Refactor more GX2 code to use LatteReg.h

This commit is contained in:
Exzap 2023-09-08 02:28:51 +02:00
parent 96800c6f97
commit 524188bb7a
10 changed files with 536 additions and 262 deletions

View File

@ -487,7 +487,7 @@ namespace CafeSystem
#if BOOST_OS_WINDOWS #if BOOST_OS_WINDOWS
std::string GetWindowsNamedVersion(uint32& buildNumber) std::string GetWindowsNamedVersion(uint32& buildNumber)
{ {
static char productName[256]; char productName[256];
HKEY hKey; HKEY hKey;
DWORD dwType = REG_SZ; DWORD dwType = REG_SZ;
DWORD dwSize = sizeof(productName); DWORD dwSize = sizeof(productName);

View File

@ -228,13 +228,13 @@ void _fetchShaderDecompiler_parseInstruction_VTX_SEMANTIC(LatteFetchShader* pars
else if (srcSelX == LatteClauseInstruction_VTX::SRC_SEL::SEL_Y) else if (srcSelX == LatteClauseInstruction_VTX::SRC_SEL::SEL_Y)
{ {
// use alu divisor 1 // use alu divisor 1
attribGroup->attrib[groupAttribIndex].aluDivisor = (sint32)contextRegister[mmVGT_INSTANCE_STEP_RATE_0 + 0]; attribGroup->attrib[groupAttribIndex].aluDivisor = (sint32)contextRegister[Latte::REGADDR::VGT_INSTANCE_STEP_RATE_0];
cemu_assert_debug(attribGroup->attrib[groupAttribIndex].aluDivisor > 0); cemu_assert_debug(attribGroup->attrib[groupAttribIndex].aluDivisor > 0);
} }
else if (srcSelX == LatteClauseInstruction_VTX::SRC_SEL::SEL_Z) else if (srcSelX == LatteClauseInstruction_VTX::SRC_SEL::SEL_Z)
{ {
// use alu divisor 2 // use alu divisor 2
attribGroup->attrib[groupAttribIndex].aluDivisor = (sint32)contextRegister[mmVGT_INSTANCE_STEP_RATE_0 + 1]; attribGroup->attrib[groupAttribIndex].aluDivisor = (sint32)contextRegister[Latte::REGADDR::VGT_INSTANCE_STEP_RATE_1];
cemu_assert_debug(attribGroup->attrib[groupAttribIndex].aluDivisor > 0); cemu_assert_debug(attribGroup->attrib[groupAttribIndex].aluDivisor > 0);
} }
} }

View File

@ -381,6 +381,9 @@ namespace Latte
PA_SC_GENERIC_SCISSOR_TL = 0xA090, PA_SC_GENERIC_SCISSOR_TL = 0xA090,
PA_SC_GENERIC_SCISSOR_BR = 0xA091, PA_SC_GENERIC_SCISSOR_BR = 0xA091,
SQ_VTX_SEMANTIC_0 = 0xA0E0,
SQ_VTX_SEMANTIC_31 = 0xA0FF,
VGT_MULTI_PRIM_IB_RESET_INDX = 0xA103, VGT_MULTI_PRIM_IB_RESET_INDX = 0xA103,
SX_ALPHA_TEST_CONTROL = 0xA104, SX_ALPHA_TEST_CONTROL = 0xA104,
CB_BLEND_RED = 0xA105, CB_BLEND_RED = 0xA105,
@ -398,6 +401,10 @@ namespace Latte
PA_CL_VPORT_ZSCALE = 0xA113, PA_CL_VPORT_ZSCALE = 0xA113,
PA_CL_VPORT_ZOFFSET = 0xA114, PA_CL_VPORT_ZOFFSET = 0xA114,
SPI_VS_OUT_ID_0 = 0xA185,
SPI_VS_OUT_CONFIG = 0xA1B1,
CB_BLEND0_CONTROL = 0xA1E0, // first CB_BLEND0_CONTROL = 0xA1E0, // first
CB_BLEND7_CONTROL = 0xA1E7, // last CB_BLEND7_CONTROL = 0xA1E7, // last
@ -408,6 +415,22 @@ namespace Latte
PA_CL_CLIP_CNTL = 0xA204, PA_CL_CLIP_CNTL = 0xA204,
PA_SU_SC_MODE_CNTL = 0xA205, PA_SU_SC_MODE_CNTL = 0xA205,
PA_CL_VTE_CNTL = 0xA206, PA_CL_VTE_CNTL = 0xA206,
PA_CL_VS_OUT_CNTL = 0xA207,
// shader program descriptors:
SQ_PGM_START_PS = 0xA210,
SQ_PGM_RESOURCES_PS = 0xA214,
SQ_PGM_EXPORTS_PS = 0xA215,
SQ_PGM_START_VS = 0xA216,
SQ_PGM_RESOURCES_VS = 0xA21A,
SQ_PGM_START_GS = 0xA21B,
SQ_PGM_RESOURCES_GS = 0xA21F,
SQ_PGM_START_ES = 0xA220,
SQ_PGM_RESOURCES_ES = 0xA224,
SQ_PGM_START_FS = 0xA225,
SQ_PGM_RESOURCES_FS = 0xA229,
SQ_VTX_SEMANTIC_CLEAR = 0xA238,
PA_SU_POINT_SIZE = 0xA280, PA_SU_POINT_SIZE = 0xA280,
PA_SU_POINT_MINMAX = 0xA281, PA_SU_POINT_MINMAX = 0xA281,
@ -416,6 +439,35 @@ namespace Latte
VGT_DMA_INDEX_TYPE = 0xA29F, // todo - verify offset VGT_DMA_INDEX_TYPE = 0xA29F, // todo - verify offset
VGT_PRIMITIVEID_EN = 0xA2A1,
VGT_MULTI_PRIM_IB_RESET_EN = 0xA2A5,
VGT_INSTANCE_STEP_RATE_0 = 0xA2A8,
VGT_INSTANCE_STEP_RATE_1 = 0xA2A9,
VGT_STRMOUT_BUFFER_SIZE_0 = 0xA2B4,
VGT_STRMOUT_VTX_STRIDE_0 = 0xA2B5,
VGT_STRMOUT_BUFFER_BASE_0 = 0xA2B6,
VGT_STRMOUT_BUFFER_OFFSET_0 = 0xA2B7,
VGT_STRMOUT_BUFFER_SIZE_1 = 0xA2B8,
VGT_STRMOUT_VTX_STRIDE_1 = 0xA2B9,
VGT_STRMOUT_BUFFER_BASE_1 = 0xA2BA,
VGT_STRMOUT_BUFFER_OFFSET_1 = 0xA2BB,
VGT_STRMOUT_BUFFER_SIZE_2 = 0xA2BC,
VGT_STRMOUT_VTX_STRIDE_2 = 0xA2BD,
VGT_STRMOUT_BUFFER_BASE_2 = 0xA2BE,
VGT_STRMOUT_BUFFER_OFFSET_2 = 0xA2BF,
VGT_STRMOUT_BUFFER_SIZE_3 = 0xA2C0,
VGT_STRMOUT_VTX_STRIDE_3 = 0xA2C1,
VGT_STRMOUT_BUFFER_BASE_3 = 0xA2C2,
VGT_STRMOUT_BUFFER_OFFSET_3 = 0xA2C3,
VGT_STRMOUT_BASE_OFFSET_0 = 0xA2C4,
VGT_STRMOUT_BASE_OFFSET_1 = 0xA2C5,
VGT_STRMOUT_BASE_OFFSET_2 = 0xA2C6,
VGT_STRMOUT_BASE_OFFSET_3 = 0xA2C7,
VGT_STRMOUT_BUFFER_EN = 0xA2C8,
// HiZ early stencil test? // HiZ early stencil test?
DB_SRESULTS_COMPARE_STATE0 = 0xA34A, DB_SRESULTS_COMPARE_STATE0 = 0xA34A,
DB_SRESULTS_COMPARE_STATE1 = 0xA34B, DB_SRESULTS_COMPARE_STATE1 = 0xA34B,
@ -842,6 +894,12 @@ float get_##__regname() const \
LATTE_BITFIELD_BOOL(VTX_W0_FMT, 10); LATTE_BITFIELD_BOOL(VTX_W0_FMT, 10);
}; };
struct LATTE_PA_CL_VS_OUT_CNTL : LATTEREG // 0xA207
{
LATTE_BITFIELD(CLIP_DIST_ENA_MASK, 0, 8);
LATTE_BITFIELD(CULL_DIST_ENA_MASK, 8, 8);
};
struct LATTE_PA_SU_POINT_SIZE : LATTEREG // 0xA280 struct LATTE_PA_SU_POINT_SIZE : LATTEREG // 0xA280
{ {
LATTE_BITFIELD(HEIGHT, 0, 16); LATTE_BITFIELD(HEIGHT, 0, 16);
@ -909,6 +967,54 @@ float get_##__regname() const \
LATTE_BITFIELD_FULL_TYPED(INDEX_TYPE, E_INDEX_TYPE); LATTE_BITFIELD_FULL_TYPED(INDEX_TYPE, E_INDEX_TYPE);
}; };
struct LATTE_VGT_PRIMITIVEID_EN : LATTEREG // 0xA2A1
{
LATTE_BITFIELD_BOOL(PRIMITIVEID_EN, 0);
};
struct LATTE_VGT_MULTI_PRIM_IB_RESET_EN : LATTEREG // 0xA2A5
{
LATTE_BITFIELD_BOOL(RESET_EN, 0);
};
struct LATTE_VGT_INSTANCE_STEP_RATE_X : LATTEREG // 0xA2A8-0xA2A9
{
LATTE_BITFIELD_FULL_TYPED(STEP_RATE, uint32);
};
struct LATTE_VGT_STRMOUT_BUFFER_SIZE_X : LATTEREG // 0xA2B4 + index * 4
{
LATTE_BITFIELD_FULL_TYPED(SIZE, uint32);
};
struct LATTE_VGT_STRMOUT_STRIDE_X : LATTEREG // 0xA2B5 + index * 4
{
LATTE_BITFIELD_FULL_TYPED(STRIDE, uint32);
};
struct LATTE_VGT_STRMOUT_BUFFER_BASE_X : LATTEREG // 0xA2B6 + index * 4
{
LATTE_BITFIELD_FULL_TYPED(BASE, uint32);
};
struct LATTE_VGT_STRMOUT_BUFFER_OFFSET_X : LATTEREG // 0xA2B7 + index * 4
{
LATTE_BITFIELD_FULL_TYPED(BUFFER_OFFSET, uint32);
};
struct LATTE_VGT_STRMOUT_BASE_OFFSET_X : LATTEREG // 0xA2C4-0xA2C7
{
LATTE_BITFIELD_FULL_TYPED(BASE_OFFSET, uint32);
};
struct LATTE_VGT_STRMOUT_BUFFER_EN : LATTEREG // 0xA2C8
{
LATTE_BITFIELD_BOOL(BUFFER_ENABLE_0, 0);
LATTE_BITFIELD_BOOL(BUFFER_ENABLE_1, 1);
LATTE_BITFIELD_BOOL(BUFFER_ENABLE_2, 2);
LATTE_BITFIELD_BOOL(BUFFER_ENABLE_3, 3);
};
struct LATTE_PA_SU_POLY_OFFSET_CLAMP : LATTEREG // 0xA37F struct LATTE_PA_SU_POLY_OFFSET_CLAMP : LATTEREG // 0xA37F
{ {
LATTE_BITFIELD_FLOAT(CLAMP); LATTE_BITFIELD_FLOAT(CLAMP);
@ -934,6 +1040,16 @@ float get_##__regname() const \
LATTE_BITFIELD_FLOAT(OFFSET); LATTE_BITFIELD_FLOAT(OFFSET);
}; };
struct LATTE_SQ_VTX_SEMANTIC_CLEAR : LATTEREG // 0xA238
{
LATTE_BITFIELD_FULL_TYPED(CLEAR_MASK, uint32); // probably a bitmask
};
struct LATTE_SQ_VTX_SEMANTIC_X : LATTEREG // 0xA0E0 - 0xA0FF
{
LATTE_BITFIELD(SEMANTIC_ID, 0, 8);
};
struct LATTE_SQ_TEX_RESOURCE_WORD0_N : LATTEREG // 0xE000 + index * 7 struct LATTE_SQ_TEX_RESOURCE_WORD0_N : LATTEREG // 0xE000 + index * 7
{ {
LATTE_BITFIELD_TYPED(DIM, 0, 3, E_DIM); LATTE_BITFIELD_TYPED(DIM, 0, 3, E_DIM);
@ -1154,6 +1270,65 @@ float get_##__regname() const \
LATTE_BITFIELD_TYPED(TYPE, 31, 1, E_SAMPLER_TYPE); LATTE_BITFIELD_TYPED(TYPE, 31, 1, E_SAMPLER_TYPE);
}; };
struct LATTE_SQ_PGM_START_X : LATTEREG // 0xA210 / 0xA216 / 0xA21B / 0xA220 / 0xA225
{
LATTE_BITFIELD_FULL_TYPED(PGM_START, uint32);
};
struct LATTE_SQ_PGM_RESOURCES_PS : LATTEREG // 0xA214
{
LATTE_BITFIELD(NUM_GPRS, 0, 8);
LATTE_BITFIELD(NUM_STACK_ENTRIES, 8, 8);
LATTE_BITFIELD_BOOL(DX10_CLAMP, 21); // if true, CLAMP modifier in shaders will return 0 for NaN
LATTE_BITFIELD(FETCH_CACHE_LINES, 24, 3);
LATTE_BITFIELD_BOOL(UNCACHED_FIRST_INST, 28);
LATTE_BITFIELD_BOOL(CLAMP_CONSTS, 31);
};
struct LATTE_SQ_PGM_RESOURCES_VS : LATTEREG // 0xA21A
{
LATTE_BITFIELD(NUM_GPRS, 0, 8);
LATTE_BITFIELD(NUM_STACK_ENTRIES, 8, 8);
LATTE_BITFIELD_BOOL(DX10_CLAMP, 21); // if true, CLAMP modifier in shaders will return 0 for NaN
LATTE_BITFIELD(FETCH_CACHE_LINES, 24, 3);
LATTE_BITFIELD_BOOL(UNCACHED_FIRST_INST, 28);
};
struct LATTE_SQ_PGM_RESOURCES_GS : LATTEREG // 0xA21F
{
LATTE_BITFIELD(NUM_GPRS, 0, 8);
LATTE_BITFIELD(NUM_STACK_ENTRIES, 8, 8);
LATTE_BITFIELD_BOOL(DX10_CLAMP, 21); // if true, CLAMP modifier in shaders will return 0 for NaN
};
struct LATTE_SQ_PGM_RESOURCES_ES : LATTEREG // 0xA224
{
LATTE_BITFIELD(NUM_GPRS, 0, 8);
LATTE_BITFIELD(NUM_STACK_ENTRIES, 8, 8);
LATTE_BITFIELD_BOOL(DX10_CLAMP, 21); // if true, CLAMP modifier in shaders will return 0 for NaN
};
struct LATTE_SQ_PGM_RESOURCES_FS : LATTEREG // 0xA229
{
LATTE_BITFIELD(NUM_GPRS, 0, 8);
LATTE_BITFIELD(NUM_STACK_ENTRIES, 8, 8);
LATTE_BITFIELD_BOOL(DX10_CLAMP, 21); // if true, CLAMP modifier in shaders will return 0 for NaN
};
struct LATTE_SQ_XX_ITEMSIZE : LATTEREG // 0xA227 - 0xA2XX
{
// used by:
// SQ_ESGS_RING_ITEMSIZE
// SQ_GSVS_RING_ITEMSIZE
// SQ_ESTMP_RING_ITEMSIZE
// SQ_GSTMP_RING_ITEMSIZE
// SQ_VSTMP_RING_ITEMSIZE
// SQ_PSTMP_RING_ITEMSIZE
// SQ_FBUF_RING_ITEMSIZE
// SQ_REDUC_RING_ITEMSIZE
LATTE_BITFIELD(ITEMSIZE, 0, 15);
};
struct LATTE_PA_SU_SC_MODE_CNTL : LATTEREG // 0xA205 struct LATTE_PA_SU_SC_MODE_CNTL : LATTEREG // 0xA205
{ {
enum class E_FRONTFACE enum class E_FRONTFACE
@ -1185,7 +1360,32 @@ float get_##__regname() const \
LATTE_BITFIELD_BOOL(OFFSET_PARA_ENABLED, 13); // offset enable for lines and points? LATTE_BITFIELD_BOOL(OFFSET_PARA_ENABLED, 13); // offset enable for lines and points?
// additional fields? // additional fields?
}; };
}
struct LATTE_SPI_VS_OUT_CONFIG : LATTEREG // 0xA1B1
{
LATTE_BITFIELD_BOOL(VS_PER_COMPONENT, 0);
LATTE_BITFIELD(VS_EXPORT_COUNT, 1, 5);
LATTE_BITFIELD_BOOL(EXPORTS_FOG, 8);
LATTE_BITFIELD(VS_OUT_FOG_VEC_ADDR, 9, 5);
};
struct LATTE_SPI_VS_OUT_ID_N : LATTEREG // 0xA185 - 0xA18E(?) - 0xA1B2 - 0xA1B3
{
uint8 get_SEMANTIC(sint32 index)
{
cemu_assert_debug(index < 4);
return (uint8)((v >> (index * 8)) & 0xFF);
}
void set_SEMANTIC(sint32 index, uint8 value)
{
cemu_assert_debug(index < 4);
v &= ~(0xFF << (index * 8));
v |= (value & 0xFF) << (index * 8);
}
};
};
struct _LatteRegisterSetTextureUnit struct _LatteRegisterSetTextureUnit
{ {
@ -1219,6 +1419,16 @@ struct _LatteRegisterSetSamplerBorderColor
static_assert(sizeof(_LatteRegisterSetSamplerBorderColor) == 16); static_assert(sizeof(_LatteRegisterSetSamplerBorderColor) == 16);
struct _LatteRegisterSetStreamoutBuffer
{
Latte::LATTE_VGT_STRMOUT_BUFFER_SIZE_X SIZE;
Latte::LATTE_VGT_STRMOUT_STRIDE_X STRIDE;
Latte::LATTE_VGT_STRMOUT_BUFFER_BASE_X BASE;
Latte::LATTE_VGT_STRMOUT_BUFFER_OFFSET_X BUFFER_OFFSET;
};
static_assert(sizeof(_LatteRegisterSetStreamoutBuffer) == 16);
struct LatteContextRegister struct LatteContextRegister
{ {
uint8 padding0[0x08958]; uint8 padding0[0x08958];
@ -1235,7 +1445,9 @@ struct LatteContextRegister
uint8 padding_2823C[4]; uint8 padding_2823C[4];
/* +0x28240 */ Latte::LATTE_PA_SC_GENERIC_SCISSOR_TL PA_SC_GENERIC_SCISSOR_TL; /* +0x28240 */ Latte::LATTE_PA_SC_GENERIC_SCISSOR_TL PA_SC_GENERIC_SCISSOR_TL;
/* +0x28244 */ Latte::LATTE_PA_SC_GENERIC_SCISSOR_BR PA_SC_GENERIC_SCISSOR_BR; /* +0x28244 */ Latte::LATTE_PA_SC_GENERIC_SCISSOR_BR PA_SC_GENERIC_SCISSOR_BR;
uint8 padding_28248[0x2840C - 0x28248]; uint8 padding_28248[0x28380 - 0x28248];
/* +0x28380 */ Latte::LATTE_SQ_VTX_SEMANTIC_X SQ_VTX_SEMANTIC_X[32];
/* +0x28400 */ uint8 padding_28400[0x2840C - 0x28400];
/* +0x2840C */ Latte::LATTE_VGT_MULTI_PRIM_IB_RESET_INDX VGT_MULTI_PRIM_IB_RESET_INDX; /* +0x2840C */ Latte::LATTE_VGT_MULTI_PRIM_IB_RESET_INDX VGT_MULTI_PRIM_IB_RESET_INDX;
/* +0x28410 */ Latte::LATTE_SX_ALPHA_TEST_CONTROL SX_ALPHA_TEST_CONTROL; /* +0x28410 */ Latte::LATTE_SX_ALPHA_TEST_CONTROL SX_ALPHA_TEST_CONTROL;
/* +0x28414 */ Latte::LATTE_CB_BLEND_RED CB_BLEND_RED; /* +0x28414 */ Latte::LATTE_CB_BLEND_RED CB_BLEND_RED;
@ -1253,7 +1465,15 @@ struct LatteContextRegister
/* +0x2844C */ Latte::LATTE_PA_CL_VPORT_ZSCALE PA_CL_VPORT_ZSCALE; /* +0x2844C */ Latte::LATTE_PA_CL_VPORT_ZSCALE PA_CL_VPORT_ZSCALE;
/* +0x28450 */ Latte::LATTE_PA_CL_VPORT_ZOFFSET PA_CL_VPORT_ZOFFSET; /* +0x28450 */ Latte::LATTE_PA_CL_VPORT_ZOFFSET PA_CL_VPORT_ZOFFSET;
uint8 padding_28450[0x28780 - 0x28454]; uint8 padding_28450[0x28614 - 0x28454];
/* +0x28614 */ Latte::LATTE_SPI_VS_OUT_ID_N LATTE_SPI_VS_OUT_ID_N[10];
uint8 padding_2863C[0x286C4 - 0x2863C];
/* +0x286C4 */ Latte::LATTE_SPI_VS_OUT_CONFIG SPI_VS_OUT_CONFIG;
uint8 padding_286C8[0x28780 - 0x286C8];
/* +0x28780 */ Latte::LATTE_CB_BLENDN_CONTROL CB_BLENDN_CONTROL[8]; /* +0x28780 */ Latte::LATTE_CB_BLENDN_CONTROL CB_BLENDN_CONTROL[8];
@ -1266,9 +1486,44 @@ struct LatteContextRegister
/* +0x28810 */ Latte::LATTE_PA_CL_CLIP_CNTL PA_CL_CLIP_CNTL; /* +0x28810 */ Latte::LATTE_PA_CL_CLIP_CNTL PA_CL_CLIP_CNTL;
/* +0x28814 */ Latte::LATTE_PA_SU_SC_MODE_CNTL PA_SU_SC_MODE_CNTL; /* +0x28814 */ Latte::LATTE_PA_SU_SC_MODE_CNTL PA_SU_SC_MODE_CNTL;
/* +0x28818 */ Latte::LATTE_PA_CL_VTE_CNTL PA_CL_VTE_CNTL; /* +0x28818 */ Latte::LATTE_PA_CL_VTE_CNTL PA_CL_VTE_CNTL;
/* +0x2881C */ Latte::LATTE_PA_CL_VS_OUT_CNTL PA_CL_VS_OUT_CNTL;
uint8 padding_2881C[0x28A00 - 0x2881C]; uint8 padding_2881C[0x28840 - 0x28820];
/* +0x28840 */ Latte::LATTE_SQ_PGM_START_X SQ_PGM_START_PS;
/* +0x28844 */ uint32 ukn28844; // PS size
/* +0x28848 */ uint32 ukn28848;
/* +0x2884C */ uint32 ukn2884C;
/* +0x28850 */ Latte::LATTE_SQ_PGM_RESOURCES_PS SQ_PGM_RESOURCES_PS;
/* +0x28854 */ uint32 ukn28854; // SQ_PGM_EXPORTS_PS
/* +0x28858 */ Latte::LATTE_SQ_PGM_START_X SQ_PGM_START_VS;
/* +0x2885C */ uint32 ukn2885C; // VS size
/* +0x28860 */ uint32 ukn28860;
/* +0x28864 */ uint32 ukn28864;
/* +0x28868 */ Latte::LATTE_SQ_PGM_RESOURCES_VS SQ_PGM_RESOURCES_VS;
/* +0x2886C */ Latte::LATTE_SQ_PGM_START_X SQ_PGM_START_GS;
/* +0x28870 */ uint32 ukn28870; // GS size
/* +0x28874 */ uint32 ukn28874;
/* +0x28878 */ uint32 ukn28878;
/* +0x2887C */ Latte::LATTE_SQ_PGM_RESOURCES_GS SQ_PGM_RESOURCES_GS;
/* +0x28880 */ Latte::LATTE_SQ_PGM_START_X SQ_PGM_START_ES;
/* +0x28884 */ uint32 ukn28884; // ES size
/* +0x28888 */ uint32 ukn28888;
/* +0x2888C */ uint32 ukn2888C;
/* +0x28890 */ Latte::LATTE_SQ_PGM_RESOURCES_ES SQ_PGM_RESOURCES_ES;
/* +0x28894 */ Latte::LATTE_SQ_PGM_START_X SQ_PGM_START_FS;
/* +0x28898 */ uint32 ukn28898; // FS size
/* +0x2889C */ uint32 ukn2889C;
/* +0x288A0 */ uint32 ukn288A0;
/* +0x288A4 */ Latte::LATTE_SQ_PGM_RESOURCES_FS SQ_PGM_RESOURCES_FS;
/* +0x288A8 */ Latte::LATTE_SQ_XX_ITEMSIZE SQ_ESGS_RING_ITEMSIZE;
/* +0x288AC */ Latte::LATTE_SQ_XX_ITEMSIZE SQ_GSVS_RING_ITEMSIZE;
/* +0x288B0 */ Latte::LATTE_SQ_XX_ITEMSIZE SQ_ESTMP_RING_ITEMSIZE;
/* +0x288B4 */ Latte::LATTE_SQ_XX_ITEMSIZE SQ_GSTMP_RING_ITEMSIZE;
/* +0x288B8 */ Latte::LATTE_SQ_XX_ITEMSIZE SQ_VSTMP_RING_ITEMSIZE;
uint8 padding_288BC[0x288E0 - 0x288BC];
/* +0x288E0 */ Latte::LATTE_SQ_VTX_SEMANTIC_CLEAR SQ_VTX_SEMANTIC_CLEAR;
uint8 padding_288E4[0x28A00 - 0x288E4];
/* +0x28A00 */ Latte::LATTE_PA_SU_POINT_SIZE PA_SU_POINT_SIZE; /* +0x28A00 */ Latte::LATTE_PA_SU_POINT_SIZE PA_SU_POINT_SIZE;
/* +0x28A04 */ Latte::LATTE_PA_SU_POINT_MINMAX PA_SU_POINT_MINMAX; /* +0x28A04 */ Latte::LATTE_PA_SU_POINT_MINMAX PA_SU_POINT_MINMAX;
@ -1279,8 +1534,24 @@ struct LatteContextRegister
uint8 padding_28A44[0x28A7C - 0x28A44]; uint8 padding_28A44[0x28A7C - 0x28A44];
/* +0x28A7C */ Latte::LATTE_VGT_DMA_INDEX_TYPE VGT_DMA_INDEX_TYPE; /* +0x28A7C */ Latte::LATTE_VGT_DMA_INDEX_TYPE VGT_DMA_INDEX_TYPE;
/* +0x28A80 */ uint32 ukn28A80;
/* +0x28A84 */ Latte::LATTE_VGT_PRIMITIVEID_EN VGT_PRIMITIVEID_EN;
/* +0x28A88 */ uint32 ukn28A88;
/* +0x28A8C */ uint32 ukn28A8C;
/* +0x28A90 */ uint32 ukn28A90;
/* +0x28A94 */ Latte::LATTE_VGT_MULTI_PRIM_IB_RESET_EN VGT_MULTI_PRIM_IB_RESET_EN;
/* +0x28A98 */ uint32 ukn28A98;
/* +0x28A9C */ uint32 ukn28A9C;
/* +0x28AA0 */ Latte::LATTE_VGT_INSTANCE_STEP_RATE_X VGT_INSTANCE_STEP_RATE_0;
/* +0x28AA4 */ Latte::LATTE_VGT_INSTANCE_STEP_RATE_X VGT_INSTANCE_STEP_RATE_1;
uint8 padding_28A80[0x28DFC - 0x28A80]; uint8 padding_28AA8[0x28AD0 - 0x28AA8];
/* +0x28AD0 */ _LatteRegisterSetStreamoutBuffer VGT_STRMOUT_BUFFER_X[4];
/* +0x28B10 */ Latte::LATTE_VGT_STRMOUT_BASE_OFFSET_X VGT_STRMOUT_BASE_OFFSET_X[4];
/* +0x28B20 */ Latte::LATTE_VGT_STRMOUT_BUFFER_EN VGT_STRMOUT_BUFFER_EN;
uint8 padding_28B24[0x28DFC - 0x28B24];
/* +0x28DFC */ Latte::LATTE_PA_SU_POLY_OFFSET_CLAMP PA_SU_POLY_OFFSET_CLAMP; /* +0x28DFC */ Latte::LATTE_PA_SU_POLY_OFFSET_CLAMP PA_SU_POLY_OFFSET_CLAMP;
/* +0x28E00 */ Latte::LATTE_PA_SU_POLY_OFFSET_FRONT_SCALE PA_SU_POLY_OFFSET_FRONT_SCALE; /* +0x28E00 */ Latte::LATTE_PA_SU_POLY_OFFSET_FRONT_SCALE PA_SU_POLY_OFFSET_FRONT_SCALE;
@ -1334,6 +1605,13 @@ static_assert(offsetof(LatteContextRegister, CB_TARGET_MASK) == Latte::REGADDR::
static_assert(offsetof(LatteContextRegister, PA_SC_GENERIC_SCISSOR_TL) == Latte::REGADDR::PA_SC_GENERIC_SCISSOR_TL * 4); static_assert(offsetof(LatteContextRegister, PA_SC_GENERIC_SCISSOR_TL) == Latte::REGADDR::PA_SC_GENERIC_SCISSOR_TL * 4);
static_assert(offsetof(LatteContextRegister, PA_SC_GENERIC_SCISSOR_BR) == Latte::REGADDR::PA_SC_GENERIC_SCISSOR_BR * 4); static_assert(offsetof(LatteContextRegister, PA_SC_GENERIC_SCISSOR_BR) == Latte::REGADDR::PA_SC_GENERIC_SCISSOR_BR * 4);
static_assert(offsetof(LatteContextRegister, VGT_MULTI_PRIM_IB_RESET_INDX) == Latte::REGADDR::VGT_MULTI_PRIM_IB_RESET_INDX * 4); static_assert(offsetof(LatteContextRegister, VGT_MULTI_PRIM_IB_RESET_INDX) == Latte::REGADDR::VGT_MULTI_PRIM_IB_RESET_INDX * 4);
static_assert(offsetof(LatteContextRegister, VGT_PRIMITIVEID_EN) == Latte::REGADDR::VGT_PRIMITIVEID_EN * 4);
static_assert(offsetof(LatteContextRegister, VGT_MULTI_PRIM_IB_RESET_EN) == Latte::REGADDR::VGT_MULTI_PRIM_IB_RESET_EN * 4);
static_assert(offsetof(LatteContextRegister, VGT_INSTANCE_STEP_RATE_0) == Latte::REGADDR::VGT_INSTANCE_STEP_RATE_0 * 4);
static_assert(offsetof(LatteContextRegister, VGT_INSTANCE_STEP_RATE_1) == Latte::REGADDR::VGT_INSTANCE_STEP_RATE_1 * 4);
static_assert(offsetof(LatteContextRegister, VGT_STRMOUT_BUFFER_X) == Latte::REGADDR::VGT_STRMOUT_BUFFER_SIZE_0 * 4);
static_assert(offsetof(LatteContextRegister, VGT_STRMOUT_BASE_OFFSET_X) == Latte::REGADDR::VGT_STRMOUT_BASE_OFFSET_0 * 4);
static_assert(offsetof(LatteContextRegister, VGT_STRMOUT_BUFFER_EN) == Latte::REGADDR::VGT_STRMOUT_BUFFER_EN * 4);
static_assert(offsetof(LatteContextRegister, SX_ALPHA_TEST_CONTROL) == Latte::REGADDR::SX_ALPHA_TEST_CONTROL * 4); static_assert(offsetof(LatteContextRegister, SX_ALPHA_TEST_CONTROL) == Latte::REGADDR::SX_ALPHA_TEST_CONTROL * 4);
static_assert(offsetof(LatteContextRegister, DB_STENCILREFMASK) == Latte::REGADDR::DB_STENCILREFMASK * 4); static_assert(offsetof(LatteContextRegister, DB_STENCILREFMASK) == Latte::REGADDR::DB_STENCILREFMASK * 4);
static_assert(offsetof(LatteContextRegister, DB_STENCILREFMASK_BF) == Latte::REGADDR::DB_STENCILREFMASK_BF * 4); static_assert(offsetof(LatteContextRegister, DB_STENCILREFMASK_BF) == Latte::REGADDR::DB_STENCILREFMASK_BF * 4);
@ -1351,6 +1629,7 @@ static_assert(offsetof(LatteContextRegister, PA_CL_VPORT_ZOFFSET) == Latte::REGA
static_assert(offsetof(LatteContextRegister, PA_CL_CLIP_CNTL) == Latte::REGADDR::PA_CL_CLIP_CNTL * 4); static_assert(offsetof(LatteContextRegister, PA_CL_CLIP_CNTL) == Latte::REGADDR::PA_CL_CLIP_CNTL * 4);
static_assert(offsetof(LatteContextRegister, PA_SU_SC_MODE_CNTL) == Latte::REGADDR::PA_SU_SC_MODE_CNTL * 4); static_assert(offsetof(LatteContextRegister, PA_SU_SC_MODE_CNTL) == Latte::REGADDR::PA_SU_SC_MODE_CNTL * 4);
static_assert(offsetof(LatteContextRegister, PA_CL_VTE_CNTL) == Latte::REGADDR::PA_CL_VTE_CNTL * 4); static_assert(offsetof(LatteContextRegister, PA_CL_VTE_CNTL) == Latte::REGADDR::PA_CL_VTE_CNTL * 4);
static_assert(offsetof(LatteContextRegister, PA_CL_VS_OUT_CNTL) == Latte::REGADDR::PA_CL_VS_OUT_CNTL * 4);
static_assert(offsetof(LatteContextRegister, PA_SU_POINT_SIZE) == Latte::REGADDR::PA_SU_POINT_SIZE * 4); static_assert(offsetof(LatteContextRegister, PA_SU_POINT_SIZE) == Latte::REGADDR::PA_SU_POINT_SIZE * 4);
static_assert(offsetof(LatteContextRegister, PA_SU_POINT_MINMAX) == Latte::REGADDR::PA_SU_POINT_MINMAX * 4); static_assert(offsetof(LatteContextRegister, PA_SU_POINT_MINMAX) == Latte::REGADDR::PA_SU_POINT_MINMAX * 4);
static_assert(offsetof(LatteContextRegister, CB_BLENDN_CONTROL) == Latte::REGADDR::CB_BLEND0_CONTROL * 4); static_assert(offsetof(LatteContextRegister, CB_BLENDN_CONTROL) == Latte::REGADDR::CB_BLEND0_CONTROL * 4);
@ -1363,7 +1642,21 @@ static_assert(offsetof(LatteContextRegister, PA_SU_POLY_OFFSET_FRONT_SCALE) == L
static_assert(offsetof(LatteContextRegister, PA_SU_POLY_OFFSET_FRONT_OFFSET) == Latte::REGADDR::PA_SU_POLY_OFFSET_FRONT_OFFSET * 4); static_assert(offsetof(LatteContextRegister, PA_SU_POLY_OFFSET_FRONT_OFFSET) == Latte::REGADDR::PA_SU_POLY_OFFSET_FRONT_OFFSET * 4);
static_assert(offsetof(LatteContextRegister, PA_SU_POLY_OFFSET_BACK_SCALE) == Latte::REGADDR::PA_SU_POLY_OFFSET_BACK_SCALE * 4); static_assert(offsetof(LatteContextRegister, PA_SU_POLY_OFFSET_BACK_SCALE) == Latte::REGADDR::PA_SU_POLY_OFFSET_BACK_SCALE * 4);
static_assert(offsetof(LatteContextRegister, PA_SU_POLY_OFFSET_BACK_OFFSET) == Latte::REGADDR::PA_SU_POLY_OFFSET_BACK_OFFSET * 4); static_assert(offsetof(LatteContextRegister, PA_SU_POLY_OFFSET_BACK_OFFSET) == Latte::REGADDR::PA_SU_POLY_OFFSET_BACK_OFFSET * 4);
static_assert(offsetof(LatteContextRegister, SQ_VTX_SEMANTIC_X) == Latte::REGADDR::SQ_VTX_SEMANTIC_0 * 4);
static_assert(offsetof(LatteContextRegister, SQ_VTX_SEMANTIC_CLEAR) == Latte::REGADDR::SQ_VTX_SEMANTIC_CLEAR * 4);
static_assert(offsetof(LatteContextRegister, SQ_TEX_START_PS) == Latte::REGADDR::SQ_TEX_RESOURCE_WORD0_N_PS * 4); static_assert(offsetof(LatteContextRegister, SQ_TEX_START_PS) == Latte::REGADDR::SQ_TEX_RESOURCE_WORD0_N_PS * 4);
static_assert(offsetof(LatteContextRegister, SQ_TEX_START_VS) == Latte::REGADDR::SQ_TEX_RESOURCE_WORD0_N_VS * 4); static_assert(offsetof(LatteContextRegister, SQ_TEX_START_VS) == Latte::REGADDR::SQ_TEX_RESOURCE_WORD0_N_VS * 4);
static_assert(offsetof(LatteContextRegister, SQ_TEX_START_GS) == Latte::REGADDR::SQ_TEX_RESOURCE_WORD0_N_GS * 4); static_assert(offsetof(LatteContextRegister, SQ_TEX_START_GS) == Latte::REGADDR::SQ_TEX_RESOURCE_WORD0_N_GS * 4);
static_assert(offsetof(LatteContextRegister, SQ_TEX_SAMPLER) == Latte::REGADDR::SQ_TEX_SAMPLER_WORD0_0 * 4); static_assert(offsetof(LatteContextRegister, SQ_TEX_SAMPLER) == Latte::REGADDR::SQ_TEX_SAMPLER_WORD0_0 * 4);
static_assert(offsetof(LatteContextRegister, SQ_PGM_START_PS) == Latte::REGADDR::SQ_PGM_START_PS * 4);
static_assert(offsetof(LatteContextRegister, SQ_PGM_RESOURCES_PS) == Latte::REGADDR::SQ_PGM_RESOURCES_PS * 4);
static_assert(offsetof(LatteContextRegister, SQ_PGM_START_VS) == Latte::REGADDR::SQ_PGM_START_VS * 4);
static_assert(offsetof(LatteContextRegister, SQ_PGM_RESOURCES_VS) == Latte::REGADDR::SQ_PGM_RESOURCES_VS * 4);
static_assert(offsetof(LatteContextRegister, SQ_PGM_START_FS) == Latte::REGADDR::SQ_PGM_START_FS * 4);
static_assert(offsetof(LatteContextRegister, SQ_PGM_RESOURCES_FS) == Latte::REGADDR::SQ_PGM_RESOURCES_FS * 4);
static_assert(offsetof(LatteContextRegister, SQ_PGM_START_ES) == Latte::REGADDR::SQ_PGM_START_ES * 4);
static_assert(offsetof(LatteContextRegister, SQ_PGM_RESOURCES_ES) == Latte::REGADDR::SQ_PGM_RESOURCES_ES * 4);
static_assert(offsetof(LatteContextRegister, SQ_PGM_START_GS) == Latte::REGADDR::SQ_PGM_START_GS * 4);
static_assert(offsetof(LatteContextRegister, SQ_PGM_RESOURCES_GS) == Latte::REGADDR::SQ_PGM_RESOURCES_GS * 4);
static_assert(offsetof(LatteContextRegister, SPI_VS_OUT_CONFIG) == Latte::REGADDR::SPI_VS_OUT_CONFIG * 4);
static_assert(offsetof(LatteContextRegister, LATTE_SPI_VS_OUT_ID_N) == Latte::REGADDR::SPI_VS_OUT_ID_0 * 4);

View File

@ -50,8 +50,6 @@
#define mmVGT_PRIMITIVEID_EN 0xA2A1 #define mmVGT_PRIMITIVEID_EN 0xA2A1
#define mmVGT_VTX_CNT_EN 0xA2AE #define mmVGT_VTX_CNT_EN 0xA2AE
#define mmVGT_REUSE_OFF 0xA2AD #define mmVGT_REUSE_OFF 0xA2AD
#define mmVGT_INSTANCE_STEP_RATE_0 0xA2A8
#define mmVGT_INSTANCE_STEP_RATE_1 0xA2A9
#define mmVGT_MAX_VTX_INDX 0xA100 #define mmVGT_MAX_VTX_INDX 0xA100
#define mmVGT_MIN_VTX_INDX 0xA101 #define mmVGT_MIN_VTX_INDX 0xA101
#define mmVGT_INDX_OFFSET 0xA102 #define mmVGT_INDX_OFFSET 0xA102

View File

@ -396,12 +396,7 @@ void gx2_load()
osLib_addFunction("gx2", "GX2GetCurrentScanBuffer", gx2Export_GX2GetCurrentScanBuffer); osLib_addFunction("gx2", "GX2GetCurrentScanBuffer", gx2Export_GX2GetCurrentScanBuffer);
// shader stuff // shader stuff
osLib_addFunction("gx2", "GX2GetVertexShaderGPRs", gx2Export_GX2GetVertexShaderGPRs); //osLib_addFunction("gx2", "GX2SetVertexShader", gx2Export_GX2SetVertexShader);
osLib_addFunction("gx2", "GX2GetVertexShaderStackEntries", gx2Export_GX2GetVertexShaderStackEntries);
osLib_addFunction("gx2", "GX2GetPixelShaderGPRs", gx2Export_GX2GetPixelShaderGPRs);
osLib_addFunction("gx2", "GX2GetPixelShaderStackEntries", gx2Export_GX2GetPixelShaderStackEntries);
osLib_addFunction("gx2", "GX2SetFetchShader", gx2Export_GX2SetFetchShader);
osLib_addFunction("gx2", "GX2SetVertexShader", gx2Export_GX2SetVertexShader);
osLib_addFunction("gx2", "GX2SetPixelShader", gx2Export_GX2SetPixelShader); osLib_addFunction("gx2", "GX2SetPixelShader", gx2Export_GX2SetPixelShader);
osLib_addFunction("gx2", "GX2SetGeometryShader", gx2Export_GX2SetGeometryShader); osLib_addFunction("gx2", "GX2SetGeometryShader", gx2Export_GX2SetGeometryShader);
osLib_addFunction("gx2", "GX2SetComputeShader", gx2Export_GX2SetComputeShader); osLib_addFunction("gx2", "GX2SetComputeShader", gx2Export_GX2SetComputeShader);

View File

@ -20,12 +20,6 @@ void gx2_load();
// shader // shader
void gx2Export_GX2SetFetchShader(PPCInterpreter_t* hCPU);
void gx2Export_GX2GetVertexShaderGPRs(PPCInterpreter_t* hCPU);
void gx2Export_GX2GetVertexShaderStackEntries(PPCInterpreter_t* hCPU);
void gx2Export_GX2GetPixelShaderGPRs(PPCInterpreter_t* hCPU);
void gx2Export_GX2GetPixelShaderStackEntries(PPCInterpreter_t* hCPU);
void gx2Export_GX2SetVertexShader(PPCInterpreter_t* hCPU);
void gx2Export_GX2SetPixelShader(PPCInterpreter_t* hCPU); void gx2Export_GX2SetPixelShader(PPCInterpreter_t* hCPU);
void gx2Export_GX2SetGeometryShader(PPCInterpreter_t* hCPU); void gx2Export_GX2SetGeometryShader(PPCInterpreter_t* hCPU);
void gx2Export_GX2SetComputeShader(PPCInterpreter_t* hCPU); void gx2Export_GX2SetComputeShader(PPCInterpreter_t* hCPU);

View File

@ -263,7 +263,7 @@ namespace GX2
if (patchType == GX2_PATCH_TYPE::VERTEX_SHADER) if (patchType == GX2_PATCH_TYPE::VERTEX_SHADER)
{ {
GX2VertexShader_t* vertexShader = (GX2VertexShader_t*)obj; GX2VertexShader* vertexShader = (GX2VertexShader*)obj;
displayData[patchOffset / 4 + 2] = memory_virtualToPhysical(vertexShader->GetProgramAddr()) >> 8; displayData[patchOffset / 4 + 2] = memory_virtualToPhysical(vertexShader->GetProgramAddr()) >> 8;
} }
else if (patchType == GX2_PATCH_TYPE::PIXEL_SHADER) else if (patchType == GX2_PATCH_TYPE::PIXEL_SHADER)
@ -273,7 +273,7 @@ namespace GX2
} }
else if (patchType == GX2_PATCH_TYPE::FETCH_SHADER) else if (patchType == GX2_PATCH_TYPE::FETCH_SHADER)
{ {
GX2FetchShader_t* fetchShader = (GX2FetchShader_t*)obj; GX2FetchShader* fetchShader = (GX2FetchShader*)obj;
displayData[patchOffset / 4 + 2] = memory_virtualToPhysical(fetchShader->GetProgramAddr()) >> 8; displayData[patchOffset / 4 + 2] = memory_virtualToPhysical(fetchShader->GetProgramAddr()) >> 8;
} }
else if (patchType == GX2_PATCH_TYPE::GEOMETRY_COPY_SHADER) else if (patchType == GX2_PATCH_TYPE::GEOMETRY_COPY_SHADER)

View File

@ -3,6 +3,7 @@
#include "GX2_Shader.h" #include "GX2_Shader.h"
#include "Cafe/HW/Latte/Core/LatteConst.h" #include "Cafe/HW/Latte/Core/LatteConst.h"
#include "Cafe/HW/Latte/Core/LattePM4.h" #include "Cafe/HW/Latte/Core/LattePM4.h"
#include "Cafe/HW/Latte/ISA/LatteReg.h"
#include "Cafe/HW/Latte/ISA/LatteInstructions.h" #include "Cafe/HW/Latte/ISA/LatteInstructions.h"
uint32 memory_getVirtualOffsetFromPointer(void* ptr); // remove once we updated everything to MEMPTR uint32 memory_getVirtualOffsetFromPointer(void* ptr); // remove once we updated everything to MEMPTR
@ -70,9 +71,9 @@ namespace GX2
static_assert(sizeof(betype<LatteConst::VertexFetchEndianMode>) == 0x4); static_assert(sizeof(betype<LatteConst::VertexFetchEndianMode>) == 0x4);
// calculate size of CF program subpart, includes alignment padding for clause instructions // calculate size of CF program subpart, includes alignment padding for clause instructions
size_t _calcFetchShaderCFCodeSize(uint32 attributeCount, GX2FetchShader_t::FetchShaderType fetchShaderType, uint32 tessellationMode) size_t _calcFetchShaderCFCodeSize(uint32 attributeCount, GX2FetchShader::FetchShaderType fetchShaderType, uint32 tessellationMode)
{ {
cemu_assert_debug(fetchShaderType == GX2FetchShader_t::FetchShaderType::NO_TESSELATION); cemu_assert_debug(fetchShaderType == GX2FetchShader::FetchShaderType::NO_TESSELATION);
cemu_assert_debug(tessellationMode == 0); cemu_assert_debug(tessellationMode == 0);
uint32 numCFInstructions = ((attributeCount + 15) / 16) + 1; // one VTX clause can have up to 16 instructions + final CF instruction is RETURN uint32 numCFInstructions = ((attributeCount + 15) / 16) + 1; // one VTX clause can have up to 16 instructions + final CF instruction is RETURN
size_t cfSize = numCFInstructions * 8; size_t cfSize = numCFInstructions * 8;
@ -80,16 +81,16 @@ namespace GX2
return cfSize; return cfSize;
} }
size_t _calcFetchShaderClauseCodeSize(uint32 attributeCount, GX2FetchShader_t::FetchShaderType fetchShaderType, uint32 tessellationMode) size_t _calcFetchShaderClauseCodeSize(uint32 attributeCount, GX2FetchShader::FetchShaderType fetchShaderType, uint32 tessellationMode)
{ {
cemu_assert_debug(fetchShaderType == GX2FetchShader_t::FetchShaderType::NO_TESSELATION); cemu_assert_debug(fetchShaderType == GX2FetchShader::FetchShaderType::NO_TESSELATION);
cemu_assert_debug(tessellationMode == 0); cemu_assert_debug(tessellationMode == 0);
uint32 numClauseInstructions = attributeCount; uint32 numClauseInstructions = attributeCount;
size_t clauseSize = numClauseInstructions * 16; size_t clauseSize = numClauseInstructions * 16;
return clauseSize; return clauseSize;
} }
void _writeFetchShaderCFCode(void* programBufferOut, uint32 attributeCount, GX2FetchShader_t::FetchShaderType fetchShaderType, uint32 tessellationMode) void _writeFetchShaderCFCode(void* programBufferOut, uint32 attributeCount, GX2FetchShader::FetchShaderType fetchShaderType, uint32 tessellationMode)
{ {
LatteCFInstruction* cfInstructionWriter = (LatteCFInstruction*)programBufferOut; LatteCFInstruction* cfInstructionWriter = (LatteCFInstruction*)programBufferOut;
uint32 attributeIndex = 0; uint32 attributeIndex = 0;
@ -111,7 +112,7 @@ namespace GX2
memcpy(cfInstructionWriter, &returnInstr, sizeof(LatteCFInstruction)); memcpy(cfInstructionWriter, &returnInstr, sizeof(LatteCFInstruction));
} }
void _writeFetchShaderVTXCode(GX2FetchShader_t* fetchShader, void* programOut, uint32 attributeCount, GX2AttribDescription* attributeDescription, GX2FetchShader_t::FetchShaderType fetchShaderType, uint32 tessellationMode) void _writeFetchShaderVTXCode(GX2FetchShader* fetchShader, void* programOut, uint32 attributeCount, GX2AttribDescription* attributeDescription, GX2FetchShader::FetchShaderType fetchShaderType, uint32 tessellationMode)
{ {
uint8* writePtr = (uint8*)programOut; uint8* writePtr = (uint8*)programOut;
// one instruction per attribute (hardcoded into _writeFetchShaderCFCode) // one instruction per attribute (hardcoded into _writeFetchShaderCFCode)
@ -151,7 +152,7 @@ namespace GX2
bool divisorFound = false; bool divisorFound = false;
for (uint32 i = 0; i < numDivisors; i++) for (uint32 i = 0; i < numDivisors; i++)
{ {
if (_swapEndianU32(fetchShader->divisors[i]) == attrAluDivisor) if (fetchShader->divisors[i] == attrAluDivisor)
{ {
srcSelX = i != 0 ? 2 : 1; srcSelX = i != 0 ? 2 : 1;
divisorFound = true; divisorFound = true;
@ -168,7 +169,7 @@ namespace GX2
else else
{ {
srcSelX = numDivisors != 0 ? 2 : 1; srcSelX = numDivisors != 0 ? 2 : 1;
fetchShader->divisors[numDivisors] = _swapEndianU32(attrAluDivisor); fetchShader->divisors[numDivisors] = attrAluDivisor;
numDivisors++; numDivisors++;
fetchShader->divisorCount = _swapEndianU32(numDivisors); fetchShader->divisorCount = _swapEndianU32(numDivisors);
} }
@ -213,9 +214,9 @@ namespace GX2
} }
} }
uint32 GX2CalcFetchShaderSizeEx(uint32 attributeCount, GX2FetchShader_t::FetchShaderType fetchShaderType, uint32 tessellationMode) uint32 GX2CalcFetchShaderSizeEx(uint32 attributeCount, GX2FetchShader::FetchShaderType fetchShaderType, uint32 tessellationMode)
{ {
cemu_assert_debug(fetchShaderType == GX2FetchShader_t::FetchShaderType::NO_TESSELATION); // other types are todo cemu_assert_debug(fetchShaderType == GX2FetchShader::FetchShaderType::NO_TESSELATION); // other types are todo
cemu_assert_debug(tessellationMode == 0); // other modes are todo cemu_assert_debug(tessellationMode == 0); // other modes are todo
uint32 finalSize = uint32 finalSize =
@ -225,9 +226,9 @@ namespace GX2
return finalSize; return finalSize;
} }
void GX2InitFetchShaderEx(GX2FetchShader_t* fetchShader, void* programBufferOut, uint32 attributeCount, GX2AttribDescription* attributeDescription, GX2FetchShader_t::FetchShaderType fetchShaderType, uint32 tessellationMode) void GX2InitFetchShaderEx(GX2FetchShader* fetchShader, void* programBufferOut, uint32 attributeCount, GX2AttribDescription* attributeDescription, GX2FetchShader::FetchShaderType fetchShaderType, uint32 tessellationMode)
{ {
cemu_assert_debug(fetchShaderType == GX2FetchShader_t::FetchShaderType::NO_TESSELATION); cemu_assert_debug(fetchShaderType == GX2FetchShader::FetchShaderType::NO_TESSELATION);
cemu_assert_debug(tessellationMode == 0); cemu_assert_debug(tessellationMode == 0);
/* /*
@ -238,7 +239,7 @@ namespace GX2
[CLAUSES] [CLAUSES]
*/ */
memset(fetchShader, 0x00, sizeof(GX2FetchShader_t)); memset(fetchShader, 0x00, sizeof(GX2FetchShader));
fetchShader->attribCount = _swapEndianU32(attributeCount); fetchShader->attribCount = _swapEndianU32(attributeCount);
fetchShader->shaderPtr = (MPTR)_swapEndianU32(memory_getVirtualOffsetFromPointer(programBufferOut)); fetchShader->shaderPtr = (MPTR)_swapEndianU32(memory_getVirtualOffsetFromPointer(programBufferOut));
@ -251,14 +252,181 @@ namespace GX2
shaderOutput += _calcFetchShaderClauseCodeSize(attributeCount, fetchShaderType, tessellationMode); shaderOutput += _calcFetchShaderClauseCodeSize(attributeCount, fetchShaderType, tessellationMode);
uint32 shaderSize = (uint32)(shaderOutput - shaderStart); uint32 shaderSize = (uint32)(shaderOutput - shaderStart);
cemu_assert_debug(shaderSize == GX2CalcFetchShaderSizeEx(attributeCount, GX2FetchShader_t::FetchShaderType::NO_TESSELATION, tessellationMode)); cemu_assert_debug(shaderSize == GX2CalcFetchShaderSizeEx(attributeCount, GX2FetchShader::FetchShaderType::NO_TESSELATION, tessellationMode));
fetchShader->shaderSize = _swapEndianU32((uint32)(shaderOutput - shaderStart)); fetchShader->shaderSize = _swapEndianU32((uint32)(shaderOutput - shaderStart));
fetchShader->reg_SQ_PGM_RESOURCES_FS = Latte::LATTE_SQ_PGM_RESOURCES_FS().set_NUM_GPRS(2); // todo - affected by tesselation params?
}
uint32 GX2GetVertexShaderGPRs(GX2VertexShader* vertexShader)
{
return vertexShader->regs.SQ_PGM_RESOURCES_VS.value().get_NUM_GPRS();
}
uint32 GX2GetVertexShaderStackEntries(GX2VertexShader* vertexShader)
{
return vertexShader->regs.SQ_PGM_RESOURCES_VS.value().get_NUM_STACK_ENTRIES();
}
uint32 GX2GetPixelShaderGPRs(GX2PixelShader_t* pixelShader)
{
return _swapEndianU32(pixelShader->regs[0])&0xFF;
}
uint32 GX2GetPixelShaderStackEntries(GX2PixelShader_t* pixelShader)
{
return (_swapEndianU32(pixelShader->regs[0]>>8))&0xFF;
}
void GX2SetFetchShader(GX2FetchShader* fetchShaderPtr)
{
GX2ReserveCmdSpace(11);
cemu_assert_debug((_swapEndianU32(fetchShaderPtr->shaderPtr) & 0xFF) == 0);
gx2WriteGather_submit(
// setup fetch shader
pm4HeaderType3(IT_SET_CONTEXT_REG, 1+5),
Latte::REGADDR::SQ_PGM_START_FS-0xA000,
_swapEndianU32(fetchShaderPtr->shaderPtr)>>8,
_swapEndianU32(fetchShaderPtr->shaderSize)>>3,
0x10000, // ukn (ring buffer size?)
0x10000, // ukn (ring buffer size?)
fetchShaderPtr->reg_SQ_PGM_RESOURCES_FS,
// write instance step
pm4HeaderType3(IT_SET_CONTEXT_REG, 1+2),
Latte::REGADDR::VGT_INSTANCE_STEP_RATE_0-0xA000,
fetchShaderPtr->divisors[0],
fetchShaderPtr->divisors[1]);
}
void GX2SetVertexShader(GX2VertexShader* vertexShader)
{
GX2ReserveCmdSpace(100);
MPTR shaderProgramAddr;
uint32 shaderProgramSize;
if (vertexShader->shaderPtr)
{
// without R API
shaderProgramAddr = vertexShader->shaderPtr.GetMPTR();
shaderProgramSize = vertexShader->shaderSize;
}
else
{
shaderProgramAddr = vertexShader->rBuffer.GetVirtualAddr();
shaderProgramSize = vertexShader->rBuffer.GetSize();
}
cemu_assert_debug(shaderProgramAddr != 0);
cemu_assert_debug(shaderProgramSize != 0);
if (vertexShader->shaderMode == GX2_SHADER_MODE::GEOMETRY_SHADER)
{
// in geometry shader mode the vertex shader is written to _ES register and almost all vs control registers are set by GX2SetGeometryShader
gx2WriteGather_submit(
pm4HeaderType3(IT_SET_CONTEXT_REG, 6),
Latte::REGADDR::SQ_PGM_START_ES-0xA000,
memory_virtualToPhysical(shaderProgramAddr)>>8,
shaderProgramSize>>3,
0x100000,
0x100000,
vertexShader->regs.SQ_PGM_RESOURCES_VS); // SQ_PGM_RESOURCES_VS/SQ_PGM_RESOURCES_ES
}
else
{
gx2WriteGather_submit(
/* vertex shader program */
pm4HeaderType3(IT_SET_CONTEXT_REG, 6),
Latte::REGADDR::SQ_PGM_START_VS-0xA000,
memory_virtualToPhysical(shaderProgramAddr)>>8, // physical address
shaderProgramSize>>3,
0x100000,
0x100000,
vertexShader->regs.SQ_PGM_RESOURCES_VS, // SQ_PGM_RESOURCES_VS/ES
/* primitive id enable */
pm4HeaderType3(IT_SET_CONTEXT_REG, 2),
Latte::REGADDR::VGT_PRIMITIVEID_EN-0xA000,
vertexShader->regs.VGT_PRIMITIVEID_EN,
/* output config */
pm4HeaderType3(IT_SET_CONTEXT_REG, 2),
Latte::REGADDR::SPI_VS_OUT_CONFIG-0xA000,
vertexShader->regs.SPI_VS_OUT_CONFIG,
/* PA_CL_VS_OUT_CNTL */
pm4HeaderType3(IT_SET_CONTEXT_REG, 2),
Latte::REGADDR::PA_CL_VS_OUT_CNTL-0xA000,
vertexShader->regs.PA_CL_VS_OUT_CNTL
);
cemu_assert_debug(vertexShader->regs.SPI_VS_OUT_CONFIG.value().get_VS_PER_COMPONENT() == false); // not handled on the GPU side
uint32 numOutputIds = vertexShader->regs.vsOutIdTableSize;
numOutputIds = std::min<uint32>(numOutputIds, 0xA);
gx2WriteGather_submitU32AsBE(pm4HeaderType3(IT_SET_CONTEXT_REG, 1+numOutputIds));
gx2WriteGather_submitU32AsBE(Latte::REGADDR::SPI_VS_OUT_ID_0-0xA000);
for(uint32 i=0; i<numOutputIds; i++)
gx2WriteGather_submitU32AsBE(vertexShader->regs.LATTE_SPI_VS_OUT_ID_N[i].value().getRawValue());
// todo: SQ_PGM_CF_OFFSET_VS
// todo: VGT_STRMOUT_BUFFER_EN
// stream out
if (vertexShader->usesStreamOut != 0)
{
// stride 0
gx2WriteGather_submit(pm4HeaderType3(IT_SET_CONTEXT_REG, 2),
Latte::REGADDR::VGT_STRMOUT_VTX_STRIDE_0-0xA000,
vertexShader->streamOutVertexStride[0]>>2,
// stride 1
pm4HeaderType3(IT_SET_CONTEXT_REG, 2),
Latte::REGADDR::VGT_STRMOUT_VTX_STRIDE_1-0xA000,
vertexShader->streamOutVertexStride[1]>>2,
// stride 2
pm4HeaderType3(IT_SET_CONTEXT_REG, 2),
Latte::REGADDR::VGT_STRMOUT_VTX_STRIDE_2-0xA000,
vertexShader->streamOutVertexStride[2]>>2,
// stride 3
pm4HeaderType3(IT_SET_CONTEXT_REG, 2),
Latte::REGADDR::VGT_STRMOUT_VTX_STRIDE_3-0xA000,
vertexShader->streamOutVertexStride[3]>>2);
}
}
// update semantic table
uint32 vsSemanticTableSize = vertexShader->regs.semanticTableSize;
if (vsSemanticTableSize > 0)
{
gx2WriteGather_submit(
pm4HeaderType3(IT_SET_CONTEXT_REG, 1+1),
Latte::REGADDR::SQ_VTX_SEMANTIC_CLEAR-0xA000,
0xFFFFFFFF);
if (vsSemanticTableSize == 0)
{
gx2WriteGather_submit(
pm4HeaderType3(IT_SET_CONTEXT_REG, 1+1),
Latte::REGADDR::SQ_VTX_SEMANTIC_0-0xA000,
0xFFFFFFFF);
}
else
{
uint32* vsSemanticTable = (uint32*)vertexShader->regs.SQ_VTX_SEMANTIC_N;
vsSemanticTableSize = std::min<uint32>(vsSemanticTableSize, 32);
gx2WriteGather_submitU32AsBE(pm4HeaderType3(IT_SET_CONTEXT_REG, 1+vsSemanticTableSize));
gx2WriteGather_submitU32AsBE(Latte::REGADDR::SQ_VTX_SEMANTIC_0-0xA000);
gx2WriteGather_submitU32AsLEArray(vsSemanticTable, vsSemanticTableSize);
}
}
} }
void GX2ShaderInit() void GX2ShaderInit()
{ {
cafeExportRegister("gx2", GX2CalcFetchShaderSizeEx, LogType::GX2); cafeExportRegister("gx2", GX2CalcFetchShaderSizeEx, LogType::GX2);
cafeExportRegister("gx2", GX2InitFetchShaderEx, LogType::GX2); cafeExportRegister("gx2", GX2InitFetchShaderEx, LogType::GX2);
cafeExportRegister("gx2", GX2GetVertexShaderGPRs, LogType::GX2);
cafeExportRegister("gx2", GX2GetVertexShaderStackEntries, LogType::GX2);
cafeExportRegister("gx2", GX2GetPixelShaderGPRs, LogType::GX2);
cafeExportRegister("gx2", GX2GetPixelShaderStackEntries, LogType::GX2);
cafeExportRegister("gx2", GX2SetFetchShader, LogType::GX2);
cafeExportRegister("gx2", GX2SetVertexShader, LogType::GX2);
} }
} }

View File

@ -2,7 +2,7 @@
#include "Cafe/HW/Latte/ISA/LatteReg.h" #include "Cafe/HW/Latte/ISA/LatteReg.h"
#include "GX2_Streamout.h" #include "GX2_Streamout.h"
struct GX2FetchShader_t struct GX2FetchShader
{ {
enum class FetchShaderType : uint32 enum class FetchShaderType : uint32
{ {
@ -10,12 +10,12 @@ struct GX2FetchShader_t
}; };
/* +0x00 */ betype<FetchShaderType> fetchShaderType; /* +0x00 */ betype<FetchShaderType> fetchShaderType;
/* +0x04 */ uint32 _regs[1]; /* +0x04 */ betype<Latte::LATTE_SQ_PGM_RESOURCES_FS> reg_SQ_PGM_RESOURCES_FS;
/* +0x08 */ uint32 shaderSize; /* +0x08 */ uint32 shaderSize;
/* +0x0C */ MPTR shaderPtr; /* +0x0C */ MPTR shaderPtr;
/* +0x10 */ uint32 attribCount; /* +0x10 */ uint32 attribCount;
/* +0x14 */ uint32 divisorCount; /* +0x14 */ uint32 divisorCount;
/* +0x18 */ uint32 divisors[2]; /* +0x18 */ uint32be divisors[2];
MPTR GetProgramAddr() const MPTR GetProgramAddr() const
{ {
@ -23,8 +23,8 @@ struct GX2FetchShader_t
} }
}; };
static_assert(sizeof(GX2FetchShader_t) == 0x20); static_assert(sizeof(GX2FetchShader) == 0x20);
static_assert(sizeof(betype<GX2FetchShader_t::FetchShaderType>) == 4); static_assert(sizeof(betype<GX2FetchShader::FetchShaderType>) == 4);
namespace GX2 namespace GX2
{ {
@ -32,19 +32,43 @@ namespace GX2
void GX2ShaderInit(); void GX2ShaderInit();
} }
// code below still needs to be modernized (use betype, enum classes) // code below still needs to be modernized (use betype, enum classes, move to namespace)
// deprecated, use GX2_SHADER_MODE enum class instead
#define GX2_SHADER_MODE_UNIFORM_REGISTER 0 #define GX2_SHADER_MODE_UNIFORM_REGISTER 0
#define GX2_SHADER_MODE_UNIFORM_BLOCK 1 #define GX2_SHADER_MODE_UNIFORM_BLOCK 1
#define GX2_SHADER_MODE_GEOMETRY_SHADER 2 #define GX2_SHADER_MODE_GEOMETRY_SHADER 2
#define GX2_SHADER_MODE_COMPUTE_SHADER 3 #define GX2_SHADER_MODE_COMPUTE_SHADER 3
struct GX2VertexShader_t enum class GX2_SHADER_MODE : uint32
{ {
/* +0x000 */ uint32 regs[52]; UNIFORM_REGISTER = 0,
/* +0x0D0 */ uint32 shaderSize; UNIFORM_BLOCK = 1,
/* +0x0D4 */ MPTR shaderPtr; GEOMETRY_SHADER = 2,
/* +0x0D8 */ uint32 shaderMode; // GX2_SHADER_MODE_* COMPUTE_SHADER = 3,
};
struct GX2VertexShader
{
/* +0x000 */
struct
{
/* +0x00 */ betype<Latte::LATTE_SQ_PGM_RESOURCES_VS> SQ_PGM_RESOURCES_VS; // compatible with SQ_PGM_RESOURCES_ES
/* +0x04 */ betype<Latte::LATTE_VGT_PRIMITIVEID_EN> VGT_PRIMITIVEID_EN;
/* +0x08 */ betype<Latte::LATTE_SPI_VS_OUT_CONFIG> SPI_VS_OUT_CONFIG;
/* +0x0C */ uint32be vsOutIdTableSize;
/* +0x10 */ betype<Latte::LATTE_SPI_VS_OUT_ID_N> LATTE_SPI_VS_OUT_ID_N[10];
/* +0x38 */ betype<Latte::LATTE_PA_CL_VS_OUT_CNTL> PA_CL_VS_OUT_CNTL;
/* +0x3C */ uint32be uknReg15; // ?
/* +0x40 */ uint32be semanticTableSize;
/* +0x44 */ betype<Latte::LATTE_SQ_VTX_SEMANTIC_X> SQ_VTX_SEMANTIC_N[32];
/* +0xC4 */ uint32be uknReg49; // ?
/* +0xC8 */ uint32be uknReg50; // vgt_vertex_reuse_block_cntl
/* +0xCC */ uint32be uknReg51; // vgt_hos_reuse_depth
}regs;
/* +0x0D0 */ uint32be shaderSize;
/* +0x0D4 */ MEMPTR<void> shaderPtr;
/* +0x0D8 */ betype<GX2_SHADER_MODE> shaderMode;
/* +0x0DC */ uint32 uniformBlockCount; /* +0x0DC */ uint32 uniformBlockCount;
/* +0x0E0 */ MPTR uniformBlockInfo; /* +0x0E0 */ MPTR uniformBlockInfo;
/* +0x0E4 */ uint32 uniformVarCount; /* +0x0E4 */ uint32 uniformVarCount;
@ -57,20 +81,20 @@ struct GX2VertexShader_t
/* +0x100 */ MPTR samplerInfo; /* +0x100 */ MPTR samplerInfo;
/* +0x104 */ uint32 attribCount; /* +0x104 */ uint32 attribCount;
/* +0x108 */ MPTR attribInfo; /* +0x108 */ MPTR attribInfo;
/* +0x10C */ uint32 ringItemsize; // for GS /* +0x10C */ uint32be ringItemsize; // for GS
/* +0x110 */ uint32 usesStreamOut; /* +0x110 */ uint32be usesStreamOut;
/* +0x114 */ uint32 streamOutVertexStride[GX2_MAX_STREAMOUT_BUFFERS]; /* +0x114 */ uint32be streamOutVertexStride[GX2_MAX_STREAMOUT_BUFFERS];
/* +0x124 */ GX2RBuffer rBuffer; /* +0x124 */ GX2RBuffer rBuffer;
MPTR GetProgramAddr() const MPTR GetProgramAddr() const
{ {
if (_swapEndianU32(this->shaderPtr) != MPTR_NULL) if (this->shaderPtr)
return _swapEndianU32(this->shaderPtr); return this->shaderPtr.GetMPTR();
return this->rBuffer.GetVirtualAddr(); return this->rBuffer.GetVirtualAddr();
} }
}; };
static_assert(sizeof(GX2VertexShader_t) == 0x134); static_assert(sizeof(GX2VertexShader) == 0x134);
typedef struct _GX2PixelShader typedef struct _GX2PixelShader
{ {

View File

@ -8,204 +8,6 @@
#include "GX2.h" #include "GX2.h"
#include "GX2_Shader.h" #include "GX2_Shader.h"
void gx2Export_GX2SetFetchShader(PPCInterpreter_t* hCPU)
{
cemuLog_log(LogType::GX2, "GX2SetFetchShader(0x{:08x})", hCPU->gpr[3]);
GX2ReserveCmdSpace(11);
GX2FetchShader_t* fetchShaderPtr = (GX2FetchShader_t*)memory_getPointerFromVirtualOffset(hCPU->gpr[3]);
cemu_assert_debug((_swapEndianU32(fetchShaderPtr->shaderPtr) & 0xFF) == 0);
gx2WriteGather_submit(
// setup fetch shader
pm4HeaderType3(IT_SET_CONTEXT_REG, 1+5),
mmSQ_PGM_START_FS-0xA000,
_swapEndianU32(fetchShaderPtr->shaderPtr)>>8, // pointer divided by 256
_swapEndianU32(fetchShaderPtr->shaderSize)>>3, // size divided by 8
0x10000, // ukn (ring buffer size?)
0x10000, // ukn (ring buffer size?)
*(uint32be*)&(fetchShaderPtr->_regs[0]),
// write instance step
pm4HeaderType3(IT_SET_CONTEXT_REG, 1+2),
mmVGT_INSTANCE_STEP_RATE_0-0xA000,
*(uint32be*)&(fetchShaderPtr->divisors[0]),
*(uint32be*)&(fetchShaderPtr->divisors[1]));
osLib_returnFromFunction(hCPU, 0);
}
void gx2Export_GX2GetVertexShaderGPRs(PPCInterpreter_t* hCPU)
{
cemuLog_log(LogType::GX2, "GX2GetVertexShaderGPRs(0x{:08x})", hCPU->gpr[3]);
GX2VertexShader_t* vertexShader = (GX2VertexShader_t*)memory_getPointerFromVirtualOffset(hCPU->gpr[3]);
uint8 numGPRs = _swapEndianU32(vertexShader->regs[0])&0xFF;
osLib_returnFromFunction(hCPU, numGPRs);
}
void gx2Export_GX2GetVertexShaderStackEntries(PPCInterpreter_t* hCPU)
{
cemuLog_log(LogType::GX2, "GX2GetVertexShaderStackEntries(0x{:08x})", hCPU->gpr[3]);
GX2VertexShader_t* vertexShader = (GX2VertexShader_t*)memory_getPointerFromVirtualOffset(hCPU->gpr[3]);
uint8 stackEntries = (_swapEndianU32(vertexShader->regs[0])>>8)&0xFF;
osLib_returnFromFunction(hCPU, stackEntries);
}
void gx2Export_GX2GetPixelShaderGPRs(PPCInterpreter_t* hCPU)
{
cemuLog_log(LogType::GX2, "GX2GetPixelShaderGPRs(0x{:08x})", hCPU->gpr[3]);
GX2PixelShader_t* pixelShader = (GX2PixelShader_t*)memory_getPointerFromVirtualOffset(hCPU->gpr[3]);
uint8 stackEntries = (_swapEndianU32(pixelShader->regs[0]))&0xFF;
osLib_returnFromFunction(hCPU, stackEntries);
}
void gx2Export_GX2GetPixelShaderStackEntries(PPCInterpreter_t* hCPU)
{
cemuLog_log(LogType::GX2, "GX2GetPixelShaderStackEntries(0x{:08x})", hCPU->gpr[3]);
GX2PixelShader_t* pixelShader = (GX2PixelShader_t*)memory_getPointerFromVirtualOffset(hCPU->gpr[3]);
uint8 numGPRs = (_swapEndianU32(pixelShader->regs[0]>>8))&0xFF;
osLib_returnFromFunction(hCPU, numGPRs);
}
void gx2Export_GX2SetVertexShader(PPCInterpreter_t* hCPU)
{
cemuLog_log(LogType::GX2, "GX2SetVertexShader(0x{:08x})", hCPU->gpr[3]);
GX2ReserveCmdSpace(100);
GX2VertexShader_t* vertexShader = (GX2VertexShader_t*)memory_getPointerFromVirtualOffset(hCPU->gpr[3]);
MPTR shaderProgramAddr;
uint32 shaderProgramSize;
if( _swapEndianU32(vertexShader->shaderPtr) != MPTR_NULL )
{
// without R API
shaderProgramAddr = _swapEndianU32(vertexShader->shaderPtr);
shaderProgramSize = _swapEndianU32(vertexShader->shaderSize);
}
else
{
shaderProgramAddr = vertexShader->rBuffer.GetVirtualAddr();
shaderProgramSize = vertexShader->rBuffer.GetSize();
}
cemu_assert_debug(shaderProgramAddr != 0);
cemu_assert_debug(shaderProgramSize != 0);
if( _swapEndianU32(vertexShader->shaderMode) == GX2_SHADER_MODE_GEOMETRY_SHADER )
{
// in geometry shader mode the vertex shader is written to _ES register and almost all vs control registers are set by GX2SetGeometryShader
gx2WriteGather_submitU32AsBE(pm4HeaderType3(IT_SET_CONTEXT_REG, 6));
gx2WriteGather_submitU32AsBE(mmSQ_PGM_START_ES-0xA000);
gx2WriteGather_submitU32AsBE(memory_virtualToPhysical(shaderProgramAddr)>>8);
gx2WriteGather_submitU32AsBE(shaderProgramSize>>3);
gx2WriteGather_submitU32AsBE(0x100000);
gx2WriteGather_submitU32AsBE(0x100000);
gx2WriteGather_submitU32AsBE(_swapEndianU32(vertexShader->regs[0])); // unknown
}
else
{
gx2WriteGather_submit(
/* vertex shader program */
pm4HeaderType3(IT_SET_CONTEXT_REG, 6),
mmSQ_PGM_START_VS-0xA000,
memory_virtualToPhysical(shaderProgramAddr)>>8, // physical address
shaderProgramSize>>3, // size
0x100000,
0x100000,
_swapEndianU32(vertexShader->regs[0]), // unknown
/* primitive id enable */
pm4HeaderType3(IT_SET_CONTEXT_REG, 2),
mmVGT_PRIMITIVEID_EN-0xA000,
_swapEndianU32(vertexShader->regs[1]),
/* output config */
pm4HeaderType3(IT_SET_CONTEXT_REG, 2),
mmSPI_VS_OUT_CONFIG-0xA000,
_swapEndianU32(vertexShader->regs[2]));
if( (_swapEndianU32(vertexShader->regs[2]) & 1) != 0 )
debugBreakpoint(); // per-component flag?
// ukn
gx2WriteGather_submitU32AsBE(pm4HeaderType3(IT_SET_CONTEXT_REG, 2));
gx2WriteGather_submitU32AsBE(mmPA_CL_VS_OUT_CNTL-0xA000);
gx2WriteGather_submitU32AsBE(_swapEndianU32(vertexShader->regs[14]));
uint32 numOutputIds = _swapEndianU32(vertexShader->regs[3]);
numOutputIds = std::min<uint32>(numOutputIds, 0xA);
gx2WriteGather_submitU32AsBE(pm4HeaderType3(IT_SET_CONTEXT_REG, 1+numOutputIds));
gx2WriteGather_submitU32AsBE(mmSPI_VS_OUT_ID_0-0xA000);
for(uint32 i=0; i<numOutputIds; i++)
{
gx2WriteGather_submitU32AsBE(_swapEndianU32(vertexShader->regs[4+i]));
}
/*
VS _regs[]:
0 ?
1 mmVGT_PRIMITIVEID_EN (?)
2 mmSPI_VS_OUT_CONFIG
3 Number of used SPI_VS_OUT_ID_* entries
4 - 13 SPI_VS_OUT_ID_0 - SPI_VS_OUT_ID_9
14 pa_cl_vs_out_cntl
...
17 - ?? semantic table entry (input)
...
50 vgt_vertex_reuse_block_cntl
51 vgt_hos_reuse_depth
*/
// todo: mmSQ_PGM_CF_OFFSET_VS
// todo: mmVGT_STRMOUT_BUFFER_EN
// stream out
if( _swapEndianU32(vertexShader->usesStreamOut) != 0 )
{
// stride 0
gx2WriteGather_submitU32AsBE(pm4HeaderType3(IT_SET_CONTEXT_REG, 2));
gx2WriteGather_submitU32AsBE(mmVGT_STRMOUT_VTX_STRIDE_0-0xA000);
gx2WriteGather_submitU32AsBE(_swapEndianU32(vertexShader->streamOutVertexStride[0])>>2);
// stride 1
gx2WriteGather_submitU32AsBE(pm4HeaderType3(IT_SET_CONTEXT_REG, 2));
gx2WriteGather_submitU32AsBE(mmVGT_STRMOUT_VTX_STRIDE_1-0xA000);
gx2WriteGather_submitU32AsBE(_swapEndianU32(vertexShader->streamOutVertexStride[1])>>2);
// stride 2
gx2WriteGather_submitU32AsBE(pm4HeaderType3(IT_SET_CONTEXT_REG, 2));
gx2WriteGather_submitU32AsBE(mmVGT_STRMOUT_VTX_STRIDE_2-0xA000);
gx2WriteGather_submitU32AsBE(_swapEndianU32(vertexShader->streamOutVertexStride[2])>>2);
// stride 3
gx2WriteGather_submitU32AsBE(pm4HeaderType3(IT_SET_CONTEXT_REG, 2));
gx2WriteGather_submitU32AsBE(mmVGT_STRMOUT_VTX_STRIDE_3-0xA000);
gx2WriteGather_submitU32AsBE(_swapEndianU32(vertexShader->streamOutVertexStride[3])>>2);
}
}
// update semantic table
uint32 vsSemanticTableSize = _swapEndianU32(vertexShader->regs[0x40/4]);
if( vsSemanticTableSize > 0 )
{
gx2WriteGather_submitU32AsBE(pm4HeaderType3(IT_SET_CONTEXT_REG, 1+1));
gx2WriteGather_submitU32AsBE(mmSQ_VTX_SEMANTIC_CLEAR-0xA000);
gx2WriteGather_submitU32AsBE(0xFFFFFFFF);
if( vsSemanticTableSize == 0 )
{
// todo: Figure out how this is done on real SW/HW (some vertex shaders don't have a semantic table)
gx2WriteGather_submitU32AsBE(pm4HeaderType3(IT_SET_CONTEXT_REG, 1+1));
gx2WriteGather_submitU32AsBE(mmSQ_VTX_SEMANTIC_0-0xA000);
gx2WriteGather_submitU32AsBE(0xFFFFFFFF);
}
else
{
uint32* vsSemanticTable = vertexShader->regs+(0x44/4);
vsSemanticTableSize = std::min<uint32>(vsSemanticTableSize, 0x20);
gx2WriteGather_submitU32AsBE(pm4HeaderType3(IT_SET_CONTEXT_REG, 1+vsSemanticTableSize));
gx2WriteGather_submitU32AsBE(mmSQ_VTX_SEMANTIC_0-0xA000);
for(uint32 i=0; i<vsSemanticTableSize; i++)
gx2WriteGather_submitU32AsLE(vsSemanticTable[i]);
}
}
osLib_returnFromFunction(hCPU, 0);
}
void gx2Export_GX2SetPixelShader(PPCInterpreter_t* hCPU) void gx2Export_GX2SetPixelShader(PPCInterpreter_t* hCPU)
{ {
cemuLog_log(LogType::GX2, "GX2SetPixelShader(0x{:08x})", hCPU->gpr[3]); cemuLog_log(LogType::GX2, "GX2SetPixelShader(0x{:08x})", hCPU->gpr[3]);
@ -415,14 +217,14 @@ void gx2Export_GX2SetGeometryShader(PPCInterpreter_t* hCPU)
osLib_returnFromFunction(hCPU, 0); osLib_returnFromFunction(hCPU, 0);
} }
struct GX2ComputeShader_t struct GX2ComputeShader
{ {
/* +0x00 */ uint32be regs[12]; /* +0x00 */ uint32be regs[12];
/* +0x30 */ uint32be programSize; /* +0x30 */ uint32be programSize;
/* +0x34 */ uint32be programPtr; /* +0x34 */ uint32be programPtr;
/* +0x38 */ uint32 ukn38; /* +0x38 */ uint32be ukn38;
/* +0x3C */ uint32 ukn3C; /* +0x3C */ uint32be ukn3C;
/* +0x40 */ uint32 ukn40[8]; /* +0x40 */ uint32be ukn40[8];
/* +0x60 */ uint32be workgroupSizeX; /* +0x60 */ uint32be workgroupSizeX;
/* +0x64 */ uint32be workgroupSizeY; /* +0x64 */ uint32be workgroupSizeY;
/* +0x68 */ uint32be workgroupSizeZ; /* +0x68 */ uint32be workgroupSizeZ;
@ -431,13 +233,13 @@ struct GX2ComputeShader_t
/* +0x74 */ GX2RBuffer rBuffer; /* +0x74 */ GX2RBuffer rBuffer;
}; };
static_assert(offsetof(GX2ComputeShader_t, programSize) == 0x30); static_assert(offsetof(GX2ComputeShader, programSize) == 0x30);
static_assert(offsetof(GX2ComputeShader_t, workgroupSizeX) == 0x60); static_assert(offsetof(GX2ComputeShader, workgroupSizeX) == 0x60);
static_assert(offsetof(GX2ComputeShader_t, rBuffer) == 0x74); static_assert(offsetof(GX2ComputeShader, rBuffer) == 0x74);
void gx2Export_GX2SetComputeShader(PPCInterpreter_t* hCPU) void gx2Export_GX2SetComputeShader(PPCInterpreter_t* hCPU)
{ {
ppcDefineParamTypePtr(computeShader, GX2ComputeShader_t, 0); ppcDefineParamTypePtr(computeShader, GX2ComputeShader, 0);
cemuLog_log(LogType::GX2, "GX2SetComputeShader(0x{:08x})", hCPU->gpr[3]); cemuLog_log(LogType::GX2, "GX2SetComputeShader(0x{:08x})", hCPU->gpr[3]);
MPTR shaderPtr; MPTR shaderPtr;