import tensorflow as tf from keras import backend from keras.utils import losses_utils, tf_utils def inv_kl_divergence(y_true, y_pred): y_pred = tf.convert_to_tensor(y_pred) y_true = tf.cast(y_true, y_pred.dtype) y_true = backend.clip(y_true, backend.epsilon(), 1) y_pred = backend.clip(y_pred, backend.epsilon(), 1) return tf.reduce_sum(y_pred * tf.math.log(y_pred / y_true), axis=-1) def masked_bce(y_true, y_pred): y_true = tf.cast(y_true, dtype=tf.float32) mask = y_true != -1 return tf.keras.metrics.binary_crossentropy(tf.boolean_mask(y_true, mask), tf.boolean_mask(y_pred, mask)) class LossFunctionWrapper(tf.keras.losses.Loss): def __init__(self, fn, reduction=losses_utils.ReductionV2.AUTO, name=None, **kwargs): super().__init__(reduction=reduction, name=name) self.fn = fn self._fn_kwargs = kwargs def call(self, y_true, y_pred): if tf.is_tensor(y_pred) and tf.is_tensor(y_true): y_pred, y_true = losses_utils.squeeze_or_expand_dimensions(y_pred, y_true) ag_fn = tf.__internal__.autograph.tf_convert(self.fn, tf.__internal__.autograph.control_status_ctx()) return ag_fn(y_true, y_pred, **self._fn_kwargs) def get_config(self): config = {} for k, v in self._fn_kwargs.items(): config[k] = backend.eval(v) if tf_utils.is_tensor_or_variable(v) else v base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) class InvKLD(LossFunctionWrapper): def __init__(self, reduction=losses_utils.ReductionV2.AUTO, name='inv_kl_divergence'): super().__init__(inv_kl_divergence, name=name, reduction=reduction) class MaskedBCE(LossFunctionWrapper): def __init__(self, reduction=losses_utils.ReductionV2.AUTO, name='masked_bce'): super().__init__(masked_bce, name=name, reduction=reduction)