeddings.group
|
||||
.sortedReverseTake(jobConfig.topK)(Ordering.by(_._2))
|
||||
.withReducers(numReducers)
|
||||
|
||||
writeOutput(embeddings, topKEmbeddings, jobConfig)
|
||||
}
|
||||
|
||||
def writeOutput(
|
||||
embeddings: TypedPipe[(SimClustersEmbeddingId, (ClusterId, EmbeddingScore))],
|
||||
topKEmbeddings: TypedPipe[(SimClustersEmbeddingId, Seq[(ClusterId, EmbeddingScore)])],
|
||||
jobConfig: EntityEmbeddingsJobConfig
|
||||
): Execution[Unit] = {
|
||||
|
||||
val toSimClusterEmbeddingExec = topKEmbeddings
|
||||
.mapValues(SimClustersEmbedding.apply(_).toThrift)
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.entityToClustersSource(
|
||||
LocaleEntitySimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = true,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = false,
|
||||
isLogFav = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType)))
|
||||
|
||||
val fromSimClusterEmbeddingExec =
|
||||
toReverseIndexSimClusterEmbedding(embeddings, jobConfig.topK)
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.clusterToEntitiesSource(
|
||||
LocaleEntitySimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = true,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = true,
|
||||
isLogFav = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType)))
|
||||
|
||||
Execution.zip(toSimClusterEmbeddingExec, fromSimClusterEmbeddingExec).unit
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,215 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.recos.entities.thriftscala.{Entity, Hashtag, SemanticCoreEntity}
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.{ModelVersions, SimClustersEmbedding}
|
||||
import com.twitter.simclusters_v2.hdfs_sources.{AdhocKeyValSources, EntityEmbeddingsSources, InterestedInSources}
|
||||
import com.twitter.simclusters_v2.hdfs_sources.presto_hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.LocaleEntitySimClustersEmbeddingsJob.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EntityEmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.{EmbeddingUtil, ExternalDataSources}
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob.*
|
||||
import com.twitter.simclusters_v2.thriftscala.{SimClustersEmbedding as ThriftSimClustersEmbedding, *}
|
||||
import com.twitter.wtf.entity_real_graph.common.EntityUtil
|
||||
import com.twitter.wtf.entity_real_graph.thriftscala.{Edge, EntityType}
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, DataSources, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
|
||||
/**
|
||||
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:semantic_core_entity_embeddings_per_language_job
|
||||
* $ capesospy-v2 update \
|
||||
--build_locally \
|
||||
--start_cron semantic_core_entity_embeddings_per_language_job src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object LocaleEntitySimClustersEmbeddingScheduledApp extends ScheduledExecutionApp {
|
||||
|
||||
// Import implicits
|
||||
|
||||
import EmbeddingUtil.*
|
||||
|
||||
override val firstTime: RichDate = RichDate("2019-10-22")
|
||||
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val jobConfig = EntityEmbeddingsJobConfig(args, isAdhoc = false)
|
||||
|
||||
val embeddingsDataset = EntityEmbeddingsSources.getEntityEmbeddingsDataset(
|
||||
jobConfig.entityType,
|
||||
ModelVersions.toKnownForModelVersion(jobConfig.modelVersion),
|
||||
isEmbeddingsPerLocale = true
|
||||
)
|
||||
|
||||
val reverseIndexEmbeddingsDataset =
|
||||
EntityEmbeddingsSources.getReverseIndexedEntityEmbeddingsDataset(
|
||||
jobConfig.entityType,
|
||||
ModelVersions.toKnownForModelVersion(jobConfig.modelVersion),
|
||||
isEmbeddingsPerLocale = true
|
||||
)
|
||||
|
||||
val userEntityMatrix: TypedPipe[(UserId, (Entity, Double))] =
|
||||
getUserEntityMatrix(
|
||||
jobConfig,
|
||||
DataSources.entityRealGraphAggregationDataSetSource(dateRange.embiggen(Days(7))),
|
||||
Some(ExternalDataSources.uttEntitiesSource())
|
||||
).forceToDisk
|
||||
|
||||
//determine which data source to use based on model version
|
||||
val simClustersSource = jobConfig.modelVersion match {
|
||||
case ModelVersion.Model20m145kUpdated =>
|
||||
InterestedInSources.simClustersInterestedInUpdatedSource(dateRange, timeZone)
|
||||
case modelVersion =>
|
||||
throw new IllegalArgumentException(
|
||||
s"SimClusters model version not supported ${modelVersion.name}")
|
||||
}
|
||||
|
||||
val entityPerLanguage = userEntityMatrix.join(ExternalDataSources.userSource).map {
|
||||
case (userId, ((entity, score), (_, language))) =>
|
||||
((entity, language), (userId, score))
|
||||
}
|
||||
|
||||
val normalizedUserEntityMatrix =
|
||||
getNormalizedTransposeInputMatrix(entityPerLanguage, numReducers = Some(3000))
|
||||
|
||||
val simClustersEmbedding = jobConfig.modelVersion match {
|
||||
case ModelVersion.Model20m145kUpdated =>
|
||||
computeEmbeddings(
|
||||
simClustersSource,
|
||||
normalizedUserEntityMatrix,
|
||||
scoreExtractors,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
toSimClustersEmbeddingId(ModelVersion.Model20m145kUpdated),
|
||||
numReducers = Some(8000)
|
||||
)
|
||||
case modelVersion =>
|
||||
throw new IllegalArgumentException(
|
||||
s"SimClusters model version not supported ${modelVersion.name}")
|
||||
}
|
||||
|
||||
val topKEmbeddings =
|
||||
simClustersEmbedding.group.sortedReverseTake(jobConfig.topK)(Ordering.by(_._2))
|
||||
|
||||
writeOutput(
|
||||
simClustersEmbedding,
|
||||
topKEmbeddings,
|
||||
jobConfig,
|
||||
embeddingsDataset,
|
||||
reverseIndexEmbeddingsDataset)
|
||||
}
|
||||
|
||||
private def writeOutput(
|
||||
embeddings: TypedPipe[(SimClustersEmbeddingId, (ClusterId, EmbeddingScore))],
|
||||
topKEmbeddings: TypedPipe[(SimClustersEmbeddingId, Seq[(ClusterId, EmbeddingScore)])],
|
||||
jobConfig: EntityEmbeddingsJobConfig,
|
||||
clusterEmbeddingsDataset: KeyValDALDataset[
|
||||
KeyVal[SimClustersEmbeddingId, ThriftSimClustersEmbedding]
|
||||
],
|
||||
entityEmbeddingsDataset: KeyValDALDataset[KeyVal[SimClustersEmbeddingId, InternalIdEmbedding]]
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone
|
||||
): Execution[Unit] = {
|
||||
|
||||
val thriftSimClustersEmbedding = topKEmbeddings
|
||||
.mapValues(SimClustersEmbedding.apply(_).toThrift)
|
||||
|
||||
val writeSimClustersEmbeddingKeyValDataset =
|
||||
thriftSimClustersEmbedding
|
||||
.map {
|
||||
case (entityId, topSimClusters) => KeyVal(entityId, topSimClusters)
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
clusterEmbeddingsDataset,
|
||||
D.Suffix(
|
||||
LocaleEntitySimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = false,
|
||||
isLogFav = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType))
|
||||
)
|
||||
|
||||
val writeSimClustersEmbeddingDataset = thriftSimClustersEmbedding
|
||||
.map {
|
||||
case (embeddingId, embedding) => SimClustersEmbeddingWithId(embeddingId, embedding)
|
||||
}
|
||||
.writeDALSnapshotExecution(
|
||||
SemanticCorePerLanguageSimclustersEmbeddingsPrestoScalaDataset,
|
||||
D.Daily,
|
||||
D.Suffix(
|
||||
LocaleEntitySimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = false,
|
||||
isReverseIndex = false,
|
||||
isLogFav = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType)),
|
||||
D.EBLzo(),
|
||||
dateRange.end
|
||||
)
|
||||
|
||||
val thriftReversedSimclustersEmbeddings =
|
||||
toReverseIndexSimClusterEmbedding(embeddings, jobConfig.topK)
|
||||
|
||||
val writeReverseSimClustersEmbeddingKeyValDataset =
|
||||
thriftReversedSimclustersEmbeddings
|
||||
.map {
|
||||
case (embeddingId, internalIdsWithScore) =>
|
||||
KeyVal(embeddingId, internalIdsWithScore)
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
entityEmbeddingsDataset,
|
||||
D.Suffix(
|
||||
LocaleEntitySimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = true,
|
||||
isLogFav = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType))
|
||||
)
|
||||
|
||||
val writeReverseSimClustersEmbeddingDataset =
|
||||
thriftReversedSimclustersEmbeddings
|
||||
.map {
|
||||
case (embeddingId, embedding) => InternalIdEmbeddingWithId(embeddingId, embedding)
|
||||
}.writeDALSnapshotExecution(
|
||||
ReverseIndexSemanticCorePerLanguageSimclustersEmbeddingsPrestoScalaDataset,
|
||||
D.Daily,
|
||||
D.Suffix(
|
||||
LocaleEntitySimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = false,
|
||||
isReverseIndex = true,
|
||||
isLogFav = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType)),
|
||||
D.EBLzo(),
|
||||
dateRange.end
|
||||
)
|
||||
|
||||
Execution
|
||||
.zip(
|
||||
writeSimClustersEmbeddingDataset,
|
||||
writeSimClustersEmbeddingKeyValDataset,
|
||||
writeReverseSimClustersEmbeddingDataset,
|
||||
writeReverseSimClustersEmbeddingKeyValDataset
|
||||
).unit
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,91 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.bijection.{Bufferable, Injection}
|
||||
import com.twitter.recos.entities.thriftscala.{Entity, SemanticCoreEntity}
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.*
|
||||
import com.twitter.simclusters_v2.hdfs_sources.{AdhocKeyValSources, EntityEmbeddingsSources}
|
||||
import com.twitter.simclusters_v2.scalding.common.matrix.{SparseMatrix, SparseRowMatrix}
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.ClusterId
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.{EmbeddingUtil, ExternalDataSources, SimClustersEmbeddingBaseJob}
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.entity_real_graph.thriftscala.{Edge, FeatureName}
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, DataSources, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:locale_entity_simclusters_embedding_v2-adhoc
|
||||
*
|
||||
* $ scalding remote run \
|
||||
--main-class com.twitter.simclusters_v2.scalding.embedding.LocaleEntitySimClustersEmbeddingV2AdhocApp \
|
||||
--target src/scala/com/twitter/simclusters_v2/scalding/embedding:locale_entity_simclusters_embedding_v2-adhoc \
|
||||
--user recos-platform --reducers 2000\
|
||||
-- --date 2020-04-06
|
||||
*/
|
||||
object LocaleEntitySimClustersEmbeddingV2AdhocApp
|
||||
extends LocaleEntitySimClustersEmbeddingV2Job
|
||||
with AdhocExecutionApp {
|
||||
|
||||
override def writeNounToClustersIndex(
|
||||
output: TypedPipe[(LocaleEntity, Seq[(ClusterId, Double)])]
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
output
|
||||
.map {
|
||||
case ((entityId, lang), clustersWithScores) =>
|
||||
SimClustersEmbeddingId(
|
||||
EmbeddingType.LogFavBasedLocaleSemanticCoreEntity,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
InternalId.LocaleEntityId(LocaleEntityId(entityId, lang))
|
||||
) -> SimClustersEmbedding(clustersWithScores).toThrift
|
||||
|
||||
}.writeExecution(
|
||||
AdhocKeyValSources.entityToClustersSource(
|
||||
EmbeddingUtil.getHdfsPath(
|
||||
isAdhoc = true,
|
||||
isManhattanKeyVal = true,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
pathSuffix = "log_fav_erg_based_embeddings")))
|
||||
}
|
||||
|
||||
override def writeClusterToNounsIndex(
|
||||
output: TypedPipe[(ClusterId, Seq[(LocaleEntity, Double)])]
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
output
|
||||
.map {
|
||||
case (clusterId, nounsWithScore) =>
|
||||
SimClustersEmbeddingId(
|
||||
EmbeddingType.LogFavBasedLocaleSemanticCoreEntity,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
InternalId.ClusterId(clusterId)
|
||||
) ->
|
||||
InternalIdEmbedding(nounsWithScore.map {
|
||||
case ((entityId, lang), score) =>
|
||||
InternalIdWithScore(
|
||||
InternalId.LocaleEntityId(LocaleEntityId(entityId, lang)),
|
||||
score)
|
||||
})
|
||||
}
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.clusterToEntitiesSource(
|
||||
EmbeddingUtil.getHdfsPath(
|
||||
isAdhoc = true,
|
||||
isManhattanKeyVal = true,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
pathSuffix = "reverse_index_log_fav_erg_based_embeddings")))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -27,162 +27,6 @@ import com.twitter.wtf.entity_real_graph.thriftscala.{Edge, FeatureName}
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, DataSources, ScheduledExecutionApp}
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
* Scheduled production job which generates topic embeddings per locale based on Entity Real Graph.
|
||||
*
|
||||
* V2 Uses the log transform of the ERG favScores and the SimCluster InterestedIn scores.
|
||||
*
|
||||
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:locale_entity_simclusters_embedding_v2
|
||||
* $ capesospy-v2 update \
|
||||
--build_locally \
|
||||
--start_cron locale_entity_simclusters_embedding_v2 src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object LocaleEntitySimClustersEmbeddingV2ScheduledApp
|
||||
extends LocaleEntitySimClustersEmbeddingV2Job
|
||||
with ScheduledExecutionApp {
|
||||
|
||||
override val firstTime: RichDate = RichDate("2020-04-08")
|
||||
|
||||
override val batchIncrement: Duration = Days(1)
|
||||
|
||||
override def writeNounToClustersIndex(
|
||||
output: TypedPipe[(LocaleEntity, Seq[(ClusterId, Double)])]
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
output
|
||||
.map {
|
||||
case ((entityId, lang), clustersWithScores) =>
|
||||
KeyVal(
|
||||
SimClustersEmbeddingId(
|
||||
EmbeddingType.LogFavBasedLocaleSemanticCoreEntity,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
InternalId.LocaleEntityId(LocaleEntityId(entityId, lang))
|
||||
),
|
||||
SimClustersEmbedding(clustersWithScores).toThrift
|
||||
)
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
EntityEmbeddingsSources.LogFavSemanticCorePerLanguageSimClustersEmbeddingsDataset,
|
||||
D.Suffix(
|
||||
EmbeddingUtil.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = true,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
pathSuffix = "log_fav_erg_based_embeddings"))
|
||||
)
|
||||
}
|
||||
|
||||
override def writeClusterToNounsIndex(
|
||||
output: TypedPipe[(ClusterId, Seq[(LocaleEntity, Double)])]
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
output
|
||||
.map {
|
||||
case (clusterId, nounsWithScore) =>
|
||||
KeyVal(
|
||||
SimClustersEmbeddingId(
|
||||
EmbeddingType.LogFavBasedLocaleSemanticCoreEntity,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
InternalId.ClusterId(clusterId)
|
||||
),
|
||||
InternalIdEmbedding(nounsWithScore.map {
|
||||
case ((entityId, lang), score) =>
|
||||
InternalIdWithScore(
|
||||
InternalId.LocaleEntityId(LocaleEntityId(entityId, lang)),
|
||||
score)
|
||||
})
|
||||
)
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
EntityEmbeddingsSources.LogFavReverseIndexSemanticCorePerLanguageSimClustersEmbeddingsDataset,
|
||||
D.Suffix(
|
||||
EmbeddingUtil.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = true,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
pathSuffix = "reverse_index_log_fav_erg_based_embeddings"))
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:locale_entity_simclusters_embedding_v2-adhoc
|
||||
*
|
||||
* $ scalding remote run \
|
||||
--main-class com.twitter.simclusters_v2.scalding.embedding.LocaleEntitySimClustersEmbeddingV2AdhocApp \
|
||||
--target src/scala/com/twitter/simclusters_v2/scalding/embedding:locale_entity_simclusters_embedding_v2-adhoc \
|
||||
--user recos-platform --reducers 2000\
|
||||
-- --date 2020-04-06
|
||||
*/
|
||||
object LocaleEntitySimClustersEmbeddingV2AdhocApp
|
||||
extends LocaleEntitySimClustersEmbeddingV2Job
|
||||
with AdhocExecutionApp {
|
||||
|
||||
override def writeNounToClustersIndex(
|
||||
output: TypedPipe[(LocaleEntity, Seq[(ClusterId, Double)])]
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
output
|
||||
.map {
|
||||
case ((entityId, lang), clustersWithScores) =>
|
||||
SimClustersEmbeddingId(
|
||||
EmbeddingType.LogFavBasedLocaleSemanticCoreEntity,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
InternalId.LocaleEntityId(LocaleEntityId(entityId, lang))
|
||||
) -> SimClustersEmbedding(clustersWithScores).toThrift
|
||||
|
||||
}.writeExecution(
|
||||
AdhocKeyValSources.entityToClustersSource(
|
||||
EmbeddingUtil.getHdfsPath(
|
||||
isAdhoc = true,
|
||||
isManhattanKeyVal = true,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
pathSuffix = "log_fav_erg_based_embeddings")))
|
||||
}
|
||||
|
||||
override def writeClusterToNounsIndex(
|
||||
output: TypedPipe[(ClusterId, Seq[(LocaleEntity, Double)])]
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
output
|
||||
.map {
|
||||
case (clusterId, nounsWithScore) =>
|
||||
SimClustersEmbeddingId(
|
||||
EmbeddingType.LogFavBasedLocaleSemanticCoreEntity,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
InternalId.ClusterId(clusterId)
|
||||
) ->
|
||||
InternalIdEmbedding(nounsWithScore.map {
|
||||
case ((entityId, lang), score) =>
|
||||
InternalIdWithScore(
|
||||
InternalId.LocaleEntityId(LocaleEntityId(entityId, lang)),
|
||||
score)
|
||||
})
|
||||
}
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.clusterToEntitiesSource(
|
||||
EmbeddingUtil.getHdfsPath(
|
||||
isAdhoc = true,
|
||||
isManhattanKeyVal = true,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
pathSuffix = "reverse_index_log_fav_erg_based_embeddings")))
|
||||
}
|
||||
}
|
||||
|
||||
trait LocaleEntitySimClustersEmbeddingV2Job extends SimClustersEmbeddingBaseJob[LocaleEntity] {
|
||||
|
||||
|
@ -0,0 +1,106 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.bijection.{Bufferable, Injection}
|
||||
import com.twitter.recos.entities.thriftscala.{Entity, SemanticCoreEntity}
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.*
|
||||
import com.twitter.simclusters_v2.hdfs_sources.{AdhocKeyValSources, EntityEmbeddingsSources}
|
||||
import com.twitter.simclusters_v2.scalding.common.matrix.{SparseMatrix, SparseRowMatrix}
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.ClusterId
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.{EmbeddingUtil, ExternalDataSources, SimClustersEmbeddingBaseJob}
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.entity_real_graph.thriftscala.{Edge, FeatureName}
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, DataSources, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
* Scheduled production job which generates topic embeddings per locale based on Entity Real Graph.
|
||||
*
|
||||
* V2 Uses the log transform of the ERG favScores and the SimCluster InterestedIn scores.
|
||||
*
|
||||
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:locale_entity_simclusters_embedding_v2
|
||||
* $ capesospy-v2 update \
|
||||
--build_locally \
|
||||
--start_cron locale_entity_simclusters_embedding_v2 src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object LocaleEntitySimClustersEmbeddingV2ScheduledApp
|
||||
extends LocaleEntitySimClustersEmbeddingV2Job
|
||||
with ScheduledExecutionApp {
|
||||
|
||||
override val firstTime: RichDate = RichDate("2020-04-08")
|
||||
|
||||
override val batchIncrement: Duration = Days(1)
|
||||
|
||||
override def writeNounToClustersIndex(
|
||||
output: TypedPipe[(LocaleEntity, Seq[(ClusterId, Double)])]
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
output
|
||||
.map {
|
||||
case ((entityId, lang), clustersWithScores) =>
|
||||
KeyVal(
|
||||
SimClustersEmbeddingId(
|
||||
EmbeddingType.LogFavBasedLocaleSemanticCoreEntity,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
InternalId.LocaleEntityId(LocaleEntityId(entityId, lang))
|
||||
),
|
||||
SimClustersEmbedding(clustersWithScores).toThrift
|
||||
)
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
EntityEmbeddingsSources.LogFavSemanticCorePerLanguageSimClustersEmbeddingsDataset,
|
||||
D.Suffix(
|
||||
EmbeddingUtil.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = true,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
pathSuffix = "log_fav_erg_based_embeddings"))
|
||||
)
|
||||
}
|
||||
|
||||
override def writeClusterToNounsIndex(
|
||||
output: TypedPipe[(ClusterId, Seq[(LocaleEntity, Double)])]
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
output
|
||||
.map {
|
||||
case (clusterId, nounsWithScore) =>
|
||||
KeyVal(
|
||||
SimClustersEmbeddingId(
|
||||
EmbeddingType.LogFavBasedLocaleSemanticCoreEntity,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
InternalId.ClusterId(clusterId)
|
||||
),
|
||||
InternalIdEmbedding(nounsWithScore.map {
|
||||
case ((entityId, lang), score) =>
|
||||
InternalIdWithScore(
|
||||
InternalId.LocaleEntityId(LocaleEntityId(entityId, lang)),
|
||||
score)
|
||||
})
|
||||
)
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
EntityEmbeddingsSources.LogFavReverseIndexSemanticCorePerLanguageSimClustersEmbeddingsDataset,
|
||||
D.Suffix(
|
||||
EmbeddingUtil.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = true,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
pathSuffix = "reverse_index_log_fav_erg_based_embeddings"))
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -31,305 +31,6 @@ import com.twitter.wtf.scalding.jobs.common.DataSources
|
||||
import com.twitter.wtf.scalding.jobs.common.ScheduledExecutionApp
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_per_language_embeddings_job-adhoc
|
||||
*
|
||||
* ---------------------- Deploy to atla ----------------------
|
||||
* $ scalding remote run \
|
||||
--main-class com.twitter.simclusters_v2.scalding.embedding.LocaleEntitySimClustersEmbeddingAdhocApp \
|
||||
--target src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_per_language_embeddings_job-adhoc \
|
||||
--user recos-platform \
|
||||
-- --date 2019-12-17 --model-version 20M_145K_updated --entity-type SemanticCore
|
||||
*/
|
||||
object LocaleEntitySimClustersEmbeddingAdhocApp extends AdhocExecutionApp {
|
||||
|
||||
// Import implicits
|
||||
|
||||
import EntityUtil._
|
||||
|
||||
def writeOutput(
|
||||
embeddings: TypedPipe[(SimClustersEmbeddingId, (ClusterId, EmbeddingScore))],
|
||||
topKEmbeddings: TypedPipe[(SimClustersEmbeddingId, Seq[(ClusterId, EmbeddingScore)])],
|
||||
jobConfig: EntityEmbeddingsJobConfig
|
||||
): Execution[Unit] = {
|
||||
|
||||
val toSimClusterEmbeddingExec = topKEmbeddings
|
||||
.mapValues(SimClustersEmbedding.apply(_).toThrift)
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.entityToClustersSource(
|
||||
LocaleEntitySimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = true,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = false,
|
||||
isLogFav = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType)))
|
||||
|
||||
val fromSimClusterEmbeddingExec =
|
||||
toReverseIndexSimClusterEmbedding(embeddings, jobConfig.topK)
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.clusterToEntitiesSource(
|
||||
LocaleEntitySimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = true,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = true,
|
||||
isLogFav = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType)))
|
||||
|
||||
Execution.zip(toSimClusterEmbeddingExec, fromSimClusterEmbeddingExec).unit
|
||||
}
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val jobConfig = EntityEmbeddingsJobConfig(args, isAdhoc = true)
|
||||
|
||||
val numReducers = args.getOrElse("m", "2000").toInt
|
||||
|
||||
/*
|
||||
Can use the ERG daily dataset in the adhoc job for quick prototyping, note that there may be
|
||||
issues with scaling the job when productionizing on ERG aggregated dataset.
|
||||
*/
|
||||
val userEntityMatrix: TypedPipe[(UserId, (Entity, Double))] =
|
||||
getUserEntityMatrix(
|
||||
jobConfig,
|
||||
DataSources.entityRealGraphAggregationDataSetSource(dateRange.embiggen(Days(7))),
|
||||
Some(ExternalDataSources.uttEntitiesSource())
|
||||
).forceToDisk
|
||||
|
||||
//determine which data source to use based on model version
|
||||
val simClustersSource = jobConfig.modelVersion match {
|
||||
case ModelVersion.Model20m145kUpdated =>
|
||||
InterestedInSources.simClustersInterestedInUpdatedSource(dateRange, timeZone)
|
||||
case modelVersion =>
|
||||
throw new IllegalArgumentException(
|
||||
s"SimClusters model version not supported ${modelVersion.name}")
|
||||
}
|
||||
|
||||
val entityPerLanguage = userEntityMatrix.join(ExternalDataSources.userSource).map {
|
||||
case (userId, ((entity, score), (_, language))) =>
|
||||
((entity, language), (userId, score))
|
||||
}
|
||||
|
||||
val normalizedUserEntityMatrix =
|
||||
getNormalizedTransposeInputMatrix(entityPerLanguage, numReducers = Some(numReducers))
|
||||
|
||||
val embeddings = computeEmbeddings[(Entity, String)](
|
||||
simClustersSource,
|
||||
normalizedUserEntityMatrix,
|
||||
scoreExtractors,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
toSimClustersEmbeddingId(jobConfig.modelVersion),
|
||||
numReducers = Some(numReducers * 2)
|
||||
)
|
||||
|
||||
val topKEmbeddings =
|
||||
embeddings.group
|
||||
.sortedReverseTake(jobConfig.topK)(Ordering.by(_._2))
|
||||
.withReducers(numReducers)
|
||||
|
||||
writeOutput(embeddings, topKEmbeddings, jobConfig)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:semantic_core_entity_embeddings_per_language_job
|
||||
* $ capesospy-v2 update \
|
||||
--build_locally \
|
||||
--start_cron semantic_core_entity_embeddings_per_language_job src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object LocaleEntitySimClustersEmbeddingScheduledApp extends ScheduledExecutionApp {
|
||||
|
||||
// Import implicits
|
||||
|
||||
import EmbeddingUtil._
|
||||
import EntityUtil._
|
||||
|
||||
override val firstTime: RichDate = RichDate("2019-10-22")
|
||||
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
private def writeOutput(
|
||||
embeddings: TypedPipe[(SimClustersEmbeddingId, (ClusterId, EmbeddingScore))],
|
||||
topKEmbeddings: TypedPipe[(SimClustersEmbeddingId, Seq[(ClusterId, EmbeddingScore)])],
|
||||
jobConfig: EntityEmbeddingsJobConfig,
|
||||
clusterEmbeddingsDataset: KeyValDALDataset[
|
||||
KeyVal[SimClustersEmbeddingId, ThriftSimClustersEmbedding]
|
||||
],
|
||||
entityEmbeddingsDataset: KeyValDALDataset[KeyVal[SimClustersEmbeddingId, InternalIdEmbedding]]
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone
|
||||
): Execution[Unit] = {
|
||||
|
||||
val thriftSimClustersEmbedding = topKEmbeddings
|
||||
.mapValues(SimClustersEmbedding.apply(_).toThrift)
|
||||
|
||||
val writeSimClustersEmbeddingKeyValDataset =
|
||||
thriftSimClustersEmbedding
|
||||
.map {
|
||||
case (entityId, topSimClusters) => KeyVal(entityId, topSimClusters)
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
clusterEmbeddingsDataset,
|
||||
D.Suffix(
|
||||
LocaleEntitySimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = false,
|
||||
isLogFav = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType))
|
||||
)
|
||||
|
||||
val writeSimClustersEmbeddingDataset = thriftSimClustersEmbedding
|
||||
.map {
|
||||
case (embeddingId, embedding) => SimClustersEmbeddingWithId(embeddingId, embedding)
|
||||
}
|
||||
.writeDALSnapshotExecution(
|
||||
SemanticCorePerLanguageSimclustersEmbeddingsPrestoScalaDataset,
|
||||
D.Daily,
|
||||
D.Suffix(
|
||||
LocaleEntitySimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = false,
|
||||
isReverseIndex = false,
|
||||
isLogFav = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType)),
|
||||
D.EBLzo(),
|
||||
dateRange.end
|
||||
)
|
||||
|
||||
val thriftReversedSimclustersEmbeddings =
|
||||
toReverseIndexSimClusterEmbedding(embeddings, jobConfig.topK)
|
||||
|
||||
val writeReverseSimClustersEmbeddingKeyValDataset =
|
||||
thriftReversedSimclustersEmbeddings
|
||||
.map {
|
||||
case (embeddingId, internalIdsWithScore) =>
|
||||
KeyVal(embeddingId, internalIdsWithScore)
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
entityEmbeddingsDataset,
|
||||
D.Suffix(
|
||||
LocaleEntitySimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = true,
|
||||
isReverseIndex = true,
|
||||
isLogFav = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType))
|
||||
)
|
||||
|
||||
val writeReverseSimClustersEmbeddingDataset =
|
||||
thriftReversedSimclustersEmbeddings
|
||||
.map {
|
||||
case (embeddingId, embedding) => InternalIdEmbeddingWithId(embeddingId, embedding)
|
||||
}.writeDALSnapshotExecution(
|
||||
ReverseIndexSemanticCorePerLanguageSimclustersEmbeddingsPrestoScalaDataset,
|
||||
D.Daily,
|
||||
D.Suffix(
|
||||
LocaleEntitySimClustersEmbeddingsJob.getHdfsPath(
|
||||
isAdhoc = false,
|
||||
isManhattanKeyVal = false,
|
||||
isReverseIndex = true,
|
||||
isLogFav = false,
|
||||
jobConfig.modelVersion,
|
||||
jobConfig.entityType)),
|
||||
D.EBLzo(),
|
||||
dateRange.end
|
||||
)
|
||||
|
||||
Execution
|
||||
.zip(
|
||||
writeSimClustersEmbeddingDataset,
|
||||
writeSimClustersEmbeddingKeyValDataset,
|
||||
writeReverseSimClustersEmbeddingDataset,
|
||||
writeReverseSimClustersEmbeddingKeyValDataset
|
||||
).unit
|
||||
}
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val jobConfig = EntityEmbeddingsJobConfig(args, isAdhoc = false)
|
||||
|
||||
val embeddingsDataset = EntityEmbeddingsSources.getEntityEmbeddingsDataset(
|
||||
jobConfig.entityType,
|
||||
ModelVersions.toKnownForModelVersion(jobConfig.modelVersion),
|
||||
isEmbeddingsPerLocale = true
|
||||
)
|
||||
|
||||
val reverseIndexEmbeddingsDataset =
|
||||
EntityEmbeddingsSources.getReverseIndexedEntityEmbeddingsDataset(
|
||||
jobConfig.entityType,
|
||||
ModelVersions.toKnownForModelVersion(jobConfig.modelVersion),
|
||||
isEmbeddingsPerLocale = true
|
||||
)
|
||||
|
||||
val userEntityMatrix: TypedPipe[(UserId, (Entity, Double))] =
|
||||
getUserEntityMatrix(
|
||||
jobConfig,
|
||||
DataSources.entityRealGraphAggregationDataSetSource(dateRange.embiggen(Days(7))),
|
||||
Some(ExternalDataSources.uttEntitiesSource())
|
||||
).forceToDisk
|
||||
|
||||
//determine which data source to use based on model version
|
||||
val simClustersSource = jobConfig.modelVersion match {
|
||||
case ModelVersion.Model20m145kUpdated =>
|
||||
InterestedInSources.simClustersInterestedInUpdatedSource(dateRange, timeZone)
|
||||
case modelVersion =>
|
||||
throw new IllegalArgumentException(
|
||||
s"SimClusters model version not supported ${modelVersion.name}")
|
||||
}
|
||||
|
||||
val entityPerLanguage = userEntityMatrix.join(ExternalDataSources.userSource).map {
|
||||
case (userId, ((entity, score), (_, language))) =>
|
||||
((entity, language), (userId, score))
|
||||
}
|
||||
|
||||
val normalizedUserEntityMatrix =
|
||||
getNormalizedTransposeInputMatrix(entityPerLanguage, numReducers = Some(3000))
|
||||
|
||||
val simClustersEmbedding = jobConfig.modelVersion match {
|
||||
case ModelVersion.Model20m145kUpdated =>
|
||||
computeEmbeddings(
|
||||
simClustersSource,
|
||||
normalizedUserEntityMatrix,
|
||||
scoreExtractors,
|
||||
ModelVersion.Model20m145kUpdated,
|
||||
toSimClustersEmbeddingId(ModelVersion.Model20m145kUpdated),
|
||||
numReducers = Some(8000)
|
||||
)
|
||||
case modelVersion =>
|
||||
throw new IllegalArgumentException(
|
||||
s"SimClusters model version not supported ${modelVersion.name}")
|
||||
}
|
||||
|
||||
val topKEmbeddings =
|
||||
simClustersEmbedding.group.sortedReverseTake(jobConfig.topK)(Ordering.by(_._2))
|
||||
|
||||
writeOutput(
|
||||
simClustersEmbedding,
|
||||
topKEmbeddings,
|
||||
jobConfig,
|
||||
embeddingsDataset,
|
||||
reverseIndexEmbeddingsDataset)
|
||||
}
|
||||
}
|
||||
|
||||
object LocaleEntitySimClustersEmbeddingsJob {
|
||||
|
||||
def getUserEntityMatrix(
|
||||
|
@ -12,525 +12,6 @@ import com.twitter.simclusters_v2.thriftscala._
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
|
||||
import java.util.TimeZone
|
||||
|
||||
object ProducerEmbeddingsFromInterestedInBatchAppUtil {
|
||||
import ProducerEmbeddingsFromInterestedIn._
|
||||
|
||||
val user = System.getenv("USER")
|
||||
|
||||
val rootPath: String = s"/user/$user/manhattan_sequence_files"
|
||||
|
||||
// Helps speed up the multiplication step which can get very big
|
||||
val numReducersForMatrixMultiplication: Int = 12000
|
||||
|
||||
/**
|
||||
* Given the producer x cluster matrix, key by producer / cluster individually, and write output
|
||||
* to individual DAL datasets
|
||||
*/
|
||||
def writeOutput(
|
||||
producerClusterEmbedding: TypedPipe[((ClusterId, UserId), Double)],
|
||||
producerTopKEmbeddingsDataset: KeyValDALDataset[KeyVal[Long, TopSimClustersWithScore]],
|
||||
clusterTopKProducersDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
],
|
||||
producerTopKEmbeddingsPath: String,
|
||||
clusterTopKProducersPath: String,
|
||||
modelVersion: ModelVersion
|
||||
): Execution[Unit] = {
|
||||
val keyedByProducer =
|
||||
toSimClusterEmbedding(producerClusterEmbedding, topKClustersToKeep, modelVersion)
|
||||
.map { case (userId, clusters) => KeyVal(userId, clusters) }
|
||||
.writeDALVersionedKeyValExecution(
|
||||
producerTopKEmbeddingsDataset,
|
||||
D.Suffix(producerTopKEmbeddingsPath)
|
||||
)
|
||||
|
||||
val keyedBySimCluster = fromSimClusterEmbedding(
|
||||
producerClusterEmbedding,
|
||||
topKUsersToKeep,
|
||||
modelVersion
|
||||
).map {
|
||||
case (clusterId, topProducers) => KeyVal(clusterId, topProducersToThrift(topProducers))
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
clusterTopKProducersDataset,
|
||||
D.Suffix(clusterTopKProducersPath)
|
||||
)
|
||||
|
||||
Execution.zip(keyedByProducer, keyedBySimCluster).unit
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Base class for Fav based producer embeddings. Helps reuse the code for different model versions
|
||||
*/
|
||||
trait ProducerEmbeddingsFromInterestedInByFavScoreBase extends ScheduledExecutionApp {
|
||||
import ProducerEmbeddingsFromInterestedIn._
|
||||
import ProducerEmbeddingsFromInterestedInBatchAppUtil._
|
||||
|
||||
def modelVersion: ModelVersion
|
||||
|
||||
val producerTopKEmbeddingsByFavScorePathPrefix: String =
|
||||
"/producer_top_k_simcluster_embeddings_by_fav_score_"
|
||||
|
||||
val clusterTopKProducersByFavScorePathPrefix: String =
|
||||
"/simcluster_embedding_top_k_producers_by_fav_score_"
|
||||
|
||||
val minNumFavers: Int = minNumFaversForProducer
|
||||
|
||||
def producerTopKSimclusterEmbeddingsByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
]
|
||||
|
||||
def simclusterEmbeddingTopKProducersByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
]
|
||||
|
||||
def getInterestedInFn: (DateRange, TimeZone) => TypedPipe[(Long, ClustersUserIsInterestedIn)]
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val producerTopKEmbeddingsByFavScorePathUpdated: String =
|
||||
rootPath + producerTopKEmbeddingsByFavScorePathPrefix + ModelVersions
|
||||
.toKnownForModelVersion(modelVersion)
|
||||
|
||||
val clusterTopKProducersByFavScorePathUpdated: String =
|
||||
rootPath + clusterTopKProducersByFavScorePathPrefix + ModelVersions
|
||||
.toKnownForModelVersion(modelVersion)
|
||||
|
||||
val producerClusterEmbeddingByFavScore = getProducerClusterEmbedding(
|
||||
getInterestedInFn(dateRange.embiggen(Days(5)), timeZone),
|
||||
DataSources.userUserNormalizedGraphSource,
|
||||
DataSources.userNormsAndCounts,
|
||||
userToProducerFavScore,
|
||||
userToClusterFavScore, // Fav score
|
||||
_.faverCount.exists(_ > minNumFavers),
|
||||
numReducersForMatrixMultiplication,
|
||||
modelVersion,
|
||||
cosineSimilarityThreshold
|
||||
).forceToDisk
|
||||
|
||||
writeOutput(
|
||||
producerClusterEmbeddingByFavScore,
|
||||
producerTopKSimclusterEmbeddingsByFavScoreDataset,
|
||||
simclusterEmbeddingTopKProducersByFavScoreDataset,
|
||||
producerTopKEmbeddingsByFavScorePathUpdated,
|
||||
clusterTopKProducersByFavScorePathUpdated,
|
||||
modelVersion
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Base class for Follow based producer embeddings. Helps reuse the code for different model versions
|
||||
*/
|
||||
trait ProducerEmbeddingsFromInterestedInByFollowScoreBase extends ScheduledExecutionApp {
|
||||
import ProducerEmbeddingsFromInterestedIn._
|
||||
import ProducerEmbeddingsFromInterestedInBatchAppUtil._
|
||||
|
||||
def modelVersion: ModelVersion
|
||||
|
||||
val producerTopKEmbeddingsByFollowScorePathPrefix: String =
|
||||
"/producer_top_k_simcluster_embeddings_by_follow_score_"
|
||||
|
||||
val clusterTopKProducersByFollowScorePathPrefix: String =
|
||||
"/simcluster_embedding_top_k_producers_by_follow_score_"
|
||||
|
||||
def producerTopKSimclusterEmbeddingsByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
]
|
||||
|
||||
def simclusterEmbeddingTopKProducersByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
]
|
||||
|
||||
def getInterestedInFn: (DateRange, TimeZone) => TypedPipe[(Long, ClustersUserIsInterestedIn)]
|
||||
|
||||
val minNumFollowers: Int = minNumFollowersForProducer
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val producerTopKEmbeddingsByFollowScorePath: String =
|
||||
rootPath + producerTopKEmbeddingsByFollowScorePathPrefix + ModelVersions
|
||||
.toKnownForModelVersion(modelVersion)
|
||||
|
||||
val clusterTopKProducersByFollowScorePath: String =
|
||||
rootPath + clusterTopKProducersByFollowScorePathPrefix + ModelVersions
|
||||
.toKnownForModelVersion(modelVersion)
|
||||
|
||||
val producerClusterEmbeddingByFollowScore = getProducerClusterEmbedding(
|
||||
getInterestedInFn(dateRange.embiggen(Days(5)), timeZone),
|
||||
DataSources.userUserNormalizedGraphSource,
|
||||
DataSources.userNormsAndCounts,
|
||||
userToProducerFollowScore,
|
||||
userToClusterFollowScore, // Follow score
|
||||
_.followerCount.exists(_ > minNumFollowers),
|
||||
numReducersForMatrixMultiplication,
|
||||
modelVersion,
|
||||
cosineSimilarityThreshold
|
||||
).forceToDisk
|
||||
|
||||
writeOutput(
|
||||
producerClusterEmbeddingByFollowScore,
|
||||
producerTopKSimclusterEmbeddingsByFollowScoreDataset,
|
||||
simclusterEmbeddingTopKProducersByFollowScoreDataset,
|
||||
producerTopKEmbeddingsByFollowScorePath,
|
||||
clusterTopKProducersByFollowScorePath,
|
||||
modelVersion
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron producer_embeddings_from_interested_in_by_fav_score \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInByFavScoreBatchApp
|
||||
extends ProducerEmbeddingsFromInterestedInByFavScoreBase {
|
||||
override def modelVersion: ModelVersion = ModelVersion.Model20m145kUpdated
|
||||
|
||||
override def getInterestedInFn: (
|
||||
DateRange,
|
||||
TimeZone
|
||||
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
|
||||
InterestedInSources.simClustersInterestedInUpdatedSource
|
||||
|
||||
override val firstTime: RichDate = RichDate("2019-09-10")
|
||||
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def producerTopKSimclusterEmbeddingsByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
] =
|
||||
ProducerTopKSimclusterEmbeddingsByFavScoreUpdatedScalaDataset
|
||||
|
||||
override def simclusterEmbeddingTopKProducersByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
] =
|
||||
SimclusterEmbeddingTopKProducersByFavScoreUpdatedScalaDataset
|
||||
}
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron producer_embeddings_from_interested_in_by_fav_score_2020 \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInByFavScore2020BatchApp
|
||||
extends ProducerEmbeddingsFromInterestedInByFavScoreBase {
|
||||
override def modelVersion: ModelVersion = ModelVersion.Model20m145k2020
|
||||
|
||||
override def getInterestedInFn: (
|
||||
DateRange,
|
||||
TimeZone
|
||||
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
|
||||
InterestedInSources.simClustersInterestedIn2020Source
|
||||
|
||||
override val firstTime: RichDate = RichDate("2021-03-01")
|
||||
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def producerTopKSimclusterEmbeddingsByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
] =
|
||||
ProducerTopKSimclusterEmbeddingsByFavScore2020ScalaDataset
|
||||
|
||||
override def simclusterEmbeddingTopKProducersByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
] =
|
||||
SimclusterEmbeddingTopKProducersByFavScore2020ScalaDataset
|
||||
}
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron producer_embeddings_from_interested_in_by_fav_score_dec11 \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInByFavScoreDec11BatchApp
|
||||
extends ProducerEmbeddingsFromInterestedInByFavScoreBase {
|
||||
override def modelVersion: ModelVersion = ModelVersion.Model20m145kDec11
|
||||
|
||||
override def getInterestedInFn: (
|
||||
DateRange,
|
||||
TimeZone
|
||||
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
|
||||
InterestedInSources.simClustersInterestedInDec11Source
|
||||
|
||||
override val firstTime: RichDate = RichDate("2019-11-18")
|
||||
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def producerTopKSimclusterEmbeddingsByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
] =
|
||||
ProducerTopKSimclusterEmbeddingsByFavScoreScalaDataset
|
||||
|
||||
override def simclusterEmbeddingTopKProducersByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
] =
|
||||
SimclusterEmbeddingTopKProducersByFavScoreScalaDataset
|
||||
}
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron producer_embeddings_from_interested_in_by_follow_score \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInByFollowScoreBatchApp
|
||||
extends ProducerEmbeddingsFromInterestedInByFollowScoreBase {
|
||||
override def modelVersion: ModelVersion = ModelVersion.Model20m145kUpdated
|
||||
|
||||
override def getInterestedInFn: (
|
||||
DateRange,
|
||||
TimeZone
|
||||
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
|
||||
InterestedInSources.simClustersInterestedInUpdatedSource
|
||||
|
||||
override val firstTime: RichDate = RichDate("2019-09-10")
|
||||
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def producerTopKSimclusterEmbeddingsByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
] =
|
||||
ProducerTopKSimclusterEmbeddingsByFollowScoreUpdatedScalaDataset
|
||||
|
||||
override def simclusterEmbeddingTopKProducersByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
] =
|
||||
SimclusterEmbeddingTopKProducersByFollowScoreUpdatedScalaDataset
|
||||
}
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron producer_embeddings_from_interested_in_by_follow_score_2020 \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInByFollowScore2020BatchApp
|
||||
extends ProducerEmbeddingsFromInterestedInByFollowScoreBase {
|
||||
override def modelVersion: ModelVersion = ModelVersion.Model20m145k2020
|
||||
|
||||
override def getInterestedInFn: (
|
||||
DateRange,
|
||||
TimeZone
|
||||
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
|
||||
InterestedInSources.simClustersInterestedIn2020Source
|
||||
|
||||
override val firstTime: RichDate = RichDate("2021-03-01")
|
||||
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def producerTopKSimclusterEmbeddingsByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
] =
|
||||
ProducerTopKSimclusterEmbeddingsByFollowScore2020ScalaDataset
|
||||
|
||||
override def simclusterEmbeddingTopKProducersByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
] =
|
||||
SimclusterEmbeddingTopKProducersByFollowScore2020ScalaDataset
|
||||
}
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron producer_embeddings_from_interested_in_by_follow_score_dec11 \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInByFollowScoreDec11BatchApp
|
||||
extends ProducerEmbeddingsFromInterestedInByFollowScoreBase {
|
||||
override def modelVersion: ModelVersion = ModelVersion.Model20m145kDec11
|
||||
|
||||
override def getInterestedInFn: (
|
||||
DateRange,
|
||||
TimeZone
|
||||
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
|
||||
InterestedInSources.simClustersInterestedInDec11Source
|
||||
|
||||
override val firstTime: RichDate = RichDate("2019-11-18")
|
||||
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def producerTopKSimclusterEmbeddingsByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
] =
|
||||
ProducerTopKSimclusterEmbeddingsByFollowScoreScalaDataset
|
||||
|
||||
override def simclusterEmbeddingTopKProducersByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
] =
|
||||
SimclusterEmbeddingTopKProducersByFollowScoreScalaDataset
|
||||
}
|
||||
|
||||
/**
|
||||
* Adhoc job to calculate producer's simcluster embeddings, which essentially assigns interestedIn
|
||||
* SimClusters to each producer, regardless of whether the producer has a knownFor assignment.
|
||||
*
|
||||
$ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:producer_embeddings_from_interested_in-adhoc
|
||||
|
||||
$ scalding remote run \
|
||||
--main-class com.twitter.simclusters_v2.scalding.embedding.ProducerEmbeddingsFromInterestedInAdhocApp \
|
||||
--target src/scala/com/twitter/simclusters_v2/scalding/embedding:producer_embeddings_from_interested_in-adhoc \
|
||||
--user cassowary --cluster bluebird-qus1 \
|
||||
--keytab /var/lib/tss/keys/fluffy/keytabs/client/cassowary.keytab \
|
||||
--principal service_acoount@TWITTER.BIZ \
|
||||
-- --date 2020-08-25 --model_version 20M_145K_updated \
|
||||
--outputDir /gcs/user/cassowary/adhoc/producerEmbeddings/
|
||||
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInAdhocApp extends AdhocExecutionApp {
|
||||
|
||||
import ProducerEmbeddingsFromInterestedIn._
|
||||
|
||||
private val numReducersForMatrixMultiplication = 12000
|
||||
|
||||
/**
|
||||
* Calculate the embedding and writes the results keyed by producers and clusters separately into
|
||||
* individual locations
|
||||
*/
|
||||
private def runAdhocByScore(
|
||||
interestedInClusters: TypedPipe[(Long, ClustersUserIsInterestedIn)],
|
||||
userUserNormalGraph: TypedPipe[UserAndNeighbors],
|
||||
userNormsAndCounts: TypedPipe[NormsAndCounts],
|
||||
keyedByProducerSinkPath: String,
|
||||
keyedByClusterSinkPath: String,
|
||||
userToProducerScoringFn: NeighborWithWeights => Double,
|
||||
userToClusterScoringFn: UserToInterestedInClusterScores => Double,
|
||||
userFilter: NormsAndCounts => Boolean,
|
||||
modelVersion: ModelVersion
|
||||
)(
|
||||
implicit uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val producerClusterEmbedding = getProducerClusterEmbedding(
|
||||
interestedInClusters,
|
||||
userUserNormalGraph,
|
||||
userNormsAndCounts,
|
||||
userToProducerScoringFn,
|
||||
userToClusterScoringFn,
|
||||
userFilter,
|
||||
numReducersForMatrixMultiplication,
|
||||
modelVersion,
|
||||
cosineSimilarityThreshold
|
||||
).forceToDisk
|
||||
|
||||
val keyByProducerExec =
|
||||
toSimClusterEmbedding(producerClusterEmbedding, topKClustersToKeep, modelVersion)
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.topProducerToClusterEmbeddingsSource(keyedByProducerSinkPath))
|
||||
|
||||
val keyByClusterExec =
|
||||
fromSimClusterEmbedding(producerClusterEmbedding, topKUsersToKeep, modelVersion)
|
||||
.map { case (clusterId, topProducers) => (clusterId, topProducersToThrift(topProducers)) }
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.topClusterEmbeddingsToProducerSource(keyedByClusterSinkPath))
|
||||
|
||||
Execution.zip(keyByProducerExec, keyByClusterExec).unit
|
||||
}
|
||||
|
||||
// Calculate the embeddings using follow scores
|
||||
private def runFollowScore(
|
||||
interestedInClusters: TypedPipe[(Long, ClustersUserIsInterestedIn)],
|
||||
userUserNormalGraph: TypedPipe[UserAndNeighbors],
|
||||
userNormsAndCounts: TypedPipe[NormsAndCounts],
|
||||
modelVersion: ModelVersion,
|
||||
outputDir: String
|
||||
)(
|
||||
implicit uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
val keyByClusterSinkPath = outputDir + "keyedByCluster/byFollowScore_" + modelVersion
|
||||
val keyByProducerSinkPath = outputDir + "keyedByProducer/byFollowScore_" + modelVersion
|
||||
|
||||
runAdhocByScore(
|
||||
interestedInClusters,
|
||||
userUserNormalGraph,
|
||||
userNormsAndCounts,
|
||||
keyedByProducerSinkPath = keyByProducerSinkPath,
|
||||
keyedByClusterSinkPath = keyByClusterSinkPath,
|
||||
userToProducerScoringFn = userToProducerFollowScore,
|
||||
userToClusterScoringFn = userToClusterFollowScore,
|
||||
_.followerCount.exists(_ > minNumFollowersForProducer),
|
||||
modelVersion
|
||||
)
|
||||
}
|
||||
|
||||
// Calculate the embeddings using fav scores
|
||||
private def runFavScore(
|
||||
interestedInClusters: TypedPipe[(Long, ClustersUserIsInterestedIn)],
|
||||
userUserNormalGraph: TypedPipe[UserAndNeighbors],
|
||||
userNormsAndCounts: TypedPipe[NormsAndCounts],
|
||||
modelVersion: ModelVersion,
|
||||
outputDir: String
|
||||
)(
|
||||
implicit uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
val keyByClusterSinkPath = outputDir + "keyedByCluster/byFavScore_" + modelVersion
|
||||
val keyByProducerSinkPath = outputDir + "keyedByProducer/byFavScore_" + modelVersion
|
||||
|
||||
runAdhocByScore(
|
||||
interestedInClusters,
|
||||
userUserNormalGraph,
|
||||
userNormsAndCounts,
|
||||
keyedByProducerSinkPath = keyByProducerSinkPath,
|
||||
keyedByClusterSinkPath = keyByClusterSinkPath,
|
||||
userToProducerScoringFn = userToProducerFavScore,
|
||||
userToClusterScoringFn = userToClusterFavScore,
|
||||
_.faverCount.exists(_ > minNumFaversForProducer),
|
||||
modelVersion
|
||||
)
|
||||
}
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
val outputDir = args("outputDir")
|
||||
|
||||
val modelVersion =
|
||||
ModelVersions.toModelVersion(args.required("model_version"))
|
||||
|
||||
val interestedInClusters = modelVersion match {
|
||||
case ModelVersion.Model20m145k2020 =>
|
||||
InterestedInSources.simClustersInterestedIn2020Source(dateRange, timeZone).forceToDisk
|
||||
case ModelVersion.Model20m145kUpdated =>
|
||||
InterestedInSources.simClustersInterestedInUpdatedSource(dateRange, timeZone).forceToDisk
|
||||
case _ =>
|
||||
InterestedInSources.simClustersInterestedInDec11Source(dateRange, timeZone).forceToDisk
|
||||
}
|
||||
|
||||
Execution
|
||||
.zip(
|
||||
runFavScore(
|
||||
interestedInClusters,
|
||||
DataSources.userUserNormalizedGraphSource,
|
||||
DataSources.userNormsAndCounts,
|
||||
modelVersion,
|
||||
outputDir
|
||||
),
|
||||
runFollowScore(
|
||||
interestedInClusters,
|
||||
DataSources.userUserNormalizedGraphSource,
|
||||
DataSources.userNormsAndCounts,
|
||||
modelVersion,
|
||||
outputDir
|
||||
)
|
||||
).unit
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the producer's interestedIn cluster embedding. i.e. If a tweet author (producer) is not
|
||||
* associated with a KnownFor cluster, do a cross-product between
|
||||
|
@ -0,0 +1,176 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.ModelVersions
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
|
||||
/**
|
||||
* Adhoc job to calculate producer's simcluster embeddings, which essentially assigns interestedIn
|
||||
* SimClusters to each producer, regardless of whether the producer has a knownFor assignment.
|
||||
*
|
||||
$ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:producer_embeddings_from_interested_in-adhoc
|
||||
|
||||
$ scalding remote run \
|
||||
--main-class com.twitter.simclusters_v2.scalding.embedding.ProducerEmbeddingsFromInterestedInAdhocApp \
|
||||
--target src/scala/com/twitter/simclusters_v2/scalding/embedding:producer_embeddings_from_interested_in-adhoc \
|
||||
--user cassowary --cluster bluebird-qus1 \
|
||||
--keytab /var/lib/tss/keys/fluffy/keytabs/client/cassowary.keytab \
|
||||
--principal service_acoount@TWITTER.BIZ \
|
||||
-- --date 2020-08-25 --model_version 20M_145K_updated \
|
||||
--outputDir /gcs/user/cassowary/adhoc/producerEmbeddings/
|
||||
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInAdhocApp extends AdhocExecutionApp {
|
||||
|
||||
import ProducerEmbeddingsFromInterestedIn.*
|
||||
|
||||
private val numReducersForMatrixMultiplication = 12000
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
val outputDir = args("outputDir")
|
||||
|
||||
val modelVersion =
|
||||
ModelVersions.toModelVersion(args.required("model_version"))
|
||||
|
||||
val interestedInClusters = modelVersion match {
|
||||
case ModelVersion.Model20m145k2020 =>
|
||||
InterestedInSources.simClustersInterestedIn2020Source(dateRange, timeZone).forceToDisk
|
||||
case ModelVersion.Model20m145kUpdated =>
|
||||
InterestedInSources.simClustersInterestedInUpdatedSource(dateRange, timeZone).forceToDisk
|
||||
case _ =>
|
||||
InterestedInSources.simClustersInterestedInDec11Source(dateRange, timeZone).forceToDisk
|
||||
}
|
||||
|
||||
Execution
|
||||
.zip(
|
||||
runFavScore(
|
||||
interestedInClusters,
|
||||
DataSources.userUserNormalizedGraphSource,
|
||||
DataSources.userNormsAndCounts,
|
||||
modelVersion,
|
||||
outputDir
|
||||
),
|
||||
runFollowScore(
|
||||
interestedInClusters,
|
||||
DataSources.userUserNormalizedGraphSource,
|
||||
DataSources.userNormsAndCounts,
|
||||
modelVersion,
|
||||
outputDir
|
||||
)
|
||||
).unit
|
||||
}
|
||||
|
||||
// Calculate the embeddings using follow scores
|
||||
private def runFollowScore(
|
||||
interestedInClusters: TypedPipe[(Long, ClustersUserIsInterestedIn)],
|
||||
userUserNormalGraph: TypedPipe[UserAndNeighbors],
|
||||
userNormsAndCounts: TypedPipe[NormsAndCounts],
|
||||
modelVersion: ModelVersion,
|
||||
outputDir: String
|
||||
)(
|
||||
implicit uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
val keyByClusterSinkPath = outputDir + "keyedByCluster/byFollowScore_" + modelVersion
|
||||
val keyByProducerSinkPath = outputDir + "keyedByProducer/byFollowScore_" + modelVersion
|
||||
|
||||
runAdhocByScore(
|
||||
interestedInClusters,
|
||||
userUserNormalGraph,
|
||||
userNormsAndCounts,
|
||||
keyedByProducerSinkPath = keyByProducerSinkPath,
|
||||
keyedByClusterSinkPath = keyByClusterSinkPath,
|
||||
userToProducerScoringFn = userToProducerFollowScore,
|
||||
userToClusterScoringFn = userToClusterFollowScore,
|
||||
_.followerCount.exists(_ > minNumFollowersForProducer),
|
||||
modelVersion
|
||||
)
|
||||
}
|
||||
|
||||
// Calculate the embeddings using fav scores
|
||||
private def runFavScore(
|
||||
interestedInClusters: TypedPipe[(Long, ClustersUserIsInterestedIn)],
|
||||
userUserNormalGraph: TypedPipe[UserAndNeighbors],
|
||||
userNormsAndCounts: TypedPipe[NormsAndCounts],
|
||||
modelVersion: ModelVersion,
|
||||
outputDir: String
|
||||
)(
|
||||
implicit uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
val keyByClusterSinkPath = outputDir + "keyedByCluster/byFavScore_" + modelVersion
|
||||
val keyByProducerSinkPath = outputDir + "keyedByProducer/byFavScore_" + modelVersion
|
||||
|
||||
runAdhocByScore(
|
||||
interestedInClusters,
|
||||
userUserNormalGraph,
|
||||
userNormsAndCounts,
|
||||
keyedByProducerSinkPath = keyByProducerSinkPath,
|
||||
keyedByClusterSinkPath = keyByClusterSinkPath,
|
||||
userToProducerScoringFn = userToProducerFavScore,
|
||||
userToClusterScoringFn = userToClusterFavScore,
|
||||
_.faverCount.exists(_ > minNumFaversForProducer),
|
||||
modelVersion
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the embedding and writes the results keyed by producers and clusters separately into
|
||||
* individual locations
|
||||
*/
|
||||
private def runAdhocByScore(
|
||||
interestedInClusters: TypedPipe[(Long, ClustersUserIsInterestedIn)],
|
||||
userUserNormalGraph: TypedPipe[UserAndNeighbors],
|
||||
userNormsAndCounts: TypedPipe[NormsAndCounts],
|
||||
keyedByProducerSinkPath: String,
|
||||
keyedByClusterSinkPath: String,
|
||||
userToProducerScoringFn: NeighborWithWeights => Double,
|
||||
userToClusterScoringFn: UserToInterestedInClusterScores => Double,
|
||||
userFilter: NormsAndCounts => Boolean,
|
||||
modelVersion: ModelVersion
|
||||
)(
|
||||
implicit uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val producerClusterEmbedding = getProducerClusterEmbedding(
|
||||
interestedInClusters,
|
||||
userUserNormalGraph,
|
||||
userNormsAndCounts,
|
||||
userToProducerScoringFn,
|
||||
userToClusterScoringFn,
|
||||
userFilter,
|
||||
numReducersForMatrixMultiplication,
|
||||
modelVersion,
|
||||
cosineSimilarityThreshold
|
||||
).forceToDisk
|
||||
|
||||
val keyByProducerExec =
|
||||
toSimClusterEmbedding(producerClusterEmbedding, topKClustersToKeep, modelVersion)
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.topProducerToClusterEmbeddingsSource(keyedByProducerSinkPath))
|
||||
|
||||
val keyByClusterExec =
|
||||
fromSimClusterEmbedding(producerClusterEmbedding, topKUsersToKeep, modelVersion)
|
||||
.map { case (clusterId, topProducers) => (clusterId, topProducersToThrift(topProducers)) }
|
||||
.writeExecution(
|
||||
AdhocKeyValSources.topClusterEmbeddingsToProducerSource(keyedByClusterSinkPath))
|
||||
|
||||
Execution.zip(keyByProducerExec, keyByClusterExec).unit
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,82 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.ModelVersions
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
object ProducerEmbeddingsFromInterestedInBatchAppUtil {
|
||||
import ProducerEmbeddingsFromInterestedIn.*
|
||||
|
||||
val user = System.getenv("USER")
|
||||
|
||||
val rootPath: String = s"/user/$user/manhattan_sequence_files"
|
||||
|
||||
// Helps speed up the multiplication step which can get very big
|
||||
val numReducersForMatrixMultiplication: Int = 12000
|
||||
|
||||
/**
|
||||
* Given the producer x cluster matrix, key by producer / cluster individually, and write output
|
||||
* to individual DAL datasets
|
||||
*/
|
||||
def writeOutput(
|
||||
producerClusterEmbedding: TypedPipe[((ClusterId, UserId), Double)],
|
||||
producerTopKEmbeddingsDataset: KeyValDALDataset[KeyVal[Long, TopSimClustersWithScore]],
|
||||
clusterTopKProducersDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
],
|
||||
producerTopKEmbeddingsPath: String,
|
||||
clusterTopKProducersPath: String,
|
||||
modelVersion: ModelVersion
|
||||
): Execution[Unit] = {
|
||||
val keyedByProducer =
|
||||
toSimClusterEmbedding(producerClusterEmbedding, topKClustersToKeep, modelVersion)
|
||||
.map { case (userId, clusters) => KeyVal(userId, clusters) }
|
||||
.writeDALVersionedKeyValExecution(
|
||||
producerTopKEmbeddingsDataset,
|
||||
D.Suffix(producerTopKEmbeddingsPath)
|
||||
)
|
||||
|
||||
val keyedBySimCluster = fromSimClusterEmbedding(
|
||||
producerClusterEmbedding,
|
||||
topKUsersToKeep,
|
||||
modelVersion
|
||||
).map {
|
||||
case (clusterId, topProducers) => KeyVal(clusterId, topProducersToThrift(topProducers))
|
||||
}
|
||||
.writeDALVersionedKeyValExecution(
|
||||
clusterTopKProducersDataset,
|
||||
D.Suffix(clusterTopKProducersPath)
|
||||
)
|
||||
|
||||
Execution.zip(keyedByProducer, keyedBySimCluster).unit
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,56 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.ModelVersions
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron producer_embeddings_from_interested_in_by_fav_score_2020 \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInByFavScore2020BatchApp
|
||||
extends ProducerEmbeddingsFromInterestedInByFavScoreBase {
|
||||
override val firstTime: RichDate = RichDate("2021-03-01")
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def modelVersion: ModelVersion = ModelVersion.Model20m145k2020
|
||||
|
||||
override def getInterestedInFn: (
|
||||
DateRange,
|
||||
TimeZone
|
||||
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
|
||||
InterestedInSources.simClustersInterestedIn2020Source
|
||||
|
||||
override def producerTopKSimclusterEmbeddingsByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
] =
|
||||
ProducerTopKSimclusterEmbeddingsByFavScore2020ScalaDataset
|
||||
|
||||
override def simclusterEmbeddingTopKProducersByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
] =
|
||||
SimclusterEmbeddingTopKProducersByFavScore2020ScalaDataset
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,96 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.ModelVersions
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
* Base class for Fav based producer embeddings. Helps reuse the code for different model versions
|
||||
*/
|
||||
trait ProducerEmbeddingsFromInterestedInByFavScoreBase extends ScheduledExecutionApp {
|
||||
import ProducerEmbeddingsFromInterestedIn.*
|
||||
import ProducerEmbeddingsFromInterestedInBatchAppUtil.*
|
||||
|
||||
val producerTopKEmbeddingsByFavScorePathPrefix: String =
|
||||
"/producer_top_k_simcluster_embeddings_by_fav_score_"
|
||||
val clusterTopKProducersByFavScorePathPrefix: String =
|
||||
"/simcluster_embedding_top_k_producers_by_fav_score_"
|
||||
val minNumFavers: Int = minNumFaversForProducer
|
||||
|
||||
def modelVersion: ModelVersion
|
||||
|
||||
def producerTopKSimclusterEmbeddingsByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
]
|
||||
|
||||
def simclusterEmbeddingTopKProducersByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
]
|
||||
|
||||
def getInterestedInFn: (DateRange, TimeZone) => TypedPipe[(Long, ClustersUserIsInterestedIn)]
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val producerTopKEmbeddingsByFavScorePathUpdated: String =
|
||||
rootPath + producerTopKEmbeddingsByFavScorePathPrefix + ModelVersions
|
||||
.toKnownForModelVersion(modelVersion)
|
||||
|
||||
val clusterTopKProducersByFavScorePathUpdated: String =
|
||||
rootPath + clusterTopKProducersByFavScorePathPrefix + ModelVersions
|
||||
.toKnownForModelVersion(modelVersion)
|
||||
|
||||
val producerClusterEmbeddingByFavScore = getProducerClusterEmbedding(
|
||||
getInterestedInFn(dateRange.embiggen(Days(5)), timeZone),
|
||||
DataSources.userUserNormalizedGraphSource,
|
||||
DataSources.userNormsAndCounts,
|
||||
userToProducerFavScore,
|
||||
userToClusterFavScore, // Fav score
|
||||
_.faverCount.exists(_ > minNumFavers),
|
||||
numReducersForMatrixMultiplication,
|
||||
modelVersion,
|
||||
cosineSimilarityThreshold
|
||||
).forceToDisk
|
||||
|
||||
writeOutput(
|
||||
producerClusterEmbeddingByFavScore,
|
||||
producerTopKSimclusterEmbeddingsByFavScoreDataset,
|
||||
simclusterEmbeddingTopKProducersByFavScoreDataset,
|
||||
producerTopKEmbeddingsByFavScorePathUpdated,
|
||||
clusterTopKProducersByFavScorePathUpdated,
|
||||
modelVersion
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,57 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.ModelVersions
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron producer_embeddings_from_interested_in_by_fav_score \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInByFavScoreBatchApp
|
||||
extends ProducerEmbeddingsFromInterestedInByFavScoreBase {
|
||||
override val firstTime: RichDate = RichDate("2019-09-10")
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def modelVersion: ModelVersion = ModelVersion.Model20m145kUpdated
|
||||
|
||||
override def getInterestedInFn: (
|
||||
DateRange,
|
||||
TimeZone
|
||||
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
|
||||
InterestedInSources.simClustersInterestedInUpdatedSource
|
||||
|
||||
override def producerTopKSimclusterEmbeddingsByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
] =
|
||||
ProducerTopKSimclusterEmbeddingsByFavScoreUpdatedScalaDataset
|
||||
|
||||
override def simclusterEmbeddingTopKProducersByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
] =
|
||||
SimclusterEmbeddingTopKProducersByFavScoreUpdatedScalaDataset
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,54 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.ModelVersions
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron producer_embeddings_from_interested_in_by_fav_score_dec11 \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInByFavScoreDec11BatchApp
|
||||
extends ProducerEmbeddingsFromInterestedInByFavScoreBase {
|
||||
override val firstTime: RichDate = RichDate("2019-11-18")
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def modelVersion: ModelVersion = ModelVersion.Model20m145kDec11
|
||||
|
||||
override def getInterestedInFn: (
|
||||
DateRange,
|
||||
TimeZone
|
||||
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
|
||||
InterestedInSources.simClustersInterestedInDec11Source
|
||||
|
||||
override def producerTopKSimclusterEmbeddingsByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
] =
|
||||
ProducerTopKSimclusterEmbeddingsByFavScoreScalaDataset
|
||||
|
||||
override def simclusterEmbeddingTopKProducersByFavScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
] =
|
||||
SimclusterEmbeddingTopKProducersByFavScoreScalaDataset
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,49 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.ModelVersions
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron producer_embeddings_from_interested_in_by_follow_score_2020 \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInByFollowScore2020BatchApp
|
||||
extends ProducerEmbeddingsFromInterestedInByFollowScoreBase {
|
||||
override val firstTime: RichDate = RichDate("2021-03-01")
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def modelVersion: ModelVersion = ModelVersion.Model20m145k2020
|
||||
|
||||
override def getInterestedInFn: (
|
||||
DateRange,
|
||||
TimeZone
|
||||
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
|
||||
InterestedInSources.simClustersInterestedIn2020Source
|
||||
|
||||
override def producerTopKSimclusterEmbeddingsByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
] =
|
||||
ProducerTopKSimclusterEmbeddingsByFollowScore2020ScalaDataset
|
||||
|
||||
override def simclusterEmbeddingTopKProducersByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
] =
|
||||
SimclusterEmbeddingTopKProducersByFollowScore2020ScalaDataset
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,94 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.ModelVersions
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
* Base class for Follow based producer embeddings. Helps reuse the code for different model versions
|
||||
*/
|
||||
trait ProducerEmbeddingsFromInterestedInByFollowScoreBase extends ScheduledExecutionApp {
|
||||
import ProducerEmbeddingsFromInterestedIn.*
|
||||
import ProducerEmbeddingsFromInterestedInBatchAppUtil.*
|
||||
|
||||
val producerTopKEmbeddingsByFollowScorePathPrefix: String =
|
||||
"/producer_top_k_simcluster_embeddings_by_follow_score_"
|
||||
val clusterTopKProducersByFollowScorePathPrefix: String =
|
||||
"/simcluster_embedding_top_k_producers_by_follow_score_"
|
||||
val minNumFollowers: Int = minNumFollowersForProducer
|
||||
|
||||
def modelVersion: ModelVersion
|
||||
|
||||
def producerTopKSimclusterEmbeddingsByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
]
|
||||
|
||||
def simclusterEmbeddingTopKProducersByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
]
|
||||
|
||||
def getInterestedInFn: (DateRange, TimeZone) => TypedPipe[(Long, ClustersUserIsInterestedIn)]
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
val producerTopKEmbeddingsByFollowScorePath: String =
|
||||
rootPath + producerTopKEmbeddingsByFollowScorePathPrefix + ModelVersions
|
||||
.toKnownForModelVersion(modelVersion)
|
||||
|
||||
val clusterTopKProducersByFollowScorePath: String =
|
||||
rootPath + clusterTopKProducersByFollowScorePathPrefix + ModelVersions
|
||||
.toKnownForModelVersion(modelVersion)
|
||||
|
||||
val producerClusterEmbeddingByFollowScore = getProducerClusterEmbedding(
|
||||
getInterestedInFn(dateRange.embiggen(Days(5)), timeZone),
|
||||
DataSources.userUserNormalizedGraphSource,
|
||||
DataSources.userNormsAndCounts,
|
||||
userToProducerFollowScore,
|
||||
userToClusterFollowScore, // Follow score
|
||||
_.followerCount.exists(_ > minNumFollowers),
|
||||
numReducersForMatrixMultiplication,
|
||||
modelVersion,
|
||||
cosineSimilarityThreshold
|
||||
).forceToDisk
|
||||
|
||||
writeOutput(
|
||||
producerClusterEmbeddingByFollowScore,
|
||||
producerTopKSimclusterEmbeddingsByFollowScoreDataset,
|
||||
simclusterEmbeddingTopKProducersByFollowScoreDataset,
|
||||
producerTopKEmbeddingsByFollowScorePath,
|
||||
clusterTopKProducersByFollowScorePath,
|
||||
modelVersion
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,52 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.ModelVersions
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron producer_embeddings_from_interested_in_by_follow_score \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInByFollowScoreBatchApp
|
||||
extends ProducerEmbeddingsFromInterestedInByFollowScoreBase {
|
||||
override val firstTime: RichDate = RichDate("2019-09-10")
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def modelVersion: ModelVersion = ModelVersion.Model20m145kUpdated
|
||||
|
||||
override def getInterestedInFn: (
|
||||
DateRange,
|
||||
TimeZone
|
||||
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
|
||||
InterestedInSources.simClustersInterestedInUpdatedSource
|
||||
|
||||
override def producerTopKSimclusterEmbeddingsByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
] =
|
||||
ProducerTopKSimclusterEmbeddingsByFollowScoreUpdatedScalaDataset
|
||||
|
||||
override def simclusterEmbeddingTopKProducersByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
] =
|
||||
SimclusterEmbeddingTopKProducersByFollowScoreUpdatedScalaDataset
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,47 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.ModelVersions
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron producer_embeddings_from_interested_in_by_follow_score_dec11 \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object ProducerEmbeddingsFromInterestedInByFollowScoreDec11BatchApp
|
||||
extends ProducerEmbeddingsFromInterestedInByFollowScoreBase {
|
||||
override val firstTime: RichDate = RichDate("2019-11-18")
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
override def modelVersion: ModelVersion = ModelVersion.Model20m145kDec11
|
||||
|
||||
override def getInterestedInFn: (
|
||||
DateRange,
|
||||
TimeZone
|
||||
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
|
||||
InterestedInSources.simClustersInterestedInDec11Source
|
||||
|
||||
override def producerTopKSimclusterEmbeddingsByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[Long, TopSimClustersWithScore]
|
||||
] =
|
||||
ProducerTopKSimclusterEmbeddingsByFollowScoreScalaDataset
|
||||
|
||||
override def simclusterEmbeddingTopKProducersByFollowScoreDataset: KeyValDALDataset[
|
||||
KeyVal[PersistedFullClusterId, TopProducersWithScore]
|
||||
] =
|
||||
SimclusterEmbeddingTopKProducersByFollowScoreScalaDataset
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,28 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.dal.client.dataset.KeyValDALDataset
|
||||
import com.twitter.recos.entities.thriftscala.{Entity, Hashtag, SemanticCoreEntity}
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.{ModelVersions, SimClustersEmbedding}
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil.*
|
||||
import com.twitter.simclusters_v2.scalding.embedding.common.{EmbeddingUtil, EntityEmbeddingUtil, SimClustersEmbeddingJob}
|
||||
import com.twitter.simclusters_v2.thriftscala.{SimClustersEmbedding as ThriftSimClustersEmbedding, *}
|
||||
import com.twitter.wtf.entity_real_graph.common.EntityUtil
|
||||
import com.twitter.wtf.entity_real_graph.thriftscala.EntityType
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, DataSources, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
|
||||
/**
|
||||
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:semantic_core_entity_embeddings_2020_job
|
||||
* $ capesospy-v2 update \
|
||||
--build_locally \
|
||||
--start_cron semantic_core_entity_embeddings_2020_job src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object SemanticCoreEntityEmbeddings2020App extends EntityToSimClustersEmbeddingApp
|
||||
|
||||
|
@ -17,194 +17,6 @@ import com.twitter.wtf.scalding.jobs.common.AdhocExecutionApp
|
||||
import com.twitter.wtf.scalding.jobs.common.ScheduledExecutionApp
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron similar_users_by_simclusters_embeddings_job \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object SimilarUsersBySimClustersEmbeddingBatchApp extends ScheduledExecutionApp {
|
||||
|
||||
override val firstTime: RichDate = RichDate("2019-07-10")
|
||||
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
private val outputByFav =
|
||||
"/user/cassowary/manhattan_sequence_files/similar_users_by_simclusters_embeddings/by_fav"
|
||||
private val outputByFollow =
|
||||
"/user/cassowary/manhattan_sequence_files/similar_users_by_simclusters_embeddings/by_follow"
|
||||
|
||||
private implicit val valueInj: CompactScalaCodec[Candidates] = CompactScalaCodec(Candidates)
|
||||
|
||||
private val topClusterEmbeddingsByFavScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
ProducerTopKSimclusterEmbeddingsByFavScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { clusterScorePair => clusterScorePair.key -> clusterScorePair.value }
|
||||
|
||||
private val topProducersForClusterEmbeddingByFavScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
SimclusterEmbeddingTopKProducersByFavScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { producerScoresPair => producerScoresPair.key -> producerScoresPair.value }
|
||||
|
||||
private val topClusterEmbeddingsByFollowScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
ProducerTopKSimclusterEmbeddingsByFollowScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { clusterScorePair => clusterScorePair.key -> clusterScorePair.value }
|
||||
|
||||
private val topProducersForClusterEmbeddingByFollowScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
SimclusterEmbeddingTopKProducersByFollowScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { producerScoresPair => producerScoresPair.key -> producerScoresPair.value }
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
Execution
|
||||
.zip(
|
||||
SimilarUsersBySimClustersEmbedding
|
||||
.getTopUsersRelatedToUser(
|
||||
topClusterEmbeddingsByFavScore,
|
||||
topProducersForClusterEmbeddingByFavScore
|
||||
)
|
||||
.map { case (key, value) => KeyVal(key, value) }
|
||||
.writeDALVersionedKeyValExecution(
|
||||
SimilarUsersByFavBasedProducerEmbeddingScalaDataset,
|
||||
D.Suffix(outputByFav)
|
||||
),
|
||||
SimilarUsersBySimClustersEmbedding
|
||||
.getTopUsersRelatedToUser(
|
||||
topClusterEmbeddingsByFollowScore,
|
||||
topProducersForClusterEmbeddingByFollowScore
|
||||
)
|
||||
.map { case (key, value) => KeyVal(key, value) }
|
||||
.writeDALVersionedKeyValExecution(
|
||||
SimilarUsersByFollowBasedProducerEmbeddingScalaDataset,
|
||||
D.Suffix(outputByFollow)
|
||||
)
|
||||
).unit
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Adhoc job to calculate producer's simcluster embeddings, which essentially assigns interestedIn
|
||||
* SimClusters to each producer, regardless of whether the producer has a knownFor assignment.
|
||||
*
|
||||
./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:similar_users_by_simclusters_embeddings-adhoc && \
|
||||
oscar hdfs --user recos-platform --screen --tee similar_users_by_simclusters_embeddings --bundle similar_users_by_simclusters_embeddings-adhoc \
|
||||
--tool com.twitter.simclusters_v2.scalding.embedding.SimilarUsersBySimClustersEmbeddingAdhocApp \
|
||||
-- --date 2019-07-10T00 2019-07-10T23
|
||||
*/
|
||||
object SimilarUsersBySimClustersEmbeddingAdhocApp extends AdhocExecutionApp {
|
||||
|
||||
private val outputByFav =
|
||||
"/user/recos-platform/adhoc/similar_users_by_simclusters_embeddings/by_fav"
|
||||
private val outputByFollow =
|
||||
"/user/recos-platform/adhoc/similar_users_by_simclusters_embeddings/by_follow"
|
||||
|
||||
private val topClusterEmbeddingsByFavScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
ProducerTopKSimclusterEmbeddingsByFavScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { clusterScorePair => clusterScorePair.key -> clusterScorePair.value }
|
||||
|
||||
private val topProducersForClusterEmbeddingByFavScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
SimclusterEmbeddingTopKProducersByFavScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { producerScoresPair => producerScoresPair.key -> producerScoresPair.value }
|
||||
|
||||
private val topClusterEmbeddingsByFollowScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
ProducerTopKSimclusterEmbeddingsByFollowScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { clusterScorePair => clusterScorePair.key -> clusterScorePair.value }
|
||||
|
||||
private val topProducersForClusterEmbeddingByFollowScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
SimclusterEmbeddingTopKProducersByFollowScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { producerScoresPair => producerScoresPair.key -> producerScoresPair.value }
|
||||
|
||||
implicit val candidatesInj: CompactScalaCodec[Candidates] = CompactScalaCodec(Candidates)
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
Execution
|
||||
.zip(
|
||||
SimilarUsersBySimClustersEmbedding
|
||||
.getTopUsersRelatedToUser(
|
||||
topClusterEmbeddingsByFavScore,
|
||||
topProducersForClusterEmbeddingByFavScore).writeExecution(
|
||||
VersionedKeyValSource[Long, Candidates](outputByFav))
|
||||
.getCounters
|
||||
.flatMap {
|
||||
case (_, counters) =>
|
||||
counters.toMap.toSeq
|
||||
.sortBy(e => (e._1.group, e._1.counter))
|
||||
.foreach {
|
||||
case (statKey, value) =>
|
||||
println(s"${statKey.group}\t${statKey.counter}\t$value")
|
||||
}
|
||||
Execution.unit
|
||||
},
|
||||
SimilarUsersBySimClustersEmbedding
|
||||
.getTopUsersRelatedToUser(
|
||||
topClusterEmbeddingsByFollowScore,
|
||||
topProducersForClusterEmbeddingByFollowScore).writeExecution(
|
||||
VersionedKeyValSource[Long, Candidates](outputByFollow))
|
||||
.getCounters
|
||||
.flatMap {
|
||||
case (_, counters) =>
|
||||
counters.toMap.toSeq
|
||||
.sortBy(e => (e._1.group, e._1.counter))
|
||||
.foreach {
|
||||
case (statKey, value) =>
|
||||
println(s"${statKey.group}\t${statKey.counter}\t$value")
|
||||
}
|
||||
Execution.unit
|
||||
}
|
||||
).unit
|
||||
}
|
||||
}
|
||||
|
||||
object SimilarUsersBySimClustersEmbedding {
|
||||
private val maxUsersPerCluster = 300
|
||||
private val maxClustersPerUser = 50
|
||||
|
@ -0,0 +1,119 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.bijection.Injection
|
||||
import com.twitter.bijection.scrooge.CompactScalaCodec
|
||||
import com.twitter.hermit.candidate.thriftscala.{Candidate, Candidates}
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding.commons.source.VersionedKeyValSource
|
||||
import com.twitter.scalding_internal.dalv2.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.dalv2.remote_access.AllowCrossClusterSameDC
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.CosineSimilarityUtil
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
* Adhoc job to calculate producer's simcluster embeddings, which essentially assigns interestedIn
|
||||
* SimClusters to each producer, regardless of whether the producer has a knownFor assignment.
|
||||
*
|
||||
./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:similar_users_by_simclusters_embeddings-adhoc && \
|
||||
oscar hdfs --user recos-platform --screen --tee similar_users_by_simclusters_embeddings --bundle similar_users_by_simclusters_embeddings-adhoc \
|
||||
--tool com.twitter.simclusters_v2.scalding.embedding.SimilarUsersBySimClustersEmbeddingAdhocApp \
|
||||
-- --date 2019-07-10T00 2019-07-10T23
|
||||
*/
|
||||
object SimilarUsersBySimClustersEmbeddingAdhocApp extends AdhocExecutionApp {
|
||||
|
||||
private val outputByFav =
|
||||
"/user/recos-platform/adhoc/similar_users_by_simclusters_embeddings/by_fav"
|
||||
private val outputByFollow =
|
||||
"/user/recos-platform/adhoc/similar_users_by_simclusters_embeddings/by_follow"
|
||||
|
||||
private val topClusterEmbeddingsByFavScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
ProducerTopKSimclusterEmbeddingsByFavScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { clusterScorePair => clusterScorePair.key -> clusterScorePair.value }
|
||||
|
||||
private val topProducersForClusterEmbeddingByFavScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
SimclusterEmbeddingTopKProducersByFavScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { producerScoresPair => producerScoresPair.key -> producerScoresPair.value }
|
||||
|
||||
private val topClusterEmbeddingsByFollowScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
ProducerTopKSimclusterEmbeddingsByFollowScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { clusterScorePair => clusterScorePair.key -> clusterScorePair.value }
|
||||
|
||||
private val topProducersForClusterEmbeddingByFollowScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
SimclusterEmbeddingTopKProducersByFollowScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { producerScoresPair => producerScoresPair.key -> producerScoresPair.value }
|
||||
|
||||
implicit val candidatesInj: CompactScalaCodec[Candidates] = CompactScalaCodec(Candidates)
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
Execution
|
||||
.zip(
|
||||
SimilarUsersBySimClustersEmbedding
|
||||
.getTopUsersRelatedToUser(
|
||||
topClusterEmbeddingsByFavScore,
|
||||
topProducersForClusterEmbeddingByFavScore).writeExecution(
|
||||
VersionedKeyValSource[Long, Candidates](outputByFav))
|
||||
.getCounters
|
||||
.flatMap {
|
||||
case (_, counters) =>
|
||||
counters.toMap.toSeq
|
||||
.sortBy(e => (e._1.group, e._1.counter))
|
||||
.foreach {
|
||||
case (statKey, value) =>
|
||||
println(s"${statKey.group}\t${statKey.counter}\t$value")
|
||||
}
|
||||
Execution.unit
|
||||
},
|
||||
SimilarUsersBySimClustersEmbedding
|
||||
.getTopUsersRelatedToUser(
|
||||
topClusterEmbeddingsByFollowScore,
|
||||
topProducersForClusterEmbeddingByFollowScore).writeExecution(
|
||||
VersionedKeyValSource[Long, Candidates](outputByFollow))
|
||||
.getCounters
|
||||
.flatMap {
|
||||
case (_, counters) =>
|
||||
counters.toMap.toSeq
|
||||
.sortBy(e => (e._1.group, e._1.counter))
|
||||
.foreach {
|
||||
case (statKey, value) =>
|
||||
println(s"${statKey.group}\t${statKey.counter}\t$value")
|
||||
}
|
||||
Execution.unit
|
||||
}
|
||||
).unit
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,109 @@
|
||||
package com.twitter.simclusters_v2.scalding.embedding
|
||||
|
||||
import com.twitter.bijection.Injection
|
||||
import com.twitter.bijection.scrooge.CompactScalaCodec
|
||||
import com.twitter.hermit.candidate.thriftscala.{Candidate, Candidates}
|
||||
import com.twitter.scalding.*
|
||||
import com.twitter.scalding.commons.source.VersionedKeyValSource
|
||||
import com.twitter.scalding_internal.dalv2.*
|
||||
import com.twitter.scalding_internal.dalv2.DALWrite.*
|
||||
import com.twitter.scalding_internal.dalv2.remote_access.AllowCrossClusterSameDC
|
||||
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
|
||||
import com.twitter.simclusters_v2.common.CosineSimilarityUtil
|
||||
import com.twitter.simclusters_v2.hdfs_sources.*
|
||||
import com.twitter.simclusters_v2.thriftscala.*
|
||||
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
|
||||
|
||||
import java.util.TimeZone
|
||||
|
||||
/**
|
||||
capesospy-v2 update --build_locally --start_cron \
|
||||
--start_cron similar_users_by_simclusters_embeddings_job \
|
||||
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
|
||||
*/
|
||||
object SimilarUsersBySimClustersEmbeddingBatchApp extends ScheduledExecutionApp {
|
||||
|
||||
override val firstTime: RichDate = RichDate("2019-07-10")
|
||||
|
||||
override val batchIncrement: Duration = Days(7)
|
||||
|
||||
private val outputByFav =
|
||||
"/user/cassowary/manhattan_sequence_files/similar_users_by_simclusters_embeddings/by_fav"
|
||||
private val outputByFollow =
|
||||
"/user/cassowary/manhattan_sequence_files/similar_users_by_simclusters_embeddings/by_follow"
|
||||
|
||||
private implicit val valueInj: CompactScalaCodec[Candidates] = CompactScalaCodec(Candidates)
|
||||
|
||||
private val topClusterEmbeddingsByFavScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
ProducerTopKSimclusterEmbeddingsByFavScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { clusterScorePair => clusterScorePair.key -> clusterScorePair.value }
|
||||
|
||||
private val topProducersForClusterEmbeddingByFavScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
SimclusterEmbeddingTopKProducersByFavScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { producerScoresPair => producerScoresPair.key -> producerScoresPair.value }
|
||||
|
||||
private val topClusterEmbeddingsByFollowScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
ProducerTopKSimclusterEmbeddingsByFollowScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { clusterScorePair => clusterScorePair.key -> clusterScorePair.value }
|
||||
|
||||
private val topProducersForClusterEmbeddingByFollowScore = DAL
|
||||
.readMostRecentSnapshotNoOlderThan(
|
||||
SimclusterEmbeddingTopKProducersByFollowScoreUpdatedScalaDataset,
|
||||
Days(14)
|
||||
)
|
||||
.withRemoteReadPolicy(AllowCrossClusterSameDC)
|
||||
.toTypedPipe
|
||||
.map { producerScoresPair => producerScoresPair.key -> producerScoresPair.value }
|
||||
|
||||
override def runOnDateRange(
|
||||
args: Args
|
||||
)(
|
||||
implicit dateRange: DateRange,
|
||||
timeZone: TimeZone,
|
||||
uniqueID: UniqueID
|
||||
): Execution[Unit] = {
|
||||
|
||||
Execution
|
||||
.zip(
|
||||
SimilarUsersBySimClustersEmbedding
|
||||
.getTopUsersRelatedToUser(
|
||||
topClusterEmbeddingsByFavScore,
|
||||
topProducersForClusterEmbeddingByFavScore
|
||||
)
|
||||
.map { case (key, value) => KeyVal(key, value) }
|
||||
.writeDALVersionedKeyValExecution(
|
||||
SimilarUsersByFavBasedProducerEmbeddingScalaDataset,
|
||||
D.Suffix(outputByFav)
|
||||
),
|
||||
SimilarUsersBySimClustersEmbedding
|
||||
.getTopUsersRelatedToUser(
|
||||
topClusterEmbeddingsByFollowScore,
|
||||
topProducersForClusterEmbeddingByFollowScore
|
||||
)
|
||||
.map { case (key, value) => KeyVal(key, value) }
|
||||
.writeDALVersionedKeyValExecution(
|
||||
SimilarUsersByFollowBasedProducerEmbeddingScalaDataset,
|
||||
D.Suffix(outputByFollow)
|
||||
)
|
||||
).unit
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user