import kerastuner as kt import math import numpy as np import pandas as pd import random import sklearn.metrics import tensorflow as tf import os import glob from tqdm import tqdm from matplotlib import pyplot as plt from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from google.cloud import storage physical_devices = tf.config.list_physical_devices('GPU') physical_devices tf.config.set_visible_devices([tf.config.PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU')], 'GPU') tf.config.get_visible_devices('GPU') def decode_fn_embedding(example_proto): feature_description = { "embedding": tf.io.FixedLenFeature([256], dtype=tf.float32), "labels": tf.io.FixedLenFeature([], dtype=tf.int64), } example = tf.io.parse_single_example( example_proto, feature_description ) return example def preprocess_embedding_example(example_dict, positive_label=1, features_as_dict=False): labels = example_dict["labels"] label = tf.math.reduce_any(labels == positive_label) label = tf.cast(label, tf.int32) embedding = example_dict["embedding"] if features_as_dict: features = {"embedding": embedding} else: features = embedding return features, label input_root = ... sens_prev_input_root = ... use_sens_prev_data = True has_validation_data = True positive_label = 1 train_batch_size = 256 test_batch_size = 256 validation_batch_size = 256 do_resample = False def class_func(features, label): return label resample_fn = tf.data.experimental.rejection_resample( class_func, target_dist = [0.5, 0.5], seed=0 ) train_glob = f"{input_root}/train/tfrecord/*.tfrecord" train_files = tf.io.gfile.glob(train_glob) if use_sens_prev_data: train_sens_prev_glob = f"{sens_prev_input_root}/train/tfrecord/*.tfrecord" train_sens_prev_files = tf.io.gfile.glob(train_sens_prev_glob) train_files = train_files + train_sens_prev_files random.shuffle(train_files) if not len(train_files): raise ValueError(f"Did not find any train files matching {train_glob}") test_glob = f"{input_root}/test/tfrecord/*.tfrecord" test_files = tf.io.gfile.glob(test_glob) if not len(test_files): raise ValueError(f"Did not find any eval files matching {test_glob}") test_ds = tf.data.TFRecordDataset(test_files).map(decode_fn_embedding) test_ds = test_ds.map(lambda x: preprocess_embedding_example(x, positive_label=positive_label)).batch(batch_size=test_batch_size) if use_sens_prev_data: test_sens_prev_glob = f"{sens_prev_input_root}/test/tfrecord/*.tfrecord" test_sens_prev_files = tf.io.gfile.glob(test_sens_prev_glob) if not len(test_sens_prev_files): raise ValueError(f"Did not find any eval files matching {test_sens_prev_glob}") test_sens_prev_ds = tf.data.TFRecordDataset(test_sens_prev_files).map(decode_fn_embedding) test_sens_prev_ds = test_sens_prev_ds.map(lambda x: preprocess_embedding_example(x, positive_label=positive_label)).batch(batch_size=test_batch_size) train_ds = tf.data.TFRecordDataset(train_files).map(decode_fn_embedding) train_ds = train_ds.map(lambda x: preprocess_embedding_example(x, positive_label=positive_label)) if do_resample: train_ds = train_ds.apply(resample_fn).map(lambda _,b:(b)) train_ds = train_ds.batch(batch_size=256).shuffle(buffer_size=10) train_ds = train_ds.repeat() if has_validation_data: eval_glob = f"{input_root}/validation/tfrecord/*.tfrecord" eval_files = tf.io.gfile.glob(eval_glob) if use_sens_prev_data: eval_sens_prev_glob = f"{sens_prev_input_root}/validation/tfrecord/*.tfrecord" eval_sens_prev_files = tf.io.gfile.glob(eval_sens_prev_glob) eval_files = eval_files + eval_sens_prev_files if not len(eval_files): raise ValueError(f"Did not find any eval files matching {eval_glob}") eval_ds = tf.data.TFRecordDataset(eval_files).map(decode_fn_embedding) eval_ds = eval_ds.map(lambda x: preprocess_embedding_example(x, positive_label=positive_label)).batch(batch_size=validation_batch_size) else: eval_ds = tf.data.TFRecordDataset(test_files).map(decode_fn_embedding) eval_ds = eval_ds.map(lambda x: preprocess_embedding_example(x, positive_label=positive_label)).batch(batch_size=validation_batch_size) check_ds = tf.data.TFRecordDataset(train_files).map(decode_fn_embedding) cnt = 0 pos_cnt = 0 for example in tqdm(check_ds): label = example['labels'] if label == 1: pos_cnt += 1 cnt += 1 print(f'{cnt} train entries with {pos_cnt} positive') metrics = [] metrics.append( tf.keras.metrics.PrecisionAtRecall( recall=0.9, num_thresholds=200, class_id=None, name=None, dtype=None ) ) metrics.append( tf.keras.metrics.AUC( num_thresholds=200, curve="PR", ) ) def build_model(hp): model = Sequential() optimizer = tf.keras.optimizers.Adam( learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, amsgrad=False, name="Adam", ) activation=hp.Choice("activation", ["tanh", "gelu"]) kernel_initializer=hp.Choice("kernel_initializer", ["he_uniform", "glorot_uniform"]) for i in range(hp.Int("num_layers", 1, 2)): model.add(tf.keras.layers.BatchNormalization()) units=hp.Int("units", min_value=128, max_value=256, step=128) if i == 0: model.add( Dense( units=units, activation=activation, kernel_initializer=kernel_initializer, input_shape=(None, 256) ) ) else: model.add( Dense( units=units, activation=activation, kernel_initializer=kernel_initializer, ) ) model.add(Dense(1, activation='sigmoid', kernel_initializer=kernel_initializer)) model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=metrics) return model tuner = kt.tuners.BayesianOptimization( build_model, objective=kt.Objective('val_loss', direction="min"), max_trials=30, directory='tuner_dir', project_name='with_twitter_clip') callbacks = [tf.keras.callbacks.EarlyStopping( monitor='val_loss', min_delta=0, patience=5, verbose=0, mode='auto', baseline=None, restore_best_weights=True )] steps_per_epoch = 400 tuner.search(train_ds, epochs=100, batch_size=256, steps_per_epoch=steps_per_epoch, verbose=2, validation_data=eval_ds, callbacks=callbacks) tuner.results_summary() models = tuner.get_best_models(num_models=2) best_model = models[0] best_model.build(input_shape=(None, 256)) best_model.summary() tuner.get_best_hyperparameters()[0].values optimizer = tf.keras.optimizers.Adam( learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, amsgrad=False, name="Adam", ) best_model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=metrics) best_model.summary() callbacks = [tf.keras.callbacks.EarlyStopping( monitor='val_loss', min_delta=0, patience=10, verbose=0, mode='auto', baseline=None, restore_best_weights=True )] history = best_model.fit(train_ds, epochs=100, validation_data=eval_ds, steps_per_epoch=steps_per_epoch, callbacks=callbacks) model_name = 'twitter_hypertuned' model_path = f'models/nsfw_Keras_with_CLIP_{model_name}' tf.keras.models.save_model(best_model, model_path) def copy_local_directory_to_gcs(local_path, bucket, gcs_path): """Recursively copy a directory of files to GCS. local_path should be a directory and not have a trailing slash. """ assert os.path.isdir(local_path) for local_file in glob.glob(local_path + '/**'): if not os.path.isfile(local_file): dir_name = os.path.basename(os.path.normpath(local_file)) copy_local_directory_to_gcs(local_file, bucket, f"{gcs_path}/{dir_name}") else: remote_path = os.path.join(gcs_path, local_file[1 + len(local_path) :]) blob = bucket.blob(remote_path) blob.upload_from_filename(local_file) client = storage.Client(project=...) bucket = client.get_bucket(...) copy_local_directory_to_gcs(model_path, bucket, model_path) copy_local_directory_to_gcs('tuner_dir', bucket, 'tuner_dir') loaded_model = tf.keras.models.load_model(model_path) print(history.history.keys()) plt.figure(figsize = (20, 5)) plt.subplot(1, 3, 1) plt.plot(history.history['auc']) plt.plot(history.history['val_auc']) plt.title('model auc') plt.ylabel('auc') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.subplot(1, 3, 2) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.subplot(1, 3, 3) plt.plot(history.history['precision_at_recall']) plt.plot(history.history['val_precision_at_recall']) plt.title('model precision at 0.9 recall') plt.ylabel('precision_at_recall') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.savefig('history_with_twitter_clip.pdf') test_labels = [] test_preds = [] for batch_features, batch_labels in tqdm(test_ds): test_preds.extend(loaded_model.predict_proba(batch_features)) test_labels.extend(batch_labels.numpy()) test_sens_prev_labels = [] test_sens_prev_preds = [] for batch_features, batch_labels in tqdm(test_sens_prev_ds): test_sens_prev_preds.extend(loaded_model.predict_proba(batch_features)) test_sens_prev_labels.extend(batch_labels.numpy()) n_test_pos = 0 n_test_neg = 0 n_test = 0 for label in test_labels: n_test +=1 if label == 1: n_test_pos +=1 else: n_test_neg +=1 print(f'n_test = {n_test}, n_pos = {n_test_pos}, n_neg = {n_test_neg}') n_test_sens_prev_pos = 0 n_test_sens_prev_neg = 0 n_test_sens_prev = 0 for label in test_sens_prev_labels: n_test_sens_prev +=1 if label == 1: n_test_sens_prev_pos +=1 else: n_test_sens_prev_neg +=1 print(f'n_test_sens_prev = {n_test_sens_prev}, n_pos_sens_prev = {n_test_sens_prev_pos}, n_neg = {n_test_sens_prev_neg}') test_weights = np.ones(np.asarray(test_preds).shape) test_labels = np.asarray(test_labels) test_preds = np.asarray(test_preds) test_weights = np.asarray(test_weights) pr = sklearn.metrics.precision_recall_curve( test_labels, test_preds) auc = sklearn.metrics.auc(pr[1], pr[0]) plt.plot(pr[1], pr[0]) plt.title("nsfw (MU test set)") test_sens_prev_weights = np.ones(np.asarray(test_sens_prev_preds).shape) test_sens_prev_labels = np.asarray(test_sens_prev_labels) test_sens_prev_preds = np.asarray(test_sens_prev_preds) test_sens_prev_weights = np.asarray(test_sens_prev_weights) pr_sens_prev = sklearn.metrics.precision_recall_curve( test_sens_prev_labels, test_sens_prev_preds) auc_sens_prev = sklearn.metrics.auc(pr_sens_prev[1], pr_sens_prev[0]) plt.plot(pr_sens_prev[1], pr_sens_prev[0]) plt.title("nsfw (sens prev test set)") df = pd.DataFrame( { "label": test_labels.squeeze(), "preds_keras": np.asarray(test_preds).flatten(), }) plt.figure(figsize=(15, 10)) df["preds_keras"].hist() plt.title("Keras predictions", size=20) plt.xlabel('score') plt.ylabel("freq") plt.figure(figsize = (20, 5)) plt.subplot(1, 3, 1) plt.plot(pr[2], pr[0][0:-1]) plt.xlabel("threshold") plt.ylabel("precision") plt.subplot(1, 3, 2) plt.plot(pr[2], pr[1][0:-1]) plt.xlabel("threshold") plt.ylabel("recall") plt.title("Keras", size=20) plt.subplot(1, 3, 3) plt.plot(pr[1], pr[0]) plt.xlabel("recall") plt.ylabel("precision") plt.savefig('with_twitter_clip.pdf') def get_point_for_recall(recall_value, recall, precision): idx = np.argmin(np.abs(recall - recall_value)) return (recall[idx], precision[idx]) def get_point_for_precision(precision_value, recall, precision): idx = np.argmin(np.abs(precision - precision_value)) return (recall[idx], precision[idx]) precision, recall, thresholds = pr auc_precision_recall = sklearn.metrics.auc(recall, precision) plt.figure(figsize=(15, 10)) plt.plot(recall, precision) plt.xlabel("recall") plt.ylabel("precision") ptAt50 = get_point_for_recall(0.5, recall, precision) plt.plot( [ptAt50[0],ptAt50[0]], [0,ptAt50[1]], 'r') plt.plot([0, ptAt50[0]], [ptAt50[1], ptAt50[1]], 'r') ptAt90 = get_point_for_recall(0.9, recall, precision) plt.plot( [ptAt90[0],ptAt90[0]], [0,ptAt90[1]], 'b') plt.plot([0, ptAt90[0]], [ptAt90[1], ptAt90[1]], 'b') ptAt50fmt = "%.4f" % ptAt50[1] ptAt90fmt = "%.4f" % ptAt90[1] aucFmt = "%.4f" % auc_precision_recall plt.title( f"Keras (nsfw MU test)\nAUC={aucFmt}\np={ptAt50fmt} @ r=0.5\np={ptAt90fmt} @ r=0.9\nN_train={...}} ({...} pos), N_test={n_test} ({n_test_pos} pos)", size=20 ) plt.subplots_adjust(top=0.72) plt.savefig('recall_precision_nsfw_Keras_with_twitter_CLIP_MU_test.pdf') precision, recall, thresholds = pr_sens_prev auc_precision_recall = sklearn.metrics.auc(recall, precision) plt.figure(figsize=(15, 10)) plt.plot(recall, precision) plt.xlabel("recall") plt.ylabel("precision") ptAt50 = get_point_for_recall(0.5, recall, precision) plt.plot( [ptAt50[0],ptAt50[0]], [0,ptAt50[1]], 'r') plt.plot([0, ptAt50[0]], [ptAt50[1], ptAt50[1]], 'r') ptAt90 = get_point_for_recall(0.9, recall, precision) plt.plot( [ptAt90[0],ptAt90[0]], [0,ptAt90[1]], 'b') plt.plot([0, ptAt90[0]], [ptAt90[1], ptAt90[1]], 'b') ptAt50fmt = "%.4f" % ptAt50[1] ptAt90fmt = "%.4f" % ptAt90[1] aucFmt = "%.4f" % auc_precision_recall plt.title( f"Keras (nsfw sens prev test)\nAUC={aucFmt}\np={ptAt50fmt} @ r=0.5\np={ptAt90fmt} @ r=0.9\nN_train={...} ({...} pos), N_test={n_test_sens_prev} ({n_test_sens_prev_pos} pos)", size=20 ) plt.subplots_adjust(top=0.72) plt.savefig('recall_precision_nsfw_Keras_with_twitter_CLIP_sens_prev_test.pdf')