the-algorithm/trust_and_safety_models/toxicity/optim/losses.py
twitter-team ef4c5eb65e Twitter Recommendation Algorithm
Please note we have force-pushed a new initial commit in order to remove some publicly-available Twitter user information. Note that this process may be required in the future.
2023-03-31 17:36:31 -05:00

57 lines
1.9 KiB
Python

import tensorflow as tf
from keras.utils import tf_utils
from keras.utils import losses_utils
from keras import backend
def inv_kl_divergence(y_true, y_pred):
y_pred = tf.convert_to_tensor(y_pred)
y_true = tf.cast(y_true, y_pred.dtype)
y_true = backend.clip(y_true, backend.epsilon(), 1)
y_pred = backend.clip(y_pred, backend.epsilon(), 1)
return tf.reduce_sum(y_pred * tf.math.log(y_pred / y_true), axis=-1)
def masked_bce(y_true, y_pred):
y_true = tf.cast(y_true, dtype=tf.float32)
mask = y_true != -1
return tf.keras.metrics.binary_crossentropy(tf.boolean_mask(y_true, mask),
tf.boolean_mask(y_pred, mask))
class LossFunctionWrapper(tf.keras.losses.Loss):
def __init__(self,
fn,
reduction=losses_utils.ReductionV2.AUTO,
name=None,
**kwargs):
super().__init__(reduction=reduction, name=name)
self.fn = fn
self._fn_kwargs = kwargs
def call(self, y_true, y_pred):
if tf.is_tensor(y_pred) and tf.is_tensor(y_true):
y_pred, y_true = losses_utils.squeeze_or_expand_dimensions(y_pred, y_true)
ag_fn = tf.__internal__.autograph.tf_convert(self.fn, tf.__internal__.autograph.control_status_ctx())
return ag_fn(y_true, y_pred, **self._fn_kwargs)
def get_config(self):
config = {}
for k, v in self._fn_kwargs.items():
config[k] = backend.eval(v) if tf_utils.is_tensor_or_variable(v) else v
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
class InvKLD(LossFunctionWrapper):
def __init__(self,
reduction=losses_utils.ReductionV2.AUTO,
name='inv_kl_divergence'):
super().__init__(inv_kl_divergence, name=name, reduction=reduction)
class MaskedBCE(LossFunctionWrapper):
def __init__(self,
reduction=losses_utils.ReductionV2.AUTO,
name='masked_bce'):
super().__init__(masked_bce, name=name, reduction=reduction)