the-algorithm/navi/dr_transform/src/converter.rs
twitter-team 31e82d6474 improvements from external prs
-fix corner case where dr converter failed when initializing

Closes twitter/the-algorithm#550
2023-04-28 10:37:15 -05:00

617 lines
24 KiB
Rust

use std::collections::BTreeSet;
use std::fmt::{self, Debug, Display};
use std::fs;
use crate::all_config;
use crate::all_config::AllConfig;
use anyhow::{bail, Context};
use bpr_thrift::data::DataRecord;
use bpr_thrift::prediction_service::BatchPredictionRequest;
use bpr_thrift::tensor::GeneralTensor;
use log::debug;
use ndarray::Array2;
use once_cell::sync::OnceCell;
use ort::tensor::InputTensor;
use prometheus::{HistogramOpts, HistogramVec};
use segdense::mapper::{FeatureMapper, MapReader};
use segdense::segdense_transform_spec_home_recap_2022::{DensificationTransformSpec, Root};
use segdense::util;
use thrift::protocol::{TBinaryInputProtocol, TSerializable};
use thrift::transport::TBufferChannel;
pub fn log_feature_match(
dr: &DataRecord,
seg_dense_config: &DensificationTransformSpec,
dr_type: String,
) {
// Note the following algorithm matches features from config using linear search.
// Also the record source is MinDataRecord. This includes only binary and continous features for now.
for (feature_id, feature_value) in dr.continuous_features.as_ref().unwrap() {
debug!(
"{} - Continous Datarecord => Feature ID: {}, Feature value: {}",
dr_type, feature_id, feature_value
);
for input_feature in &seg_dense_config.cont.input_features {
if input_feature.feature_id == *feature_id {
debug!("Matching input feature: {:?}", input_feature)
}
}
}
for feature_id in dr.binary_features.as_ref().unwrap() {
debug!(
"{} - Binary Datarecord => Feature ID: {}",
dr_type, feature_id
);
for input_feature in &seg_dense_config.binary.input_features {
if input_feature.feature_id == *feature_id {
debug!("Found input feature: {:?}", input_feature)
}
}
}
}
pub fn log_feature_matches(drs: &Vec<DataRecord>, seg_dense_config: &DensificationTransformSpec) {
for dr in drs {
log_feature_match(dr, seg_dense_config, String::from("individual"));
}
}
pub trait Converter: Send + Sync + Debug + 'static + Display {
fn convert(&self, input: Vec<Vec<u8>>) -> (Vec<InputTensor>, Vec<usize>);
}
#[derive(Debug)]
#[allow(dead_code)]
pub struct BatchPredictionRequestToTorchTensorConverter {
all_config: AllConfig,
seg_dense_config: Root,
all_config_path: String,
seg_dense_config_path: String,
feature_mapper: FeatureMapper,
user_embedding_feature_id: i64,
user_eng_embedding_feature_id: i64,
author_embedding_feature_id: i64,
discrete_features_to_report: BTreeSet<i64>,
continuous_features_to_report: BTreeSet<i64>,
discrete_feature_metrics: &'static HistogramVec,
continuous_feature_metrics: &'static HistogramVec,
}
impl Display for BatchPredictionRequestToTorchTensorConverter {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"all_config_path: {}, seg_dense_config_path:{}",
self.all_config_path, self.seg_dense_config_path
)
}
}
impl BatchPredictionRequestToTorchTensorConverter {
pub fn new(
model_dir: &str,
model_version: &str,
reporting_feature_ids: Vec<(i64, &str)>,
register_metric_fn: Option<impl Fn(&HistogramVec)>,
) -> anyhow::Result<BatchPredictionRequestToTorchTensorConverter> {
let all_config_path = format!("{}/{}/all_config.json", model_dir, model_version);
let seg_dense_config_path = format!(
"{}/{}/segdense_transform_spec_home_recap_2022.json",
model_dir, model_version
);
let seg_dense_config = util::load_config(&seg_dense_config_path)?;
let all_config = all_config::parse(
&fs::read_to_string(&all_config_path)
.with_context(|| "error loading all_config.json - ")?,
)?;
let feature_mapper = util::load_from_parsed_config(seg_dense_config.clone())?;
let user_embedding_feature_id = Self::get_feature_id(
&all_config
.train_data
.seg_dense_schema
.renamed_features
.user_embedding,
&seg_dense_config,
);
let user_eng_embedding_feature_id = Self::get_feature_id(
&all_config
.train_data
.seg_dense_schema
.renamed_features
.user_eng_embedding,
&seg_dense_config,
);
let author_embedding_feature_id = Self::get_feature_id(
&all_config
.train_data
.seg_dense_schema
.renamed_features
.author_embedding,
&seg_dense_config,
);
static METRICS: OnceCell<(HistogramVec, HistogramVec)> = OnceCell::new();
let (discrete_feature_metrics, continuous_feature_metrics) = METRICS.get_or_init(|| {
let discrete = HistogramVec::new(
HistogramOpts::new(":navi:feature_id:discrete", "Discrete Feature ID values")
.buckets(Vec::from(&[
0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0,
120.0, 130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 250.0,
300.0, 500.0, 1000.0, 10000.0, 100000.0,
] as &'static [f64])),
&["feature_id"],
)
.expect("metric cannot be created");
let continuous = HistogramVec::new(
HistogramOpts::new(
":navi:feature_id:continuous",
"continuous Feature ID values",
)
.buckets(Vec::from(&[
0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 110.0, 120.0,
130.0, 140.0, 150.0, 160.0, 170.0, 180.0, 190.0, 200.0, 250.0, 300.0, 500.0,
1000.0, 10000.0, 100000.0,
] as &'static [f64])),
&["feature_id"],
)
.expect("metric cannot be created");
register_metric_fn.map(|r| {
r(&discrete);
r(&continuous);
});
(discrete, continuous)
});
let mut discrete_features_to_report = BTreeSet::new();
let mut continuous_features_to_report = BTreeSet::new();
for (feature_id, feature_type) in reporting_feature_ids.iter() {
match *feature_type {
"discrete" => discrete_features_to_report.insert(feature_id.clone()),
"continuous" => continuous_features_to_report.insert(feature_id.clone()),
_ => bail!(
"Invalid feature type {} for reporting metrics!",
feature_type
),
};
}
Ok(BatchPredictionRequestToTorchTensorConverter {
all_config,
seg_dense_config,
all_config_path,
seg_dense_config_path,
feature_mapper,
user_embedding_feature_id,
user_eng_embedding_feature_id,
author_embedding_feature_id,
discrete_features_to_report,
continuous_features_to_report,
discrete_feature_metrics,
continuous_feature_metrics,
})
}
fn get_feature_id(feature_name: &str, seg_dense_config: &Root) -> i64 {
// given a feature name, we get the complex feature type id
for feature in &seg_dense_config.complex_feature_type_transform_spec {
if feature.full_feature_name == feature_name {
return feature.feature_id;
}
}
-1
}
fn parse_batch_prediction_request(bytes: Vec<u8>) -> BatchPredictionRequest {
// parse batch prediction request into a struct from byte array repr.
let mut bc = TBufferChannel::with_capacity(bytes.len(), 0);
bc.set_readable_bytes(&bytes);
let mut protocol = TBinaryInputProtocol::new(bc, true);
BatchPredictionRequest::read_from_in_protocol(&mut protocol).unwrap()
}
fn get_embedding_tensors(
&self,
bprs: &[BatchPredictionRequest],
feature_id: i64,
batch_size: &[usize],
) -> Array2<f32> {
// given an embedding feature id, extract the float tensor array into tensors.
let cols: usize = 200;
let rows: usize = batch_size[batch_size.len() - 1];
let total_size = rows * cols;
let mut working_set = vec![0 as f32; total_size];
let mut bpr_start = 0;
for (bpr, &bpr_end) in bprs.iter().zip(batch_size) {
if bpr.common_features.is_some() {
if bpr.common_features.as_ref().unwrap().tensors.is_some() {
if bpr
.common_features
.as_ref()
.unwrap()
.tensors
.as_ref()
.unwrap()
.contains_key(&feature_id)
{
let source_tensor = bpr
.common_features
.as_ref()
.unwrap()
.tensors
.as_ref()
.unwrap()
.get(&feature_id)
.unwrap();
let tensor = match source_tensor {
GeneralTensor::FloatTensor(float_tensor) =>
//Tensor::of_slice(
{
float_tensor
.floats
.iter()
.map(|x| x.into_inner() as f32)
.collect::<Vec<_>>()
}
_ => vec![0 as f32; cols],
};
// since the tensor is found in common feature, add it in all batches
for row in bpr_start..bpr_end {
for col in 0..cols {
working_set[row * cols + col] = tensor[col];
}
}
}
}
}
// find the feature in individual feature list and add to corresponding batch.
for (index, datarecord) in bpr.individual_features_list.iter().enumerate() {
if datarecord.tensors.is_some()
&& datarecord
.tensors
.as_ref()
.unwrap()
.contains_key(&feature_id)
{
let source_tensor = datarecord
.tensors
.as_ref()
.unwrap()
.get(&feature_id)
.unwrap();
let tensor = match source_tensor {
GeneralTensor::FloatTensor(float_tensor) => float_tensor
.floats
.iter()
.map(|x| x.into_inner() as f32)
.collect::<Vec<_>>(),
_ => vec![0 as f32; cols],
};
for col in 0..cols {
working_set[(bpr_start + index) * cols + col] = tensor[col];
}
}
}
bpr_start = bpr_end;
}
Array2::<f32>::from_shape_vec([rows, cols], working_set).unwrap()
}
// Todo : Refactor, create a generic version with different type and field accessors
// Example paramterize and then instiantiate the following
// (FLOAT --> FLOAT, DataRecord.continuous_feature)
// (BOOL --> INT64, DataRecord.binary_feature)
// (INT64 --> INT64, DataRecord.discrete_feature)
fn get_continuous(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor {
// These need to be part of model schema
let rows: usize = batch_ends[batch_ends.len() - 1];
let cols: usize = 5293;
let full_size: usize = rows * cols;
let default_val = f32::NAN;
let mut tensor = vec![default_val; full_size];
let mut bpr_start = 0;
for (bpr, &bpr_end) in bprs.iter().zip(batch_ends) {
// Common features
if bpr.common_features.is_some()
&& bpr
.common_features
.as_ref()
.unwrap()
.continuous_features
.is_some()
{
let common_features = bpr
.common_features
.as_ref()
.unwrap()
.continuous_features
.as_ref()
.unwrap();
for feature in common_features {
match self.feature_mapper.get(feature.0) {
Some(f_info) => {
let idx = f_info.index_within_tensor as usize;
if idx < cols {
// Set value in each row
for r in bpr_start..bpr_end {
let flat_index: usize = r * cols + idx;
tensor[flat_index] = feature.1.into_inner() as f32;
}
}
}
None => (),
}
if self.continuous_features_to_report.contains(feature.0) {
self.continuous_feature_metrics
.with_label_values(&[feature.0.to_string().as_str()])
.observe(feature.1.into_inner())
} else if self.discrete_features_to_report.contains(feature.0) {
self.discrete_feature_metrics
.with_label_values(&[feature.0.to_string().as_str()])
.observe(feature.1.into_inner())
}
}
}
// Process the batch of datarecords
for r in bpr_start..bpr_end {
let dr: &DataRecord =
&bpr.individual_features_list[usize::try_from(r - bpr_start).unwrap()];
if dr.continuous_features.is_some() {
for feature in dr.continuous_features.as_ref().unwrap() {
match self.feature_mapper.get(&feature.0) {
Some(f_info) => {
let idx = f_info.index_within_tensor as usize;
let flat_index: usize = r * cols + idx;
if flat_index < tensor.len() && idx < cols {
tensor[flat_index] = feature.1.into_inner() as f32;
}
}
None => (),
}
if self.continuous_features_to_report.contains(feature.0) {
self.continuous_feature_metrics
.with_label_values(&[feature.0.to_string().as_str()])
.observe(feature.1.into_inner() as f64)
} else if self.discrete_features_to_report.contains(feature.0) {
self.discrete_feature_metrics
.with_label_values(&[feature.0.to_string().as_str()])
.observe(feature.1.into_inner() as f64)
}
}
}
}
bpr_start = bpr_end;
}
InputTensor::FloatTensor(
Array2::<f32>::from_shape_vec([rows, cols], tensor)
.unwrap()
.into_dyn(),
)
}
fn get_binary(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor {
// These need to be part of model schema
let rows: usize = batch_ends[batch_ends.len() - 1];
let cols: usize = 149;
let full_size: usize = rows * cols;
let default_val: i64 = 0;
let mut v = vec![default_val; full_size];
let mut bpr_start = 0;
for (bpr, &bpr_end) in bprs.iter().zip(batch_ends) {
// Common features
if bpr.common_features.is_some()
&& bpr
.common_features
.as_ref()
.unwrap()
.binary_features
.is_some()
{
let common_features = bpr
.common_features
.as_ref()
.unwrap()
.binary_features
.as_ref()
.unwrap();
for feature in common_features {
match self.feature_mapper.get(feature) {
Some(f_info) => {
let idx = f_info.index_within_tensor as usize;
if idx < cols {
// Set value in each row
for r in bpr_start..bpr_end {
let flat_index: usize = r * cols + idx;
v[flat_index] = 1;
}
}
}
None => (),
}
}
}
// Process the batch of datarecords
for r in bpr_start..bpr_end {
let dr: &DataRecord = &bpr.individual_features_list[r - bpr_start];
if dr.binary_features.is_some() {
for feature in dr.binary_features.as_ref().unwrap() {
match self.feature_mapper.get(&feature) {
Some(f_info) => {
let idx = f_info.index_within_tensor as usize;
let flat_index: usize = r * cols + idx;
v[flat_index] = 1;
}
None => (),
}
}
}
}
bpr_start = bpr_end;
}
InputTensor::Int64Tensor(
Array2::<i64>::from_shape_vec([rows, cols], v)
.unwrap()
.into_dyn(),
)
}
#[allow(dead_code)]
fn get_discrete(&self, bprs: &[BatchPredictionRequest], batch_ends: &[usize]) -> InputTensor {
// These need to be part of model schema
let rows: usize = batch_ends[batch_ends.len() - 1];
let cols: usize = 320;
let full_size: usize = rows * cols;
let default_val: i64 = 0;
let mut v = vec![default_val; full_size];
let mut bpr_start = 0;
for (bpr, &bpr_end) in bprs.iter().zip(batch_ends) {
// Common features
if bpr.common_features.is_some()
&& bpr
.common_features
.as_ref()
.unwrap()
.discrete_features
.is_some()
{
let common_features = bpr
.common_features
.as_ref()
.unwrap()
.discrete_features
.as_ref()
.unwrap();
for feature in common_features {
match self.feature_mapper.get(feature.0) {
Some(f_info) => {
let idx = f_info.index_within_tensor as usize;
if idx < cols {
// Set value in each row
for r in bpr_start..bpr_end {
let flat_index: usize = r * cols + idx;
v[flat_index] = *feature.1;
}
}
}
None => (),
}
if self.discrete_features_to_report.contains(feature.0) {
self.discrete_feature_metrics
.with_label_values(&[feature.0.to_string().as_str()])
.observe(*feature.1 as f64)
}
}
}
// Process the batch of datarecords
for r in bpr_start..bpr_end {
let dr: &DataRecord = &bpr.individual_features_list[usize::try_from(r).unwrap()];
if dr.discrete_features.is_some() {
for feature in dr.discrete_features.as_ref().unwrap() {
match self.feature_mapper.get(&feature.0) {
Some(f_info) => {
let idx = f_info.index_within_tensor as usize;
let flat_index: usize = r * cols + idx;
if flat_index < v.len() && idx < cols {
v[flat_index] = *feature.1;
}
}
None => (),
}
if self.discrete_features_to_report.contains(feature.0) {
self.discrete_feature_metrics
.with_label_values(&[feature.0.to_string().as_str()])
.observe(*feature.1 as f64)
}
}
}
}
bpr_start = bpr_end;
}
InputTensor::Int64Tensor(
Array2::<i64>::from_shape_vec([rows, cols], v)
.unwrap()
.into_dyn(),
)
}
fn get_user_embedding(
&self,
bprs: &[BatchPredictionRequest],
batch_ends: &[usize],
) -> InputTensor {
InputTensor::FloatTensor(
self.get_embedding_tensors(bprs, self.user_embedding_feature_id, batch_ends)
.into_dyn(),
)
}
fn get_eng_embedding(
&self,
bpr: &[BatchPredictionRequest],
batch_ends: &[usize],
) -> InputTensor {
InputTensor::FloatTensor(
self.get_embedding_tensors(bpr, self.user_eng_embedding_feature_id, batch_ends)
.into_dyn(),
)
}
fn get_author_embedding(
&self,
bpr: &[BatchPredictionRequest],
batch_ends: &[usize],
) -> InputTensor {
InputTensor::FloatTensor(
self.get_embedding_tensors(bpr, self.author_embedding_feature_id, batch_ends)
.into_dyn(),
)
}
}
impl Converter for BatchPredictionRequestToTorchTensorConverter {
fn convert(&self, batched_bytes: Vec<Vec<u8>>) -> (Vec<InputTensor>, Vec<usize>) {
let bprs = batched_bytes
.into_iter()
.map(|bytes| {
BatchPredictionRequestToTorchTensorConverter::parse_batch_prediction_request(bytes)
})
.collect::<Vec<_>>();
let batch_ends = bprs
.iter()
.map(|bpr| bpr.individual_features_list.len())
.scan(0usize, |acc, e| {
//running total
*acc = *acc + e;
Some(*acc)
})
.collect::<Vec<_>>();
let t1 = self.get_continuous(&bprs, &batch_ends);
let t2 = self.get_binary(&bprs, &batch_ends);
//let _t3 = self.get_discrete(&bprs, &batch_ends);
let t4 = self.get_user_embedding(&bprs, &batch_ends);
let t5 = self.get_eng_embedding(&bprs, &batch_ends);
let t6 = self.get_author_embedding(&bprs, &batch_ends);
(vec![t1, t2, t4, t5, t6], batch_ends)
}
}