Compare commits

...

2 Commits

Author SHA1 Message Date
Suneel R
5076c10179
Merge 7380e27c93 into fb54d8b549 2023-05-22 17:37:11 -05:00
Suneel Rahman
7380e27c93 similarty + other typo fixes 2023-04-03 20:06:44 -04:00
6 changed files with 12 additions and 12 deletions

View File

@ -40,7 +40,7 @@ import com.twitter.cr_mixer.module.similarity_engine.ProducerBasedUnifiedSimilar
import com.twitter.cr_mixer.module.similarity_engine.SimClustersANNSimilarityEngineModule
import com.twitter.cr_mixer.module.similarity_engine.TweetBasedUnifiedSimilarityEngineModule
import com.twitter.cr_mixer.module.similarity_engine.TweetBasedQigSimilarityEngineModule
import com.twitter.cr_mixer.module.similarity_engine.TweetBasedTwHINSimlarityEngineModule
import com.twitter.cr_mixer.module.similarity_engine.TweetBasedTwHINSimilarityEngineModule
import com.twitter.cr_mixer.module.similarity_engine.TweetBasedUserAdGraphSimilarityEngineModule
import com.twitter.cr_mixer.module.similarity_engine.TweetBasedUserTweetGraphSimilarityEngineModule
import com.twitter.cr_mixer.module.similarity_engine.TweetBasedUserVideoGraphSimilarityEngineModule
@ -180,7 +180,7 @@ class CrMixerServer extends ThriftServer with Mtls with HttpServer with HttpMtls
TripCandidateStoreModule,
TwiceClustersMembersStoreModule,
TweetBasedQigSimilarityEngineModule,
TweetBasedTwHINSimlarityEngineModule,
TweetBasedTwHINSimilarityEngineModule,
TweetBasedUnifiedSimilarityEngineModule,
TweetBasedUserAdGraphSimilarityEngineModule,
TweetBasedUserTweetGraphSimilarityEngineModule,

View File

@ -21,7 +21,7 @@ import com.twitter.cr_mixer.similarity_engine.SimilarityEngine.SimilarityEngineC
import com.twitter.cr_mixer.thriftscala.SimilarityEngineType
import com.twitter.finagle.memcached.{Client => MemcachedClient}
object TweetBasedTwHINSimlarityEngineModule extends TwitterModule {
object TweetBasedTwHINSimilarityEngineModule extends TwitterModule {
@Provides
@Named(ModuleNames.TweetBasedTwHINANNSimilarityEngine)
def providesTweetBasedTwHINANNSimilarityEngine(

View File

@ -6,7 +6,7 @@ enum FeatureVal {
FloatVector(Vec<f32>),
}
// A Feture has a name and a value
// A Feature has a name and a value
// The name for now is 'id' of type string
// Eventually this needs to be flexible - example to accomodate feature-id
struct Feature {

View File

@ -149,7 +149,7 @@ public class EarlybirdFeatureSchemaMerger {
* (This is done inside superroot)
* @param requestContext the search request context
* @param mergedResponse the merged result inside the superroot
* @param realtimeResponse the realtime tier resposne
* @param realtimeResponse the realtime tier response
* @param protectedResponse the protected tier response
* @param fullArchiveResponse the full archive tier response
* @param statsPrefix

View File

@ -178,7 +178,7 @@ RawTensor TensorRecordReader::readStringTensor() {
CHECK_THRIFT_TYPE(readByte(), TTYPE_STRING, "data_type");
length = readInt32();
// Store the current location of the byte stream.
// Use this at to "deocde strings" at a later point.
// Use this at to "decode strings" at a later point.
data = getBuffer();
for (int32_t i = 0; i < length; i++) {
// Skip reading the strings

View File

@ -7,7 +7,7 @@ from tensorflow.python.ops import array_ops, math_ops
def safe_div(numerator, denominator, name=None):
"""
Example usage: calculating NDCG = DCG / IDCG to handle cases when
IDCG = 0 returns 0 instead of Infinity
IDCG = 0 returns 0 instead of Infinity
Do not use this dividing funciton unless it makes sense to your problem
Divides two tensors element-wise, returns 0 if the denominator is <= 0.
Args:
@ -56,7 +56,7 @@ def cal_swapped_ndcg(label_scores, predicted_scores, top_k_int):
Args:
label_scores: a real `Tensor`.
predicted_scores: a real `Tensor`, with dtype matching label_scores
top_k_int: An int or an int `Tensor`.
top_k_int: An int or an int `Tensor`.
Returns:
a `Tensor` that holds swapped NDCG by .
"""
@ -100,7 +100,7 @@ def _dcg_idcg(relevance_scores, cg_discount):
relevance_scores: a real `Tensor`.
cg_discount: a real `Tensor`, with dtype matching relevance_scores
Returns:
a `Tensor` that holds \\sum_{i=1}^k \frac{relevance_scores_k}{cg_discount}
a `Tensor` that holds \\sum_{i=1}^k \frac{relevance_scores_k}{cg_discount}
"""
# cg_discount is safe
dcg_k = relevance_scores / cg_discount
@ -115,8 +115,8 @@ def _get_ranking_orders(label_scores, predicted_scores, top_k_int=1):
predicted_scores: a real `Tensor`, with dtype matching label_scores
top_k_int: an integer or an int `Tensor`.
Returns:
two `Tensors` that hold sorted_labels: the ground truth relevance socres
and predicted_order: relevance socres based on sorted predicted_scores
two `Tensors` that hold sorted_labels: the ground truth relevance scores
and predicted_order: relevance scores based on sorted predicted_scores
"""
# sort predictions_scores and label_scores
# size [batch_size/num of DataRecords, 1]
@ -141,7 +141,7 @@ def _get_cg_discount(top_k_int=1):
Args:
top_k_int: An int or an int `Tensor`.
Returns:
a `Tensor` that holds \log_{2}(i + 1), i \in [1, k]
a `Tensor` that holds \log_{2}(i + 1), i \in [1, k]
"""
log_2 = tf.log(tf.constant(2.0, dtype=tf.float32))
# top_k_range needs to start from 1 to top_k_int