mirror of
https://github.com/twitter/the-algorithm.git
synced 2025-01-20 16:01:16 +01:00
ef4c5eb65e
Please note we have force-pushed a new initial commit in order to remove some publicly-available Twitter user information. Note that this process may be required in the future.
130 lines
4.9 KiB
Python
130 lines
4.9 KiB
Python
'''
|
|
Contains implementations of functions to read input data.
|
|
'''
|
|
from .dataset import stream_block_format_dataset
|
|
|
|
import tensorflow.compat.v1 as tf
|
|
|
|
|
|
def data_record_input_fn(
|
|
files, batch_size, parse_fn,
|
|
num_threads=2, repeat=False, dataset_fn=None,
|
|
keep_rate=None, parts_downsampling_rate=None,
|
|
shards=None, shard_index=None, shuffle=True, shuffle_files=True, interleave=True,
|
|
initializable=False, log_tf_data_summaries=False,
|
|
**kwargs):
|
|
"""
|
|
Returns a nested structure of tf.Tensors containing the next element.
|
|
Used by ``train_input_fn`` and ``eval_input_fn`` in DataRecordTrainer.
|
|
By default, works with DataRecord dataset for compressed partition files.
|
|
|
|
Args:
|
|
files:
|
|
List of files that will be parsed.
|
|
batch_size:
|
|
number of samples per batch.
|
|
parse_fn:
|
|
function passed to data loading for parsing individual data records.
|
|
Usually one of the decoder functions like ``parsers.get_sparse_parse_fn``.
|
|
num_threads (optional):
|
|
number of threads used for loading data. Defaults to 2.
|
|
repeat (optional):
|
|
Repeat the dataset indefinitely. Defaults to False.
|
|
Useful when you want to use ``train_steps`` or ``eval_steps``
|
|
greater than the size of the dataset
|
|
(otherwise Estimator.[train,evaluate] stops when the end of the dataset is reached).
|
|
dataset_fn (optional):
|
|
A function that modifies the dataset after it reads different interleaved parts files.
|
|
Defaults to:
|
|
|
|
.. code-block:: python
|
|
|
|
def dataset_fn(dataset, parse_fn, batch_size):
|
|
return dataset.batch(batch_size).map(parse_fn, 1)
|
|
|
|
keep_rate (optional):
|
|
A float value in (0.0, 1.0] that indicates to drop records according to the Bernoulli
|
|
distribution with p = 1 - keep_rate.
|
|
Defaults to None (no records dropped).
|
|
|
|
parts_downsampling_rate (optional):
|
|
A float value in (0.0, 1.0] that indicates the factor by which to downsample part files.
|
|
For example, a value of 0.2 means only 20 percent of part files become part of the dataset.
|
|
|
|
shards (optional):
|
|
Number of partitions to shard the dataset into. This is useful for codistillation
|
|
(https://arxiv.org/pdf/1804.03235.pdf) and other techniques that require each worker to
|
|
train on disjoint partitions of the dataset.
|
|
The dataset is not sharded by default.
|
|
|
|
shard_index (optional):
|
|
Which partition of the dataset to use if ``shards`` is set.
|
|
|
|
shuffle (optional):
|
|
Whether to shuffle the records. Defaults to True.
|
|
|
|
shuffle_files (optional):
|
|
Shuffle the list of files. Defaults to True.
|
|
When False, files are iterated in the order they are passed in.
|
|
|
|
interleave (optional):
|
|
Interleave records from multiple files in parallel. Defaults to True.
|
|
|
|
initializable (optional):
|
|
A boolean indicator. When the Dataset Iterator depends on some resource, e.g. a HashTable or
|
|
a Tensor, i.e. it's an initializable iterator, set it to True. Otherwise, default value (false)
|
|
is used for most plain iterators.
|
|
|
|
log_tf_data_summaries (optional):
|
|
A boolean indicator denoting whether to add a `tf.data.experimental.StatsAggregator` to the
|
|
tf.data pipeline. This adds summaries of pipeline utilization and buffer sizes to the output
|
|
events files. This requires that `initializable` is `True` above.
|
|
|
|
Returns:
|
|
Iterator of elements of the dataset.
|
|
"""
|
|
if not parse_fn:
|
|
raise ValueError("default_input_fn requires a parse_fn")
|
|
|
|
if log_tf_data_summaries and not initializable:
|
|
raise ValueError("Require `initializable` if `log_tf_data_summaries`.")
|
|
|
|
dataset = stream_block_format_dataset(
|
|
files=files,
|
|
parse_fn=parse_fn,
|
|
batch_size=batch_size,
|
|
repeat=repeat,
|
|
num_threads=num_threads,
|
|
dataset_fn=dataset_fn,
|
|
keep_rate=keep_rate,
|
|
parts_downsampling_rate=parts_downsampling_rate,
|
|
shards=shards,
|
|
shard_index=shard_index,
|
|
shuffle=shuffle,
|
|
shuffle_files=shuffle_files,
|
|
interleave=interleave,
|
|
**kwargs
|
|
)
|
|
|
|
# Add a tf.data.experimental.StatsAggregator
|
|
# https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/data/experimental/StatsAggregator
|
|
if log_tf_data_summaries:
|
|
aggregator = tf.data.experimental.StatsAggregator()
|
|
options = tf.data.Options()
|
|
options.experimental_stats.aggregator = aggregator
|
|
dataset = dataset.with_options(options)
|
|
stats_summary = aggregator.get_summary()
|
|
tf.add_to_collection(tf.GraphKeys.SUMMARIES, stats_summary)
|
|
|
|
if initializable:
|
|
# when the data parsing dpends on some HashTable or Tensor, the iterator is initalizable and
|
|
# therefore we need to be run explicitly
|
|
iterator = dataset.make_initializable_iterator()
|
|
tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
|
|
else:
|
|
iterator = dataset.make_one_shot_iterator()
|
|
return iterator.get_next()
|
|
|
|
|
|
default_input_fn = data_record_input_fn # pylint: disable=invalid-name
|