twitter-team ef4c5eb65e Twitter Recommendation Algorithm
Please note we have force-pushed a new initial commit in order to remove some publicly-available Twitter user information. Note that this process may be required in the future.
2023-03-31 17:36:31 -05:00

79 lines
1.6 KiB
Rust

// A feature value can be one of these
enum FeatureVal {
Empty,
U8Vector(Vec<u8>),
FloatVector(Vec<f32>),
}
// A Feture has a name and a value
// The name for now is 'id' of type string
// Eventually this needs to be flexible - example to accomodate feature-id
struct Feature {
id: String,
val: FeatureVal,
}
impl Feature {
fn new() -> Feature {
Feature {
id: String::new(),
val: FeatureVal::Empty
}
}
}
// A single inference record will have multiple features
struct Record {
fields: Vec<Feature>,
}
impl Record {
fn new() -> Record {
Record { fields: vec![] }
}
}
// This is the main API used by external components
// Given a serialized input, decode it into Records
fn decode(input: Vec<u8>) -> Vec<Record> {
// For helping define the interface
vec![get_random_record(), get_random_record()]
}
// Used for testing the API, will be eventually removed
fn get_random_record() -> Record {
let mut record: Record = Record::new();
let f1: Feature = Feature {
id: String::from("continuous_features"),
val: FeatureVal::FloatVector(vec![1.0f32; 2134]),
};
record.fields.push(f1);
let f2: Feature = Feature {
id: String::from("user_embedding"),
val: FeatureVal::FloatVector(vec![2.0f32; 200]),
};
record.fields.push(f2);
let f3: Feature = Feature {
id: String::from("author_embedding"),
val: FeatureVal::FloatVector(vec![3.0f32; 200]),
};
record.fields.push(f3);
let f4: Feature = Feature {
id: String::from("binary_features"),
val: FeatureVal::U8Vector(vec![4u8; 43]),
};
record.fields.push(f4);
record
}