Cemu/dependencies/ih264d/common/x86/ih264_iquant_itrans_recon_sse42.c

573 lines
27 KiB
C
Raw Normal View History

2022-08-22 22:21:23 +02:00
/******************************************************************************
*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*****************************************************************************
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
/**
*******************************************************************************
* @file
* ih264_iquant_itrans_recon_sse42.c
*
* @brief
* Contains function definitions for inverse quantization, inverse
* transform and reconstruction
*
* @author
* Mohit [100664]
*
* @par List of Functions:
* - ih264_iquant_itrans_recon_4x4_sse42()
* - ih264_iquant_itrans_recon_chroma_4x4_sse42()
*
* @remarks
* None
*
*******************************************************************************
*/
/* User include files */
#include "ih264_typedefs.h"
#include "ih264_defs.h"
#include "ih264_trans_macros.h"
#include "ih264_macros.h"
#include "ih264_platform_macros.h"
#include "ih264_trans_data.h"
#include "ih264_size_defs.h"
#include "ih264_structs.h"
#include "ih264_trans_quant_itrans_iquant.h"
#include <immintrin.h>
/*
********************************************************************************
*
* @brief This function reconstructs a 4x4 sub block from quantized resiude and
* prediction buffer
*
* @par Description:
* The quantized residue is first inverse quantized, then inverse transformed.
* This inverse transformed content is added to the prediction buffer to recon-
* struct the end output
*
* @param[in] pi2_src
* quantized 4x4 block
*
* @param[in] pu1_pred
* prediction 4x4 block
*
* @param[out] pu1_out
* reconstructed 4x4 block
*
* @param[in] src_strd
* quantization buffer stride
*
* @param[in] pred_strd,
* Prediction buffer stride
*
* @param[in] out_strd
* recon buffer Stride
*
* @param[in] pu2_scaling_list
* pointer to scaling list
*
* @param[in] pu2_norm_adjust
* pointer to inverse scale matrix
*
* @param[in] u4_qp_div_6
* Floor (qp/6)
*
* @param[in] pi4_tmp
* temporary buffer of size 1*16
*
* @returns none
*
* @remarks none
*
*******************************************************************************
*/
void ih264_iquant_itrans_recon_4x4_sse42(WORD16 *pi2_src,
UWORD8 *pu1_pred,
UWORD8 *pu1_out,
WORD32 pred_strd,
WORD32 out_strd,
const UWORD16 *pu2_iscal_mat,
const UWORD16 *pu2_weigh_mat,
UWORD32 u4_qp_div_6,
WORD16 *pi2_tmp,
WORD32 iq_start_idx,
WORD16 *pi2_dc_ld_addr)
{
UWORD32 *pu4_out = (UWORD32 *) pu1_out;
__m128i src_r0_r1, src_r2_r3;
__m128i src_r0, src_r1, src_r2, src_r3;
__m128i scalemat_r0_r1, scalemat_r2_r3;
__m128i pred_r0, pred_r1, pred_r2, pred_r3;
__m128i sign_reg, dequant_r0_r1, dequant_r2_r3;
__m128i zero_8x16b = _mm_setzero_si128(); // all bits reset to zero
__m128i temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7;
__m128i resq_r0, resq_r1, resq_r2, resq_r3;
__m128i add_rshift = _mm_set1_epi32((u4_qp_div_6 < 4) ? (1 << (3 - u4_qp_div_6)) : 0);
__m128i value_32 = _mm_set1_epi32(32);
UNUSED (pi2_tmp);
/*************************************************************/
/* Dequantization of coefficients. Will be replaced by SIMD */
/* operations on platform */
/*************************************************************/
src_r0_r1 = _mm_loadu_si128((__m128i *) (pi2_src)); //a00 a01 a02 a03 a10 a11 a12 a13 -- the source matrix 0th,1st row
src_r2_r3 = _mm_loadu_si128((__m128i *) (pi2_src + 8)); //a20 a21 a22 a23 a30 a31 a32 a33 -- the source matrix 2nd,3rd row
scalemat_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_iscal_mat)); //b00 b01 b02 b03 b10 b11 b12 b13 -- the scaling matrix 0th,1st row
scalemat_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_iscal_mat + 8)); //b20 b21 b22 b23 b30 b31 b32 b33 -- the scaling matrix 2nd,3rd row
dequant_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_weigh_mat)); //q00 q01 q02 q03 q10 q11 q12 q13 -- all 16 bits
dequant_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_weigh_mat + 8)); //q20 q21 q22 q23 q30 q31 q32 q33 -- all 16 bits
temp0 = _mm_mullo_epi16(scalemat_r0_r1, dequant_r0_r1); //b00*q00 b01*q01 b02*q02 b03*q03 b10*q10 b11*q11 b12*q12 b13*q13 -- 16 bit result
temp1 = _mm_mullo_epi16(scalemat_r2_r3, dequant_r2_r3); //b00*q00 b01*q01 b02*q02 b03*q03 b10*q10 b11*q11 b12*q12 b13*q13 -- 16 bit result
temp4 = _mm_unpacklo_epi16(temp0, zero_8x16b); // b00*q00 0 b01*q01 0 b02*q02 0 b03*q03 0 -- 16 bit long
temp5 = _mm_unpackhi_epi16(temp0, zero_8x16b); // b10*q10 0 b11*q11 0 b12*q12 0 b13*q13 0 -- 16 bit long
temp6 = _mm_unpacklo_epi16(temp1, zero_8x16b); // b00*q00 0 b01*q01 0 b02*q02 0 b03*q03 0 -- 16 bit long
temp7 = _mm_unpackhi_epi16(temp1, zero_8x16b); // b10*q10 0 b11*q11 0 b12*q12 0 b13*q13 0 -- 16 bit long
src_r0 = _mm_unpacklo_epi16(src_r0_r1, zero_8x16b); // a00 0 a01 0 a02 0 a03 0 -- 16 bit long
src_r1 = _mm_unpackhi_epi16(src_r0_r1, zero_8x16b); // a10 0 a11 0 a12 0 a13 0 -- 16 bit long
src_r2 = _mm_unpacklo_epi16(src_r2_r3, zero_8x16b); // a20 0 a21 0 a22 0 a23 0 -- 16 bit long
src_r3 = _mm_unpackhi_epi16(src_r2_r3, zero_8x16b); // a30 0 a31 0 a32 0 a33 0 -- 16 bit long
temp4 = _mm_madd_epi16(src_r0, temp4); //a00*b00*q00 a10*b10*q10 a20*b20*q20 a30*b30 q30 -- 32 bits long
temp5 = _mm_madd_epi16(src_r1, temp5);
temp6 = _mm_madd_epi16(src_r2, temp6);
temp7 = _mm_madd_epi16(src_r3, temp7);
if (u4_qp_div_6 >= 4) {
resq_r0 = _mm_slli_epi32(temp4, u4_qp_div_6 - 4);
resq_r1 = _mm_slli_epi32(temp5, u4_qp_div_6 - 4);
resq_r2 = _mm_slli_epi32(temp6, u4_qp_div_6 - 4);
resq_r3 = _mm_slli_epi32(temp7, u4_qp_div_6 - 4);
} else {
temp4 = _mm_add_epi32(temp4, add_rshift);
temp5 = _mm_add_epi32(temp5, add_rshift);
temp6 = _mm_add_epi32(temp6, add_rshift);
temp7 = _mm_add_epi32(temp7, add_rshift);
resq_r0 = _mm_srai_epi32(temp4, 4 - u4_qp_div_6);
resq_r1 = _mm_srai_epi32(temp5, 4 - u4_qp_div_6);
resq_r2 = _mm_srai_epi32(temp6, 4 - u4_qp_div_6);
resq_r3 = _mm_srai_epi32(temp7, 4 - u4_qp_div_6);
}
if (iq_start_idx == 1)
resq_r0 = _mm_insert_epi32(resq_r0,(WORD32)pi2_dc_ld_addr[0],0);
/* Perform Inverse transform */
/*-------------------------------------------------------------*/
/* IDCT [ Horizontal transformation ] */
/*-------------------------------------------------------------*/
// Matrix transpose
/*
* a0 a1 a2 a3
* b0 b1 b2 b3
* c0 c1 c2 c3
* d0 d1 d2 d3
*/
temp1 = _mm_unpacklo_epi32(resq_r0, resq_r1); //a0 b0 a1 b1
temp3 = _mm_unpacklo_epi32(resq_r2, resq_r3); //c0 d0 c1 d1
temp2 = _mm_unpackhi_epi32(resq_r0, resq_r1); //a2 b2 a3 b3
temp4 = _mm_unpackhi_epi32(resq_r2, resq_r3); //c2 d2 c3 d3
resq_r0 = _mm_unpacklo_epi64(temp1, temp3); //a0 b0 c0 d0
resq_r1 = _mm_unpackhi_epi64(temp1, temp3); //a1 b1 c1 d1
resq_r2 = _mm_unpacklo_epi64(temp2, temp4); //a2 b2 c2 d2
resq_r3 = _mm_unpackhi_epi64(temp2, temp4); //a3 b3 c3 d3
//Transform starts -- horizontal transform
/*------------------------------------------------------------------*/
/* z0 = w0 + w2 */
temp0 = _mm_add_epi32(resq_r0, resq_r2);
/* z1 = w0 - w2 */
temp1 = _mm_sub_epi32(resq_r0, resq_r2);
/* z2 = (w1 >> 1) - w3 */
temp2 = _mm_srai_epi32(resq_r1, 1); //(w1>>1)
temp2 = _mm_sub_epi32(temp2, resq_r3); //(w1>>1) - w3
/* z3 = w1 + (w3 >> 1) */
temp3 = _mm_srai_epi32(resq_r3, 1); //(w3>>1) + w1
temp3 = _mm_add_epi32(temp3, resq_r1);
/*----------------------------------------------------------*/
/* x0 = z0 + z3 */
resq_r0 = _mm_add_epi32(temp0, temp3);
/* x1 = z1 + z2 */
resq_r1 = _mm_add_epi32(temp1, temp2);
/* x2 = z1 - z2 */
resq_r2 = _mm_sub_epi32(temp1, temp2);
/* x3 = z0 - z3 */
resq_r3 = _mm_sub_epi32(temp0, temp3);
// Matrix transpose
/*
* a0 b0 c0 d0
* a1 b1 c1 d1
* a2 b2 c2 d2
* a3 b3 c3 d3
*/
temp1 = _mm_unpacklo_epi32(resq_r0, resq_r1); //a0 a1 b0 b1
temp3 = _mm_unpacklo_epi32(resq_r2, resq_r3); //a2 a3 b2 b3
temp2 = _mm_unpackhi_epi32(resq_r0, resq_r1); //c0 c1 d0 d1
temp4 = _mm_unpackhi_epi32(resq_r2, resq_r3); //c2 c3 d2 d3
resq_r0 = _mm_unpacklo_epi64(temp1, temp3); //a0 a1 a2 a3
resq_r1 = _mm_unpackhi_epi64(temp1, temp3); //b0 b1 b2 b3
resq_r2 = _mm_unpacklo_epi64(temp2, temp4); //c0 c1 c2 c3
resq_r3 = _mm_unpackhi_epi64(temp2, temp4); //d0 d1 d2 d3
//Transform ends -- horizontal transform
//Load pred buffer
pred_r0 = _mm_loadl_epi64((__m128i *) (&pu1_pred[0])); //p00 p01 p02 p03 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r1 = _mm_loadl_epi64((__m128i *) (&pu1_pred[pred_strd])); //p10 p11 p12 p13 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r2 = _mm_loadl_epi64((__m128i *) (&pu1_pred[2 * pred_strd])); //p20 p21 p22 p23 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r3 = _mm_loadl_epi64((__m128i *) (&pu1_pred[3 * pred_strd])); //p30 p31 p32 p33 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r0 = _mm_cvtepu8_epi32(pred_r0); //p00 p01 p02 p03 -- all 32 bits
pred_r1 = _mm_cvtepu8_epi32(pred_r1); //p10 p11 p12 p13 -- all 32 bits
pred_r2 = _mm_cvtepu8_epi32(pred_r2); //p20 p21 p22 p23 -- all 32 bits
pred_r3 = _mm_cvtepu8_epi32(pred_r3); //p30 p31 p32 p33 -- all 32 bits
/*--------------------------------------------------------------*/
/* IDCT [ Vertical transformation] and Xij = (xij + 32)>>6 */
/* */
/* Add the prediction and store it back to same buffer */
/*--------------------------------------------------------------*/
/* z0j = y0j + y2j */
temp0 = _mm_add_epi32(resq_r0, resq_r2);
/* z1j = y0j - y2j */
temp1 = _mm_sub_epi32(resq_r0, resq_r2);
/* z2j = (y1j>>1) - y3j */
temp2 = _mm_srai_epi32(resq_r1, 1); //(y1j>>1)
temp2 = _mm_sub_epi32(temp2, resq_r3);
/* z3j = y1j + (y3j>>1) */
temp3 = _mm_srai_epi32(resq_r3, 1); //(y3j>>1)
temp3 = _mm_add_epi32(temp3, resq_r1);
/* x0j = z0j + z3j */
temp4 = _mm_add_epi32(temp0, temp3);
temp4 = _mm_add_epi32(temp4, value_32);
temp4 = _mm_srai_epi32(temp4, 6);
temp4 = _mm_add_epi32(temp4, pred_r0);
/* x1j = z1j + z2j */
temp5 = _mm_add_epi32(temp1, temp2);
temp5 = _mm_add_epi32(temp5, value_32);
temp5 = _mm_srai_epi32(temp5, 6);
temp5 = _mm_add_epi32(temp5, pred_r1);
/* x2j = z1j - z2j */
temp6 = _mm_sub_epi32(temp1, temp2);
temp6 = _mm_add_epi32(temp6, value_32);
temp6 = _mm_srai_epi32(temp6, 6);
temp6 = _mm_add_epi32(temp6, pred_r2);
/* x3j = z0j - z3j */
temp7 = _mm_sub_epi32(temp0, temp3);
temp7 = _mm_add_epi32(temp7, value_32);
temp7 = _mm_srai_epi32(temp7, 6);
temp7 = _mm_add_epi32(temp7, pred_r3);
// 32-bit to 16-bit conversion
temp0 = _mm_packs_epi32(temp4, temp5);
temp1 = _mm_packs_epi32(temp6, temp7);
/*------------------------------------------------------------------*/
//Clipping the results to 8 bits
sign_reg = _mm_cmpgt_epi16(temp0, zero_8x16b); // sign check
temp0 = _mm_and_si128(temp0, sign_reg);
sign_reg = _mm_cmpgt_epi16(temp1, zero_8x16b);
temp1 = _mm_and_si128(temp1, sign_reg);
resq_r0 = _mm_packus_epi16(temp0, temp1);
resq_r1 = _mm_srli_si128(resq_r0, 4);
resq_r2 = _mm_srli_si128(resq_r1, 4);
resq_r3 = _mm_srli_si128(resq_r2, 4);
*pu4_out = _mm_cvtsi128_si32(resq_r0);
pu1_out += out_strd;
pu4_out = (UWORD32 *) (pu1_out);
*(pu4_out) = _mm_cvtsi128_si32(resq_r1);
pu1_out += out_strd;
pu4_out = (UWORD32 *) (pu1_out);
*(pu4_out) = _mm_cvtsi128_si32(resq_r2);
pu1_out += out_strd;
pu4_out = (UWORD32 *) (pu1_out);
*(pu4_out) = _mm_cvtsi128_si32(resq_r3);
}
/*
********************************************************************************
*
* @brief This function reconstructs a 4x4 sub block from quantized chroma resiude and
* prediction buffer
*
* @par Description:
* The quantized residue is first inverse quantized, then inverse transformed.
* This inverse transformed content is added to the prediction buffer to recon-
* struct the end output
*
* @param[in] pi2_src
* quantized 4x4 block
*
* @param[in] pu1_pred
* prediction 4x4 block
*
* @param[out] pu1_out
* reconstructed 4x4 block
*
* @param[in] src_strd
* quantization buffer stride
*
* @param[in] pred_strd,
* Prediction buffer stride
*
* @param[in] out_strd
* recon buffer Stride
*
* @param[in] pu2_scaling_list
* pointer to scaling list
*
* @param[in] pu2_norm_adjust
* pointer to inverse scale matrix
*
* @param[in] u4_qp_div_6
* Floor (qp/6)
*
* @param[in] pi4_tmp
* temporary buffer of size 1*16
*
* @returns none
*
* @remarks none
*
*******************************************************************************
*/
void ih264_iquant_itrans_recon_chroma_4x4_sse42(WORD16 *pi2_src,
UWORD8 *pu1_pred,
UWORD8 *pu1_out,
WORD32 pred_strd,
WORD32 out_strd,
const UWORD16 *pu2_iscal_mat,
const UWORD16 *pu2_weigh_mat,
UWORD32 u4_qp_div_6,
WORD16 *pi2_tmp,
WORD16 *pi2_dc_ld_addr)
{
__m128i src_r0_r1, src_r2_r3;
__m128i src_r0, src_r1, src_r2, src_r3;
__m128i scalemat_r0_r1, scalemat_r2_r3;
__m128i pred_r0, pred_r1, pred_r2, pred_r3;
__m128i sign_reg, dequant_r0_r1, dequant_r2_r3;
__m128i zero_8x16b = _mm_setzero_si128(); // all bits reset to zero
__m128i temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7;
__m128i resq_r0, resq_r1, resq_r2, resq_r3;
__m128i add_rshift = _mm_set1_epi32((u4_qp_div_6 < 4) ? (1 << (3 - u4_qp_div_6)) : 0);
__m128i value_32 = _mm_set1_epi32(32);
__m128i chroma_mask = _mm_set1_epi16 (0xFF);
__m128i out_r0, out_r1, out_r2, out_r3;
UNUSED (pi2_tmp);
/*************************************************************/
/* Dequantization of coefficients. Will be replaced by SIMD */
/* operations on platform */
/*************************************************************/
src_r0_r1 = _mm_loadu_si128((__m128i *) (pi2_src)); //a00 a01 a02 a03 a10 a11 a12 a13 -- the source matrix 0th,1st row
src_r2_r3 = _mm_loadu_si128((__m128i *) (pi2_src + 8)); //a20 a21 a22 a23 a30 a31 a32 a33 -- the source matrix 2nd,3rd row
scalemat_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_iscal_mat)); //b00 b01 b02 b03 b10 b11 b12 b13 -- the scaling matrix 0th,1st row
scalemat_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_iscal_mat + 8)); //b20 b21 b22 b23 b30 b31 b32 b33 -- the scaling matrix 2nd,3rd row
dequant_r0_r1 = _mm_loadu_si128((__m128i *) (pu2_weigh_mat)); //q00 q01 q02 q03 q10 q11 q12 q13 -- all 16 bits
dequant_r2_r3 = _mm_loadu_si128((__m128i *) (pu2_weigh_mat + 8)); //q20 q21 q22 q23 q30 q31 q32 q33 -- all 16 bits
temp0 = _mm_mullo_epi16(scalemat_r0_r1, dequant_r0_r1); //b00*q00 b01*q01 b02*q02 b03*q03 b10*q10 b11*q11 b12*q12 b13*q13 -- 16 bit result
temp1 = _mm_mullo_epi16(scalemat_r2_r3, dequant_r2_r3); //b00*q00 b01*q01 b02*q02 b03*q03 b10*q10 b11*q11 b12*q12 b13*q13 -- 16 bit result
temp4 = _mm_unpacklo_epi16(temp0, zero_8x16b); // b00*q00 0 b01*q01 0 b02*q02 0 b03*q03 0 -- 16 bit long
temp5 = _mm_unpackhi_epi16(temp0, zero_8x16b); // b10*q10 0 b11*q11 0 b12*q12 0 b13*q13 0 -- 16 bit long
temp6 = _mm_unpacklo_epi16(temp1, zero_8x16b); // b00*q00 0 b01*q01 0 b02*q02 0 b03*q03 0 -- 16 bit long
temp7 = _mm_unpackhi_epi16(temp1, zero_8x16b); // b10*q10 0 b11*q11 0 b12*q12 0 b13*q13 0 -- 16 bit long
src_r0 = _mm_unpacklo_epi16(src_r0_r1, zero_8x16b); // a00 0 a01 0 a02 0 a03 0 -- 16 bit long
src_r1 = _mm_unpackhi_epi16(src_r0_r1, zero_8x16b); // a10 0 a11 0 a12 0 a13 0 -- 16 bit long
src_r2 = _mm_unpacklo_epi16(src_r2_r3, zero_8x16b); // a20 0 a21 0 a22 0 a23 0 -- 16 bit long
src_r3 = _mm_unpackhi_epi16(src_r2_r3, zero_8x16b); // a30 0 a31 0 a32 0 a33 0 -- 16 bit long
temp4 = _mm_madd_epi16(src_r0, temp4); //a00*b00*q00 a10*b10*q10 a20*b20*q20 a30*b30 q30 -- 32 bits long
temp5 = _mm_madd_epi16(src_r1, temp5);
temp6 = _mm_madd_epi16(src_r2, temp6);
temp7 = _mm_madd_epi16(src_r3, temp7);
if (u4_qp_div_6 >= 4) {
resq_r0 = _mm_slli_epi32(temp4, u4_qp_div_6 - 4);
resq_r1 = _mm_slli_epi32(temp5, u4_qp_div_6 - 4);
resq_r2 = _mm_slli_epi32(temp6, u4_qp_div_6 - 4);
resq_r3 = _mm_slli_epi32(temp7, u4_qp_div_6 - 4);
} else {
temp4 = _mm_add_epi32(temp4, add_rshift);
temp5 = _mm_add_epi32(temp5, add_rshift);
temp6 = _mm_add_epi32(temp6, add_rshift);
temp7 = _mm_add_epi32(temp7, add_rshift);
resq_r0 = _mm_srai_epi32(temp4, 4 - u4_qp_div_6);
resq_r1 = _mm_srai_epi32(temp5, 4 - u4_qp_div_6);
resq_r2 = _mm_srai_epi32(temp6, 4 - u4_qp_div_6);
resq_r3 = _mm_srai_epi32(temp7, 4 - u4_qp_div_6);
}
resq_r0 = _mm_insert_epi32(resq_r0,(WORD32)pi2_dc_ld_addr[0],0);
/* Perform Inverse transform */
/*-------------------------------------------------------------*/
/* IDCT [ Horizontal transformation ] */
/*-------------------------------------------------------------*/
// Matrix transpose
/*
* a0 a1 a2 a3
* b0 b1 b2 b3
* c0 c1 c2 c3
* d0 d1 d2 d3
*/
temp1 = _mm_unpacklo_epi32(resq_r0, resq_r1); //a0 b0 a1 b1
temp3 = _mm_unpacklo_epi32(resq_r2, resq_r3); //c0 d0 c1 d1
temp2 = _mm_unpackhi_epi32(resq_r0, resq_r1); //a2 b2 a3 b3
temp4 = _mm_unpackhi_epi32(resq_r2, resq_r3); //c2 d2 c3 d3
resq_r0 = _mm_unpacklo_epi64(temp1, temp3); //a0 b0 c0 d0
resq_r1 = _mm_unpackhi_epi64(temp1, temp3); //a1 b1 c1 d1
resq_r2 = _mm_unpacklo_epi64(temp2, temp4); //a2 b2 c2 d2
resq_r3 = _mm_unpackhi_epi64(temp2, temp4); //a3 b3 c3 d3
//Transform starts -- horizontal transform
/*------------------------------------------------------------------*/
/* z0 = w0 + w2 */
temp0 = _mm_add_epi32(resq_r0, resq_r2);
/* z1 = w0 - w2 */
temp1 = _mm_sub_epi32(resq_r0, resq_r2);
/* z2 = (w1 >> 1) - w3 */
temp2 = _mm_srai_epi32(resq_r1, 1); //(w1>>1)
temp2 = _mm_sub_epi32(temp2, resq_r3); //(w1>>1) - w3
/* z3 = w1 + (w3 >> 1) */
temp3 = _mm_srai_epi32(resq_r3, 1); //(w3>>1) + w1
temp3 = _mm_add_epi32(temp3, resq_r1);
/*----------------------------------------------------------*/
/* x0 = z0 + z3 */
resq_r0 = _mm_add_epi32(temp0, temp3);
/* x1 = z1 + z2 */
resq_r1 = _mm_add_epi32(temp1, temp2);
/* x2 = z1 - z2 */
resq_r2 = _mm_sub_epi32(temp1, temp2);
/* x3 = z0 - z3 */
resq_r3 = _mm_sub_epi32(temp0, temp3);
// Matrix transpose
/*
* a0 b0 c0 d0
* a1 b1 c1 d1
* a2 b2 c2 d2
* a3 b3 c3 d3
*/
temp1 = _mm_unpacklo_epi32(resq_r0, resq_r1); //a0 a1 b0 b1
temp3 = _mm_unpacklo_epi32(resq_r2, resq_r3); //a2 a3 b2 b3
temp2 = _mm_unpackhi_epi32(resq_r0, resq_r1); //c0 c1 d0 d1
temp4 = _mm_unpackhi_epi32(resq_r2, resq_r3); //c2 c3 d2 d3
resq_r0 = _mm_unpacklo_epi64(temp1, temp3); //a0 a1 a2 a3
resq_r1 = _mm_unpackhi_epi64(temp1, temp3); //b0 b1 b2 b3
resq_r2 = _mm_unpacklo_epi64(temp2, temp4); //c0 c1 c2 c3
resq_r3 = _mm_unpackhi_epi64(temp2, temp4); //d0 d1 d2 d3
//Transform ends -- horizontal transform
//Load pred buffer
pred_r0 = _mm_loadl_epi64((__m128i *) (&pu1_pred[0])); //p00 p01 p02 p03 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r1 = _mm_loadl_epi64((__m128i *) (&pu1_pred[pred_strd])); //p10 p11 p12 p13 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r2 = _mm_loadl_epi64((__m128i *) (&pu1_pred[2 * pred_strd])); //p20 p21 p22 p23 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r3 = _mm_loadl_epi64((__m128i *) (&pu1_pred[3 * pred_strd])); //p30 p31 p32 p33 0 0 0 0 0 0 0 0 -- all 8 bits
pred_r0 = _mm_and_si128(pred_r0, chroma_mask);
pred_r1 = _mm_and_si128(pred_r1, chroma_mask);
pred_r2 = _mm_and_si128(pred_r2, chroma_mask);
pred_r3 = _mm_and_si128(pred_r3, chroma_mask);
pred_r0 = _mm_cvtepu16_epi32(pred_r0); //p00 p01 p02 p03 -- all 32 bits
pred_r1 = _mm_cvtepu16_epi32(pred_r1); //p10 p11 p12 p13 -- all 32 bits
pred_r2 = _mm_cvtepu16_epi32(pred_r2); //p20 p21 p22 p23 -- all 32 bits
pred_r3 = _mm_cvtepu16_epi32(pred_r3); //p30 p31 p32 p33 -- all 32 bits
/*--------------------------------------------------------------*/
/* IDCT [ Vertical transformation] and Xij = (xij + 32)>>6 */
/* */
/* Add the prediction and store it back to same buffer */
/*--------------------------------------------------------------*/
/* z0j = y0j + y2j */
temp0 = _mm_add_epi32(resq_r0, resq_r2);
/* z1j = y0j - y2j */
temp1 = _mm_sub_epi32(resq_r0, resq_r2);
/* z2j = (y1j>>1) - y3j */
temp2 = _mm_srai_epi32(resq_r1, 1); //(y1j>>1)
temp2 = _mm_sub_epi32(temp2, resq_r3);
/* z3j = y1j + (y3j>>1) */
temp3 = _mm_srai_epi32(resq_r3, 1); //(y3j>>1)
temp3 = _mm_add_epi32(temp3, resq_r1);
/* x0j = z0j + z3j */
temp4 = _mm_add_epi32(temp0, temp3);
temp4 = _mm_add_epi32(temp4, value_32);
temp4 = _mm_srai_epi32(temp4, 6);
temp4 = _mm_add_epi32(temp4, pred_r0);
/* x1j = z1j + z2j */
temp5 = _mm_add_epi32(temp1, temp2);
temp5 = _mm_add_epi32(temp5, value_32);
temp5 = _mm_srai_epi32(temp5, 6);
temp5 = _mm_add_epi32(temp5, pred_r1);
/* x2j = z1j - z2j */
temp6 = _mm_sub_epi32(temp1, temp2);
temp6 = _mm_add_epi32(temp6, value_32);
temp6 = _mm_srai_epi32(temp6, 6);
temp6 = _mm_add_epi32(temp6, pred_r2);
/* x3j = z0j - z3j */
temp7 = _mm_sub_epi32(temp0, temp3);
temp7 = _mm_add_epi32(temp7, value_32);
temp7 = _mm_srai_epi32(temp7, 6);
temp7 = _mm_add_epi32(temp7, pred_r3);
// 32-bit to 16-bit conversion
temp0 = _mm_packs_epi32(temp4, temp5);
temp1 = _mm_packs_epi32(temp6, temp7);
/*------------------------------------------------------------------*/
//Clipping the results to 8 bits
sign_reg = _mm_cmpgt_epi16(temp0, zero_8x16b); // sign check
temp0 = _mm_and_si128(temp0, sign_reg);
sign_reg = _mm_cmpgt_epi16(temp1, zero_8x16b);
temp1 = _mm_and_si128(temp1, sign_reg);
resq_r0 = _mm_packus_epi16(temp0, temp1);
resq_r1 = _mm_srli_si128(resq_r0, 4);
resq_r2 = _mm_srli_si128(resq_r1, 4);
resq_r3 = _mm_srli_si128(resq_r2, 4);
resq_r0 = _mm_cvtepu8_epi16(resq_r0); //p00 p01 p02 p03 -- all 16 bits
resq_r1 = _mm_cvtepu8_epi16(resq_r1); //p10 p11 p12 p13 -- all 16 bits
resq_r2 = _mm_cvtepu8_epi16(resq_r2); //p20 p21 p22 p23 -- all 16 bits
resq_r3 = _mm_cvtepu8_epi16(resq_r3); //p30 p31 p32 p33 -- all 16 bits
chroma_mask = _mm_set1_epi16 (0xFF00);
out_r0 = _mm_loadl_epi64((__m128i *) (&pu1_out[0]));
out_r1 = _mm_loadl_epi64((__m128i *) (&pu1_out[out_strd]));
out_r2 = _mm_loadl_epi64((__m128i *) (&pu1_out[2 * out_strd]));
out_r3 = _mm_loadl_epi64((__m128i *) (&pu1_out[3 * out_strd]));
out_r0 = _mm_and_si128(out_r0, chroma_mask);
out_r1 = _mm_and_si128(out_r1, chroma_mask);
out_r2 = _mm_and_si128(out_r2, chroma_mask);
out_r3 = _mm_and_si128(out_r3, chroma_mask);
out_r0 = _mm_add_epi8(out_r0, resq_r0);
out_r1 = _mm_add_epi8(out_r1, resq_r1);
out_r2 = _mm_add_epi8(out_r2, resq_r2);
out_r3 = _mm_add_epi8(out_r3, resq_r3);
_mm_storel_epi64((__m128i *)(&pu1_out[0]), out_r0);
_mm_storel_epi64((__m128i *)(&pu1_out[out_strd]), out_r1);
_mm_storel_epi64((__m128i *)(&pu1_out[2 * out_strd]), out_r2);
_mm_storel_epi64((__m128i *)(&pu1_out[3 * out_strd]), out_r3);
}