mirror of
https://github.com/twitter/the-algorithm.git
synced 2025-01-07 01:48:16 +01:00
ef4c5eb65e
Please note we have force-pushed a new initial commit in order to remove some publicly-available Twitter user information. Note that this process may be required in the future.
162 lines
4.8 KiB
Python
162 lines
4.8 KiB
Python
# pylint: disable=missing-docstring, bare-except, pointless-statement,
|
|
# pointless-string-statement, redundant-unittest-assert, no-else-return,
|
|
# no-member, old-style-class, dangerous-default-value, protected-access,
|
|
# too-few-public-methods
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
import yaml
|
|
|
|
|
|
"""
|
|
Utility to load tensors serialized by Deepbird V1.
|
|
|
|
Note that Deepbird V1 serialize tensor names as \"weight\".\'1\'.
|
|
For user-friendliness, the quotes are removed from the tensor names.
|
|
"""
|
|
|
|
|
|
# helper class used to assist hierarchical key access by remembering intermediate keys.
|
|
class _KeyRecorder(object):
|
|
def __init__(self, tensorio, keys=[]):
|
|
self.tensorio = tensorio
|
|
self.keys = keys
|
|
|
|
def __getitem__(self, k):
|
|
new_keys = self.keys + [str(k)]
|
|
prefix = ".".join(new_keys)
|
|
|
|
key_list = self.tensorio.list_tensors()
|
|
|
|
# if we have a complete key, load the tensor.
|
|
if prefix in key_list:
|
|
return self.tensorio._load(prefix)
|
|
|
|
# we don't have a complete key yet, but at least one tensor should start with this prefix.
|
|
for k_value in key_list:
|
|
if k_value.startswith(prefix):
|
|
return _KeyRecorder(self.tensorio, new_keys)
|
|
|
|
# if no key starts with the prefix, this _key_recorder is not valid.
|
|
raise ValueError("Key not found: " + prefix)
|
|
|
|
|
|
# convert tensorio tensor type to numpy data type.
|
|
# also returns element size in bytes.
|
|
def _get_data_type(data_type):
|
|
if data_type == 'Double':
|
|
return (np.float64, 8)
|
|
|
|
if data_type == 'Float':
|
|
return (np.float32, 4)
|
|
|
|
if data_type == 'Int':
|
|
return (np.int32, 4)
|
|
|
|
if data_type == 'Long':
|
|
return (np.int64, 8)
|
|
|
|
if data_type == 'Byte':
|
|
return (np.int8, 1)
|
|
|
|
raise ValueError('Unexpected tensorio data type: ' + data_type)
|
|
|
|
|
|
class TensorIO(object):
|
|
"""
|
|
Construct a TensorIO class.
|
|
tensorio_path: a directory containing tensors serialized using tensorio. tar file not supported.
|
|
mmap_tensor:
|
|
By default, loaded tensors use mmap storage.
|
|
Set this to false to not use mmap. Useful when loading multiple tensors.
|
|
"""
|
|
|
|
def __init__(self, tensorio_path, mmap_tensor=True):
|
|
self._tensorio_path = tensorio_path
|
|
self._mmap_tensor = mmap_tensor
|
|
|
|
# Make sure we can locate spec.yaml.
|
|
yaml_file = os.path.join(tensorio_path, 'spec.yaml')
|
|
if not os.path.exists(yaml_file):
|
|
raise ValueError('Invalid tensorio path: no spec.yaml found.')
|
|
|
|
# load spec.yaml.
|
|
with open(yaml_file, 'r') as file_open:
|
|
# Note that tensor names in the yaml are like this: \"weight\".\'1\'
|
|
# For user-friendliness, we remove the quotes.
|
|
_spec = yaml.safe_load(file_open)
|
|
self._spec = {k.replace("'", '').replace('"', ''): v for (k, v) in _spec.items()}
|
|
|
|
def list_tensors(self):
|
|
"""
|
|
Returns a list of tensors saved in the given path.
|
|
"""
|
|
return self._spec.keys()
|
|
|
|
def _load_tensor(self, name):
|
|
"""
|
|
Load Tensor with the given name.
|
|
Raise value error if the named tensor is not found.
|
|
Returns a numpy array if the named tensor is found.
|
|
"""
|
|
tensor_info = self._spec[name]
|
|
if tensor_info['type'] != 'tensor':
|
|
raise ValueError('Trying to load a tensor of unknown type: ' + tensor_info['type'])
|
|
|
|
filename = os.path.join(self._tensorio_path, tensor_info['filename'])
|
|
(data_type, element_size) = _get_data_type(tensor_info['tensorType'])
|
|
|
|
np_array = np.memmap(
|
|
filename,
|
|
dtype=data_type,
|
|
mode='r',
|
|
# -1 because lua offset is 1 based.
|
|
offset=(tensor_info['offset'] - 1) * element_size,
|
|
shape=tuple(tensor_info['size']),
|
|
order='C',
|
|
)
|
|
|
|
return np_array if self._mmap_tensor else np_array[:].copy()
|
|
|
|
def _load_nontensor_data(self, name):
|
|
"""
|
|
Load non-tensor data with the given name.
|
|
Returns a python string.
|
|
"""
|
|
tensor_info = self._spec[name]
|
|
return tensor_info['data']
|
|
|
|
def _load(self, name):
|
|
"""
|
|
Load data serialized under the given name, it could be a tensor or regular data.
|
|
"""
|
|
if name not in self._spec:
|
|
raise ValueError('The specified key {} is not found in {}'.format(name, self._tensorio_path))
|
|
|
|
data_type = self._spec[name]['type']
|
|
if data_type == 'tensor':
|
|
return self._load_tensor(name)
|
|
else:
|
|
return self._load_nontensor_data(name)
|
|
|
|
def load_all(self):
|
|
"""
|
|
Load all tensors stored in the tensorio directory.
|
|
Returns a dictionary from tensor name to numpy arrays.
|
|
"""
|
|
return {k: self._load(k) for k in self._spec}
|
|
|
|
###########################################
|
|
# The below are utilities for convenience #
|
|
###########################################
|
|
def __getitem__(self, k):
|
|
"""
|
|
Shorthand for _load_tensor, but also supports hierarchical access like: tensorio['a']['b']['1']
|
|
"""
|
|
if k in self._spec:
|
|
# We have a full tensor name, directly load it.
|
|
return self._load_tensor(k)
|
|
else:
|
|
return _KeyRecorder(self)[k]
|