twitter-team 94ff4caea8 Open-sourcing Topic Social Proof Service
Topic Social Proof Service (TSPS) delivers highly relevant topics tailored to a user's interests by analyzing topic preferences, such as following or unfollowing, and employing semantic annotations and other machine learning models.
2023-04-14 16:45:36 -05:00

105 lines
3.7 KiB
Thrift

namespace java com.twitter.tsp.thriftjava
namespace py gen.twitter.tsp
#@namespace scala com.twitter.tsp.thriftscala
#@namespace strato com.twitter.tsp.strato
include "com/twitter/contentrecommender/common.thrift"
include "com/twitter/simclusters_v2/identifier.thrift"
include "com/twitter/simclusters_v2/online_store.thrift"
include "topic_listing.thrift"
enum TopicListingSetting {
All = 0 // All the existing Semantic Core Entity/Topics. ie., All topics on twitter, and may or may not have been launched yet.
Followable = 1 // All the topics which the user is allowed to follow. ie., topics that have shipped, and user may or may not be following it.
Following = 2 // Only topics the user is explicitly following
ImplicitFollow = 3 // The topics user has not followed but implicitly may follow. ie., Only topics that user has not followed.
} (hasPersonalData='false')
// used to tell Topic Social Proof endpoint which specific filtering can be bypassed
enum TopicSocialProofFilteringBypassMode {
NotInterested = 0
} (hasPersonalData='false')
struct TopicSocialProofRequest {
1: required i64 userId(personalDataType = "UserId")
2: required set<i64> tweetIds(personalDataType = 'TweetId')
3: required common.DisplayLocation displayLocation
4: required TopicListingSetting topicListingSetting
5: required topic_listing.TopicListingViewerContext context
6: optional set<TopicSocialProofFilteringBypassMode> bypassModes
7: optional map<i64, set<MetricTag>> tags
}
struct TopicSocialProofOptions {
1: required i64 userId(personalDataType = "UserId")
2: required common.DisplayLocation displayLocation
3: required TopicListingSetting topicListingSetting
4: required topic_listing.TopicListingViewerContext context
5: optional set<TopicSocialProofFilteringBypassMode> bypassModes
6: optional map<i64, set<MetricTag>> tags
}
struct TopicSocialProofResponse {
1: required map<i64, list<TopicWithScore>> socialProofs
}(hasPersonalData='false')
// Distinguishes between how a topic tweet is generated. Useful for metric tracking and debugging
enum TopicTweetType {
// CrOON candidates
UserInterestedIn = 1
Twistly = 2
// crTopic candidates
SkitConsumerEmbeddings = 100
SkitProducerEmbeddings = 101
SkitHighPrecision = 102
SkitInterestBrowser = 103
Certo = 104
}(persisted='true')
struct TopicWithScore {
1: required i64 topicId
2: required double score // score used to rank topics relative to one another
3: optional TopicTweetType algorithmType // how the topic is generated
4: optional TopicFollowType topicFollowType // Whether the topic is being explicitly or implicily followed
}(persisted='true', hasPersonalData='false')
struct ScoreKey {
1: required identifier.EmbeddingType userEmbeddingType
2: required identifier.EmbeddingType topicEmbeddingType
3: required online_store.ModelVersion modelVersion
}(persisted='true', hasPersonalData='false')
struct UserTopicScore {
1: required map<ScoreKey, double> scores
}(persisted='true', hasPersonalData='false')
enum TopicFollowType {
Following = 1
ImplicitFollow = 2
}(persisted='true')
// Provide the Tags which provides the Recommended Tweets Source Signal and other context.
// Warning: Please don't use this tag in any ML Features or business logic.
enum MetricTag {
// Source Signal Tags
TweetFavorite = 0
Retweet = 1
UserFollow = 101
PushOpenOrNtabClick = 201
HomeTweetClick = 301
HomeVideoView = 302
HomeSongbirdShowMore = 303
InterestsRankerRecentSearches = 401 // For Interests Candidate Expansion
UserInterestedIn = 501
MBCG = 503
// Other Metric Tags
} (persisted='true', hasPersonalData='true')