Merge pull request #7 from SamoZ256/metal-pipeline-cache

Pipeline cache
This commit is contained in:
SamoZ256 2024-10-29 17:33:36 +01:00 committed by GitHub
commit a61d0f0237
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 1213 additions and 619 deletions

View File

@ -534,6 +534,7 @@ if(APPLE)
endif()
if(ENABLE_METAL)
# TODO: sort alphabetically
target_sources(CemuCafe PRIVATE
HW/Latte/Renderer/Metal/MetalRenderer.cpp
HW/Latte/Renderer/Metal/MetalRenderer.h
@ -555,11 +556,15 @@ if(ENABLE_METAL)
HW/Latte/Renderer/Metal/RendererShaderMtl.h
HW/Latte/Renderer/Metal/CachedFBOMtl.cpp
HW/Latte/Renderer/Metal/CachedFBOMtl.h
HW/Latte/Renderer/Metal/MetalAttachmentsInfo.cpp
HW/Latte/Renderer/Metal/MetalAttachmentsInfo.h
HW/Latte/Renderer/Metal/MetalBufferAllocator.h
HW/Latte/Renderer/Metal/MetalMemoryManager.cpp
HW/Latte/Renderer/Metal/MetalMemoryManager.h
HW/Latte/Renderer/Metal/MetalOutputShaderCache.cpp
HW/Latte/Renderer/Metal/MetalOutputShaderCache.h
HW/Latte/Renderer/Metal/MetalPipelineCompiler.cpp
HW/Latte/Renderer/Metal/MetalPipelineCompiler.h
HW/Latte/Renderer/Metal/MetalPipelineCache.cpp
HW/Latte/Renderer/Metal/MetalPipelineCache.h
HW/Latte/Renderer/Metal/MetalDepthStencilCache.cpp

View File

@ -209,9 +209,7 @@ void LatteShader_free(LatteDecompilerShader* shader)
delete shader;
}
// both vertex and geometry/pixel shader depend on PS inputs
// we prepare the PS import info in advance
void LatteShader_UpdatePSInputs(uint32* contextRegisters)
void LatteShader_CreatePSInputTable(LatteShaderPSInputTable* psInputTable, uint32* contextRegisters)
{
// PS control
uint32 psControl0 = contextRegisters[mmSPI_PS_IN_CONTROL_0];
@ -242,12 +240,12 @@ void LatteShader_UpdatePSInputs(uint32* contextRegisters)
{
key += std::rotr<uint64>(spi0_paramGen, 7);
key += std::rotr<uint64>(spi0_paramGenAddr, 3);
_activePSImportTable.paramGen = spi0_paramGen;
_activePSImportTable.paramGenGPR = spi0_paramGenAddr;
psInputTable->paramGen = spi0_paramGen;
psInputTable->paramGenGPR = spi0_paramGenAddr;
}
else
{
_activePSImportTable.paramGen = 0;
psInputTable->paramGen = 0;
}
// semantic imports from vertex shader
@ -281,9 +279,9 @@ void LatteShader_UpdatePSInputs(uint32* contextRegisters)
key = std::rotl<uint64>(key, 7);
if (spi0_positionEnable && f == spi0_positionAddr)
{
_activePSImportTable.import[f].semanticId = LATTE_ANALYZER_IMPORT_INDEX_SPIPOSITION;
_activePSImportTable.import[f].isFlat = false;
_activePSImportTable.import[f].isNoPerspective = false;
psInputTable->import[f].semanticId = LATTE_ANALYZER_IMPORT_INDEX_SPIPOSITION;
psInputTable->import[f].isFlat = false;
psInputTable->import[f].isNoPerspective = false;
key += (uint64)0x33;
}
else
@ -296,13 +294,20 @@ void LatteShader_UpdatePSInputs(uint32* contextRegisters)
semanticMask[psSemanticId >> 3] |= (1 << (psSemanticId & 7));
#endif
_activePSImportTable.import[f].semanticId = psSemanticId;
_activePSImportTable.import[f].isFlat = (psInputControl&(1 << 10)) != 0;
_activePSImportTable.import[f].isNoPerspective = (psInputControl&(1 << 12)) != 0;
psInputTable->import[f].semanticId = psSemanticId;
psInputTable->import[f].isFlat = (psInputControl&(1 << 10)) != 0;
psInputTable->import[f].isNoPerspective = (psInputControl&(1 << 12)) != 0;
}
}
_activePSImportTable.key = key;
_activePSImportTable.count = numPSInputs;
psInputTable->key = key;
psInputTable->count = numPSInputs;
}
// both vertex and geometry/pixel shader depend on PS inputs
// we prepare the PS import info in advance
void LatteShader_UpdatePSInputs(uint32* contextRegisters)
{
LatteShader_CreatePSInputTable(&_activePSImportTable, contextRegisters);
}
void LatteShader_CreateRendererShader(LatteDecompilerShader* shader, bool compileAsync)

View File

@ -84,6 +84,7 @@ struct LatteShaderPSInputTable
}
};
void LatteShader_CreatePSInputTable(LatteShaderPSInputTable* psInputTable, uint32* contextRegisters);
void LatteShader_UpdatePSInputs(uint32* contextRegisters);
LatteShaderPSInputTable* LatteSHRC_GetPSInputTable();

View File

@ -64,7 +64,7 @@ FileCache* s_shaderCacheGeneric = nullptr; // contains hardware and version inde
#define SHADER_CACHE_TYPE_PIXEL (2)
bool LatteShaderCache_readSeparableShader(uint8* shaderInfoData, sint32 shaderInfoSize);
void LatteShaderCache_LoadVulkanPipelineCache(uint64 cacheTitleId);
void LatteShaderCache_LoadPipelineCache(uint64 cacheTitleId);
bool LatteShaderCache_updatePipelineLoadingProgress();
void LatteShaderCache_ShowProgress(const std::function <bool(void)>& loadUpdateFunc, bool isPipelines);
@ -160,18 +160,11 @@ bool LoadTGAFile(const std::vector<uint8>& buffer, TGAFILE *tgaFile)
void LatteShaderCache_finish()
{
if (g_renderer->GetType() == RendererAPI::Vulkan)
{
RendererShaderVk::ShaderCacheLoading_end();
}
else if (g_renderer->GetType() == RendererAPI::OpenGL)
{
RendererShaderGL::ShaderCacheLoading_end();
}
else if (g_renderer->GetType() == RendererAPI::Metal)
{
RendererShaderMtl::ShaderCacheLoading_end();
MetalPipelineCache::ShaderCacheLoading_end();
}
}
uint32 LatteShaderCache_getShaderCacheExtraVersion(uint64 titleId)
@ -251,18 +244,11 @@ void LatteShaderCache_Load()
fs::create_directories(ActiveSettings::GetCachePath("shaderCache/precompiled"), ec);
// initialize renderer specific caches
if (g_renderer->GetType() == RendererAPI::Vulkan)
{
RendererShaderVk::ShaderCacheLoading_begin(cacheTitleId);
}
else if (g_renderer->GetType() == RendererAPI::OpenGL)
{
RendererShaderGL::ShaderCacheLoading_begin(cacheTitleId);
}
else if (g_renderer->GetType() == RendererAPI::Metal)
{
RendererShaderMtl::ShaderCacheLoading_begin(cacheTitleId);
MetalPipelineCache::ShaderCacheLoading_begin(cacheTitleId);
}
// get cache file name
const auto pathGeneric = ActiveSettings::GetCachePath("shaderCache/transferable/{:016x}_shaders.bin", cacheTitleId);
const auto pathGenericPre1_25_0 = ActiveSettings::GetCachePath("shaderCache/transferable/{:016x}.bin", cacheTitleId); // before 1.25.0
@ -361,9 +347,9 @@ void LatteShaderCache_Load()
cemuLog_log(LogType::Force, "Shader cache loaded with {} shaders. Commited mem {}MB. Took {}ms", numLoadedShaders, (sint32)(memCommited/1024/1024), timeLoad);
#endif
LatteShaderCache_finish();
// if Vulkan then also load pipeline cache
if (g_renderer->GetType() == RendererAPI::Vulkan)
LatteShaderCache_LoadVulkanPipelineCache(cacheTitleId);
// if Vulkan or Metal then also load pipeline cache
if (g_renderer->GetType() == RendererAPI::Vulkan || g_renderer->GetType() == RendererAPI::Metal)
LatteShaderCache_LoadPipelineCache(cacheTitleId);
g_renderer->BeginFrame(true);
@ -518,13 +504,18 @@ void LatteShaderCache_ShowProgress(const std::function <bool(void)>& loadUpdateF
}
}
void LatteShaderCache_LoadVulkanPipelineCache(uint64 cacheTitleId)
void LatteShaderCache_LoadPipelineCache(uint64 cacheTitleId)
{
auto& pipelineCache = VulkanPipelineStableCache::GetInstance();
g_shaderCacheLoaderState.pipelineFileCount = pipelineCache.BeginLoading(cacheTitleId);
if (g_renderer->GetType() == RendererAPI::Vulkan)
g_shaderCacheLoaderState.pipelineFileCount = VulkanPipelineStableCache::GetInstance().BeginLoading(cacheTitleId);
else if (g_renderer->GetType() == RendererAPI::Metal)
g_shaderCacheLoaderState.pipelineFileCount = MetalPipelineCache::GetInstance().BeginLoading(cacheTitleId);
g_shaderCacheLoaderState.loadedPipelines = 0;
LatteShaderCache_ShowProgress(LatteShaderCache_updatePipelineLoadingProgress, true);
pipelineCache.EndLoading();
if (g_renderer->GetType() == RendererAPI::Vulkan)
VulkanPipelineStableCache::GetInstance().EndLoading();
else if (g_renderer->GetType() == RendererAPI::Metal)
MetalPipelineCache::GetInstance().EndLoading();
if(Latte_GetStopSignal())
LatteThread_Exit();
}
@ -532,7 +523,12 @@ void LatteShaderCache_LoadVulkanPipelineCache(uint64 cacheTitleId)
bool LatteShaderCache_updatePipelineLoadingProgress()
{
uint32 pipelinesMissingShaders = 0;
if (g_renderer->GetType() == RendererAPI::Vulkan)
return VulkanPipelineStableCache::GetInstance().UpdateLoading(g_shaderCacheLoaderState.loadedPipelines, pipelinesMissingShaders);
else if (g_renderer->GetType() == RendererAPI::Metal)
return MetalPipelineCache::GetInstance().UpdateLoading(g_shaderCacheLoaderState.loadedPipelines, pipelinesMissingShaders);
return false;
}
uint64 LatteShaderCache_getShaderNameInTransferableCache(uint64 baseHash, uint32 shaderType)
@ -791,22 +787,17 @@ void LatteShaderCache_Close()
s_shaderCacheGeneric = nullptr;
}
if (g_renderer->GetType() == RendererAPI::Vulkan)
{
RendererShaderVk::ShaderCacheLoading_Close();
}
else if (g_renderer->GetType() == RendererAPI::OpenGL)
{
RendererShaderGL::ShaderCacheLoading_Close();
}
else if (g_renderer->GetType() == RendererAPI::Metal)
{
RendererShaderMtl::ShaderCacheLoading_Close();
MetalPipelineCache::ShaderCacheLoading_Close();
}
// if Vulkan then also close pipeline cache
// if Vulkan or Metal then also close pipeline cache
if (g_renderer->GetType() == RendererAPI::Vulkan)
VulkanPipelineStableCache::GetInstance().Close();
else if (g_renderer->GetType() == RendererAPI::Metal)
MetalPipelineCache::GetInstance().Close();
}
#include <wx/msgdlg.h>

View File

@ -65,7 +65,7 @@ LatteTextureMtl::LatteTextureMtl(class MetalRenderer* mtlRenderer, Latte::E_DIM
}
else if (textureType == MTL::TextureTypeCube)
{
// Do notjing
// Do nothing
}
else if (textureType == MTL::TextureTypeCubeArray)
{
@ -81,13 +81,10 @@ LatteTextureMtl::LatteTextureMtl(class MetalRenderer* mtlRenderer, Latte::E_DIM
MTL::TextureUsage usage = MTL::TextureUsageShaderRead | MTL::TextureUsagePixelFormatView;
if (!Latte::IsCompressedFormat(format))
{
usage |= MTL::TextureUsageRenderTarget;
}
desc->setUsage(usage);
m_texture = mtlRenderer->GetDevice()->newTexture(desc);
desc->release();
}

View File

@ -0,0 +1,48 @@
#include "Cafe/HW/Latte/Renderer/Metal/MetalAttachmentsInfo.h"
#include "Cafe/HW/Latte/Renderer/Metal/CachedFBOMtl.h"
#include "Cafe/HW/Latte/Renderer/Metal/LatteTextureViewMtl.h"
#include "Cafe/HW/Latte/Renderer/Metal/LatteToMtl.h"
MetalAttachmentsInfo::MetalAttachmentsInfo(class CachedFBOMtl* fbo)
{
for (uint8 i = 0; i < LATTE_NUM_COLOR_TARGET; i++)
{
const auto& colorBuffer = fbo->colorBuffer[i];
auto texture = static_cast<LatteTextureViewMtl*>(colorBuffer.texture);
if (!texture)
continue;
colorFormats[i] = texture->format;
}
// Depth stencil attachment
if (fbo->depthBuffer.texture)
{
auto texture = static_cast<LatteTextureViewMtl*>(fbo->depthBuffer.texture);
depthFormat = texture->format;
hasStencil = fbo->depthBuffer.hasStencil;
}
}
MetalAttachmentsInfo::MetalAttachmentsInfo(const LatteContextRegister& lcr, const LatteDecompilerShader* pixelShader)
{
uint8 cbMask = LatteMRT::GetActiveColorBufferMask(pixelShader, lcr);
bool dbMask = LatteMRT::GetActiveDepthBufferMask(lcr);
// Color attachments
for (int i = 0; i < 8; ++i)
{
if ((cbMask & (1 << i)) == 0)
continue;
colorFormats[i] = LatteMRT::GetColorBufferFormat(i, lcr);
}
// Depth stencil attachment
if (dbMask)
{
Latte::E_GX2SURFFMT format = LatteMRT::GetDepthBufferFormat(lcr);
depthFormat = format;
hasStencil = GetMtlPixelFormatInfo(format, true).hasStencil;
}
}

View File

@ -0,0 +1,15 @@
#pragma once
#include "Cafe/HW/Latte/Renderer/Metal/MetalCommon.h"
class MetalAttachmentsInfo
{
public:
MetalAttachmentsInfo() = default;
MetalAttachmentsInfo(class CachedFBOMtl* fbo);
MetalAttachmentsInfo(const LatteContextRegister& lcr, const class LatteDecompilerShader* pixelShader);
Latte::E_GX2SURFFMT colorFormats[LATTE_NUM_COLOR_TARGET] = {Latte::E_GX2SURFFMT::INVALID_FORMAT};
Latte::E_GX2SURFFMT depthFormat = Latte::E_GX2SURFFMT::INVALID_FORMAT;
bool hasStencil = false;
};

File diff suppressed because it is too large Load Diff

View File

@ -1,24 +1,26 @@
#pragma once
#include <Metal/Metal.hpp>
#include "HW/Latte/ISA/LatteReg.h"
#include "HW/Latte/LegacyShaderDecompiler/LatteDecompiler.h"
#include "Cafe/HW/Latte/Renderer/Renderer.h"
#include "Cafe/HW/Latte/Renderer/Metal/MetalPipelineCompiler.h"
#include "util/helpers/ConcurrentQueue.h"
#include "util/helpers/fspinlock.h"
#include "util/math/vector2.h"
class MetalPipelineCache
{
public:
static void ShaderCacheLoading_begin(uint64 cacheTitleId);
static void ShaderCacheLoading_end();
static void ShaderCacheLoading_Close();
static MetalPipelineCache& GetInstance();
MetalPipelineCache(class MetalRenderer* metalRenderer) : m_mtlr{metalRenderer} {}
MetalPipelineCache(class MetalRenderer* metalRenderer);
~MetalPipelineCache();
MTL::RenderPipelineState* GetRenderPipelineState(const LatteFetchShader* fetchShader, const LatteDecompilerShader* vertexShader, const LatteDecompilerShader* pixelShader, class CachedFBOMtl* lastUsedFBO, class CachedFBOMtl* activeFBO, const LatteContextRegister& lcr);
PipelineObject* GetRenderPipelineState(const LatteFetchShader* fetchShader, const LatteDecompilerShader* vertexShader, const LatteDecompilerShader* geometryShader, const LatteDecompilerShader* pixelShader, const class MetalAttachmentsInfo& lastUsedAttachmentsInfo, const class MetalAttachmentsInfo& activeAttachmentsInfo, Vector2i extend, uint32 indexCount, const LatteContextRegister& lcr);
MTL::RenderPipelineState* GetMeshPipelineState(const LatteFetchShader* fetchShader, const LatteDecompilerShader* vertexShader, const LatteDecompilerShader* geometryShader, const LatteDecompilerShader* pixelShader, class CachedFBOMtl* lastUsedFBO, class CachedFBOMtl* activeFBO, const LatteContextRegister& lcr, Renderer::INDEX_TYPE hostIndexType);
// Cache loading
uint32 BeginLoading(uint64 cacheTitleId); // returns count of pipelines stored in cache
bool UpdateLoading(uint32& pipelinesLoadedTotal, uint32& pipelinesMissingShaders);
void EndLoading();
void LoadPipelineFromCache(std::span<uint8> fileData);
void Close(); // called on title exit
// Debug
size_t GetPipelineCacheSize() const { return m_pipelineCache.size(); }
@ -26,12 +28,25 @@ public:
private:
class MetalRenderer* m_mtlr;
std::map<uint64, MTL::RenderPipelineState*> m_pipelineCache;
std::map<uint64, PipelineObject*> m_pipelineCache;
FSpinlock m_pipelineCacheLock;
NS::URL* m_binaryArchiveURL;
MTL::BinaryArchive* m_binaryArchive;
std::thread* m_pipelineCacheStoreThread;
uint64 CalculateRenderPipelineHash(const LatteFetchShader* fetchShader, const LatteDecompilerShader* vertexShader, const LatteDecompilerShader* pixelShader, class CachedFBOMtl* lastUsedFBO, const LatteContextRegister& lcr);
class FileCache* s_cache;
void TryLoadBinaryArchive();
std::atomic_uint32_t m_numCompilationThreads{ 0 };
ConcurrentQueue<std::vector<uint8>> m_compilationQueue;
std::atomic_uint32_t m_compilationCount;
static uint64 CalculatePipelineHash(const LatteFetchShader* fetchShader, const LatteDecompilerShader* vertexShader, const LatteDecompilerShader* geometryShader, const LatteDecompilerShader* pixelShader, const class MetalAttachmentsInfo& lastUsedAttachmentsInfo, const class MetalAttachmentsInfo& activeAttachmentsInfo, const LatteContextRegister& lcr);
void AddCurrentStateToCache(uint64 pipelineStateHash, const class MetalAttachmentsInfo& lastUsedAttachmentsInfo);
// pipeline serialization for file
bool SerializePipeline(class MemStreamWriter& memWriter, struct CachedPipeline& cachedPipeline);
bool DeserializePipeline(class MemStreamReader& memReader, struct CachedPipeline& cachedPipeline);
int CompilerThread();
void WorkerThread();
};

View File

@ -0,0 +1,496 @@
#include "Cafe/HW/Latte/Renderer/Metal/MetalCommon.h"
#include "Cafe/HW/Latte/Renderer/Metal/MetalPipelineCompiler.h"
#include "Cafe/HW/Latte/Renderer/Metal/MetalRenderer.h"
#include "Cafe/HW/Latte/Renderer/Metal/CachedFBOMtl.h"
#include "Cafe/HW/Latte/Renderer/Metal/LatteToMtl.h"
#include "Cafe/HW/Latte/Renderer/Metal/RendererShaderMtl.h"
#include "Cafe/HW/Latte/Renderer/Metal/LatteTextureViewMtl.h"
#include "Cafe/HW/Latte/Core/FetchShader.h"
#include "Cafe/HW/Latte/ISA/RegDefines.h"
#include "Cafe/HW/Latte/Core/LatteConst.h"
#include "Cafe/HW/Latte/Core/LatteShader.h"
#include <chrono>
extern std::atomic_int g_compiling_pipelines;
extern std::atomic_int g_compiling_pipelines_async;
extern std::atomic_uint64_t g_compiling_pipelines_syncTimeSum;
static void rectsEmulationGS_outputSingleVertex(std::string& gsSrc, const LatteDecompilerShader* vertexShader, LatteShaderPSInputTable& psInputTable, sint32 vIdx, const LatteContextRegister& latteRegister)
{
auto parameterMask = vertexShader->outputParameterMask;
for (uint32 i = 0; i < 32; i++)
{
if ((parameterMask & (1 << i)) == 0)
continue;
sint32 vsSemanticId = psInputTable.getVertexShaderOutParamSemanticId(latteRegister.GetRawView(), i);
if (vsSemanticId < 0)
continue;
// make sure PS has matching input
if (!psInputTable.hasPSImportForSemanticId(vsSemanticId))
continue;
gsSrc.append(fmt::format("out.passParameterSem{} = objectPayload.vertexOut[{}].passParameterSem{};\r\n", vsSemanticId, vIdx, vsSemanticId));
}
gsSrc.append(fmt::format("out.position = objectPayload.vertexOut[{}].position;\r\n", vIdx));
gsSrc.append(fmt::format("mesh.set_vertex({}, out);\r\n", vIdx));
}
static void rectsEmulationGS_outputGeneratedVertex(std::string& gsSrc, const LatteDecompilerShader* vertexShader, LatteShaderPSInputTable& psInputTable, const char* variant, const LatteContextRegister& latteRegister)
{
auto parameterMask = vertexShader->outputParameterMask;
for (uint32 i = 0; i < 32; i++)
{
if ((parameterMask & (1 << i)) == 0)
continue;
sint32 vsSemanticId = psInputTable.getVertexShaderOutParamSemanticId(latteRegister.GetRawView(), i);
if (vsSemanticId < 0)
continue;
// make sure PS has matching input
if (!psInputTable.hasPSImportForSemanticId(vsSemanticId))
continue;
gsSrc.append(fmt::format("out.passParameterSem{} = gen4thVertex{}(objectPayload.vertexOut[0].passParameterSem{}, objectPayload.vertexOut[1].passParameterSem{}, objectPayload.vertexOut[2].passParameterSem{});\r\n", vsSemanticId, variant, vsSemanticId, vsSemanticId, vsSemanticId));
}
gsSrc.append(fmt::format("out.position = gen4thVertex{}(objectPayload.vertexOut[0].position, objectPayload.vertexOut[1].position, objectPayload.vertexOut[2].position);\r\n", variant));
gsSrc.append(fmt::format("mesh.set_vertex(3, out);\r\n"));
}
static void rectsEmulationGS_outputVerticesCode(std::string& gsSrc, const LatteDecompilerShader* vertexShader, LatteShaderPSInputTable& psInputTable, sint32 p0, sint32 p1, sint32 p2, sint32 p3, const char* variant, const LatteContextRegister& latteRegister)
{
sint32 pList[4] = { p0, p1, p2, p3 };
for (sint32 i = 0; i < 4; i++)
{
if (pList[i] == 3)
rectsEmulationGS_outputGeneratedVertex(gsSrc, vertexShader, psInputTable, variant, latteRegister);
else
rectsEmulationGS_outputSingleVertex(gsSrc, vertexShader, psInputTable, pList[i], latteRegister);
}
gsSrc.append(fmt::format("mesh.set_index(0, {});\r\n", pList[0]));
gsSrc.append(fmt::format("mesh.set_index(1, {});\r\n", pList[1]));
gsSrc.append(fmt::format("mesh.set_index(2, {});\r\n", pList[2]));
gsSrc.append(fmt::format("mesh.set_index(3, {});\r\n", pList[1]));
gsSrc.append(fmt::format("mesh.set_index(4, {});\r\n", pList[2]));
gsSrc.append(fmt::format("mesh.set_index(5, {});\r\n", pList[3]));
}
static RendererShaderMtl* rectsEmulationGS_generate(MetalRenderer* metalRenderer, const LatteDecompilerShader* vertexShader, const LatteContextRegister& latteRegister)
{
std::string gsSrc;
gsSrc.append("#include <metal_stdlib>\r\n");
gsSrc.append("using namespace metal;\r\n");
LatteShaderPSInputTable psInputTable;
LatteShader_CreatePSInputTable(&psInputTable, latteRegister.GetRawView());
// inputs & outputs
std::string vertexOutDefinition = "struct VertexOut {\r\n";
vertexOutDefinition += "float4 position;\r\n";
std::string geometryOutDefinition = "struct GeometryOut {\r\n";
geometryOutDefinition += "float4 position [[position]];\r\n";
auto parameterMask = vertexShader->outputParameterMask;
for (uint32 i = 0; i < 32; i++)
{
if ((parameterMask & (1 << i)) == 0)
continue;
sint32 vsSemanticId = psInputTable.getVertexShaderOutParamSemanticId(latteRegister.GetRawView(), i);
if (vsSemanticId < 0)
continue;
auto psImport = psInputTable.getPSImportBySemanticId(vsSemanticId);
if (psImport == nullptr)
continue;
// VertexOut
vertexOutDefinition += fmt::format("float4 passParameterSem{};\r\n", vsSemanticId);
// GeometryOut
geometryOutDefinition += fmt::format("float4 passParameterSem{}", vsSemanticId);
geometryOutDefinition += fmt::format(" [[user(locn{})]]", psInputTable.getPSImportLocationBySemanticId(vsSemanticId));
if (psImport->isFlat)
geometryOutDefinition += " [[flat]]";
if (psImport->isNoPerspective)
geometryOutDefinition += " [[center_no_perspective]]";
geometryOutDefinition += ";\r\n";
}
vertexOutDefinition += "};\r\n";
geometryOutDefinition += "};\r\n";
gsSrc.append(vertexOutDefinition);
gsSrc.append(geometryOutDefinition);
gsSrc.append("struct ObjectPayload {\r\n");
gsSrc.append("VertexOut vertexOut[3];\r\n");
gsSrc.append("};\r\n");
// gen function
gsSrc.append("float4 gen4thVertexA(float4 a, float4 b, float4 c)\r\n");
gsSrc.append("{\r\n");
gsSrc.append("return b - (c - a);\r\n");
gsSrc.append("}\r\n");
gsSrc.append("float4 gen4thVertexB(float4 a, float4 b, float4 c)\r\n");
gsSrc.append("{\r\n");
gsSrc.append("return c - (b - a);\r\n");
gsSrc.append("}\r\n");
gsSrc.append("float4 gen4thVertexC(float4 a, float4 b, float4 c)\r\n");
gsSrc.append("{\r\n");
gsSrc.append("return c + (b - a);\r\n");
gsSrc.append("}\r\n");
// main
gsSrc.append("using MeshType = mesh<GeometryOut, void, 4, 2, topology::triangle>;\r\n");
gsSrc.append("[[mesh, max_total_threads_per_threadgroup(1)]]\r\n");
gsSrc.append("void main0(MeshType mesh, const object_data ObjectPayload& objectPayload [[payload]])\r\n");
gsSrc.append("{\r\n");
gsSrc.append("GeometryOut out;\r\n");
// there are two possible winding orders that need different triangle generation:
// 0 1
// 2 3
// and
// 0 1
// 3 2
// all others are just symmetries of these cases
// we can determine the case by comparing the distance 0<->1 and 0<->2
gsSrc.append("float dist0_1 = length(objectPayload.vertexOut[1].position.xy - objectPayload.vertexOut[0].position.xy);\r\n");
gsSrc.append("float dist0_2 = length(objectPayload.vertexOut[2].position.xy - objectPayload.vertexOut[0].position.xy);\r\n");
gsSrc.append("float dist1_2 = length(objectPayload.vertexOut[2].position.xy - objectPayload.vertexOut[1].position.xy);\r\n");
// emit vertices
gsSrc.append("if(dist0_1 > dist0_2 && dist0_1 > dist1_2)\r\n");
gsSrc.append("{\r\n");
// p0 to p1 is diagonal
rectsEmulationGS_outputVerticesCode(gsSrc, vertexShader, psInputTable, 2, 1, 0, 3, "A", latteRegister);
gsSrc.append("} else if ( dist0_2 > dist0_1 && dist0_2 > dist1_2 ) {\r\n");
// p0 to p2 is diagonal
rectsEmulationGS_outputVerticesCode(gsSrc, vertexShader, psInputTable, 1, 2, 0, 3, "B", latteRegister);
gsSrc.append("} else {\r\n");
// p1 to p2 is diagonal
rectsEmulationGS_outputVerticesCode(gsSrc, vertexShader, psInputTable, 0, 1, 2, 3, "C", latteRegister);
gsSrc.append("}\r\n");
gsSrc.append("mesh.set_primitive_count(2);\r\n");
gsSrc.append("}\r\n");
auto mtlShader = new RendererShaderMtl(metalRenderer, RendererShader::ShaderType::kGeometry, 0, 0, false, false, gsSrc);
mtlShader->PreponeCompilation(true);
return mtlShader;
}
#define INVALID_TITLE_ID 0xFFFFFFFFFFFFFFFF
uint64 s_cacheTitleId = INVALID_TITLE_ID;
extern std::atomic_int g_compiled_shaders_total;
extern std::atomic_int g_compiled_shaders_async;
template<typename T>
void SetFragmentState(T* desc, const MetalAttachmentsInfo& lastUsedAttachmentsInfo, const MetalAttachmentsInfo& activeAttachmentsInfo, bool rasterizationEnabled, const LatteContextRegister& lcr)
{
// TODO: check if the pixel shader is valid as well?
if (!rasterizationEnabled/* || !pixelShaderMtl*/)
{
desc->setRasterizationEnabled(false);
return;
}
// Color attachments
const Latte::LATTE_CB_COLOR_CONTROL& colorControlReg = lcr.CB_COLOR_CONTROL;
uint32 blendEnableMask = colorControlReg.get_BLEND_MASK();
uint32 renderTargetMask = lcr.CB_TARGET_MASK.get_MASK();
for (uint8 i = 0; i < LATTE_NUM_COLOR_TARGET; i++)
{
Latte::E_GX2SURFFMT format = lastUsedAttachmentsInfo.colorFormats[i];
if (format == Latte::E_GX2SURFFMT::INVALID_FORMAT)
continue;
MTL::PixelFormat pixelFormat = GetMtlPixelFormat(format, false);
auto colorAttachment = desc->colorAttachments()->object(i);
colorAttachment->setPixelFormat(pixelFormat);
// Disable writes if not in the active FBO
if (activeAttachmentsInfo.colorFormats[i] == Latte::E_GX2SURFFMT::INVALID_FORMAT)
{
colorAttachment->setWriteMask(MTL::ColorWriteMaskNone);
continue;
}
colorAttachment->setWriteMask(GetMtlColorWriteMask((renderTargetMask >> (i * 4)) & 0xF));
// Blending
bool blendEnabled = ((blendEnableMask & (1 << i))) != 0;
// Only float data type is blendable
if (blendEnabled && GetMtlPixelFormatInfo(format, false).dataType == MetalDataType::FLOAT)
{
colorAttachment->setBlendingEnabled(true);
const auto& blendControlReg = lcr.CB_BLENDN_CONTROL[i];
auto rgbBlendOp = GetMtlBlendOp(blendControlReg.get_COLOR_COMB_FCN());
auto srcRgbBlendFactor = GetMtlBlendFactor(blendControlReg.get_COLOR_SRCBLEND());
auto dstRgbBlendFactor = GetMtlBlendFactor(blendControlReg.get_COLOR_DSTBLEND());
colorAttachment->setRgbBlendOperation(rgbBlendOp);
colorAttachment->setSourceRGBBlendFactor(srcRgbBlendFactor);
colorAttachment->setDestinationRGBBlendFactor(dstRgbBlendFactor);
if (blendControlReg.get_SEPARATE_ALPHA_BLEND())
{
colorAttachment->setAlphaBlendOperation(GetMtlBlendOp(blendControlReg.get_ALPHA_COMB_FCN()));
colorAttachment->setSourceAlphaBlendFactor(GetMtlBlendFactor(blendControlReg.get_ALPHA_SRCBLEND()));
colorAttachment->setDestinationAlphaBlendFactor(GetMtlBlendFactor(blendControlReg.get_ALPHA_DSTBLEND()));
}
else
{
colorAttachment->setAlphaBlendOperation(rgbBlendOp);
colorAttachment->setSourceAlphaBlendFactor(srcRgbBlendFactor);
colorAttachment->setDestinationAlphaBlendFactor(dstRgbBlendFactor);
}
}
}
// Depth stencil attachment
if (lastUsedAttachmentsInfo.depthFormat != Latte::E_GX2SURFFMT::INVALID_FORMAT)
{
MTL::PixelFormat pixelFormat = GetMtlPixelFormat(lastUsedAttachmentsInfo.depthFormat, true);
desc->setDepthAttachmentPixelFormat(pixelFormat);
if (lastUsedAttachmentsInfo.hasStencil)
desc->setStencilAttachmentPixelFormat(pixelFormat);
}
}
MetalPipelineCompiler::~MetalPipelineCompiler()
{
/*
for (auto& pair : m_pipelineCache)
{
pair.second->release();
}
m_pipelineCache.clear();
NS::Error* error = nullptr;
m_binaryArchive->serializeToURL(m_binaryArchiveURL, &error);
if (error)
{
cemuLog_log(LogType::Force, "error serializing binary archive: {}", error->localizedDescription()->utf8String());
error->release();
}
m_binaryArchive->release();
m_binaryArchiveURL->release();
*/
m_pipelineDescriptor->release();
}
void MetalPipelineCompiler::InitFromState(const LatteFetchShader* fetchShader, const LatteDecompilerShader* vertexShader, const LatteDecompilerShader* geometryShader, const LatteDecompilerShader* pixelShader, const MetalAttachmentsInfo& lastUsedAttachmentsInfo, const MetalAttachmentsInfo& activeAttachmentsInfo, const LatteContextRegister& lcr)
{
// Check if the pipeline uses a geometry shader
const LattePrimitiveMode primitiveMode = static_cast<LattePrimitiveMode>(lcr.VGT_PRIMITIVE_TYPE.get_PRIMITIVE_MODE());
bool isPrimitiveRect = (primitiveMode == Latte::LATTE_VGT_PRIMITIVE_TYPE::E_PRIMITIVE_TYPE::RECTS);
m_usesGeometryShader = (geometryShader != nullptr || isPrimitiveRect);
// Rasterization
m_rasterizationEnabled = !lcr.PA_CL_CLIP_CNTL.get_DX_RASTERIZATION_KILL();
// HACK
// TODO: include this in the hash?
if (!lcr.PA_CL_VTE_CNTL.get_VPORT_X_OFFSET_ENA())
m_rasterizationEnabled = true;
// Culling both front and back faces effectively disables rasterization
const auto& polygonControlReg = lcr.PA_SU_SC_MODE_CNTL;
uint32 cullFront = polygonControlReg.get_CULL_FRONT();
uint32 cullBack = polygonControlReg.get_CULL_BACK();
if (cullFront && cullBack)
m_rasterizationEnabled = false;
// Shaders
m_vertexShaderMtl = static_cast<RendererShaderMtl*>(vertexShader->shader);
if (geometryShader)
m_geometryShaderMtl = static_cast<RendererShaderMtl*>(geometryShader->shader);
else if (isPrimitiveRect)
m_geometryShaderMtl = rectsEmulationGS_generate(m_mtlr, vertexShader, lcr);
else
m_geometryShaderMtl = nullptr;
m_pixelShaderMtl = static_cast<RendererShaderMtl*>(pixelShader->shader);
if (m_usesGeometryShader)
InitFromStateMesh(fetchShader, lastUsedAttachmentsInfo, activeAttachmentsInfo, lcr);
else
InitFromStateRender(fetchShader, vertexShader, lastUsedAttachmentsInfo, activeAttachmentsInfo, lcr);
}
bool MetalPipelineCompiler::Compile(bool forceCompile, bool isRenderThread, bool showInOverlay)
{
if (forceCompile)
{
// if some shader stages are not compiled yet, compile them now
if (m_vertexShaderMtl && !m_vertexShaderMtl->IsCompiled())
m_vertexShaderMtl->PreponeCompilation(isRenderThread);
if (m_geometryShaderMtl && !m_geometryShaderMtl->IsCompiled())
m_geometryShaderMtl->PreponeCompilation(isRenderThread);
if (m_pixelShaderMtl && !m_pixelShaderMtl->IsCompiled())
m_pixelShaderMtl->PreponeCompilation(isRenderThread);
}
else
{
// fail early if some shader stages are not compiled
if (m_vertexShaderMtl && !m_vertexShaderMtl->IsCompiled())
return false;
if (m_geometryShaderMtl && !m_geometryShaderMtl->IsCompiled())
return false;
if (m_pixelShaderMtl && !m_pixelShaderMtl->IsCompiled())
return false;
}
// Compile
MTL::RenderPipelineState* pipeline = nullptr;
NS::Error* error = nullptr;
auto start = std::chrono::high_resolution_clock::now();
if (m_usesGeometryShader)
{
auto desc = static_cast<MTL::MeshRenderPipelineDescriptor*>(m_pipelineDescriptor);
// Shaders
desc->setObjectFunction(m_vertexShaderMtl->GetFunction());
desc->setMeshFunction(m_geometryShaderMtl->GetFunction());
if (m_rasterizationEnabled)
desc->setFragmentFunction(m_pixelShaderMtl->GetFunction());
#ifdef CEMU_DEBUG_ASSERT
desc->setLabel(GetLabel("Mesh render pipeline state", desc));
#endif
pipeline = m_mtlr->GetDevice()->newRenderPipelineState(desc, MTL::PipelineOptionNone, nullptr, &error);
}
else
{
auto desc = static_cast<MTL::RenderPipelineDescriptor*>(m_pipelineDescriptor);
// Shaders
desc->setVertexFunction(m_vertexShaderMtl->GetFunction());
if (m_rasterizationEnabled)
desc->setFragmentFunction(m_pixelShaderMtl->GetFunction());
#ifdef CEMU_DEBUG_ASSERT
desc->setLabel(GetLabel("Render pipeline state", desc));
#endif
pipeline = m_mtlr->GetDevice()->newRenderPipelineState(desc, MTL::PipelineOptionNone, nullptr, &error);
}
auto end = std::chrono::high_resolution_clock::now();
auto creationDuration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count();
if (error)
{
cemuLog_log(LogType::Force, "error creating render pipeline state: {}", error->localizedDescription()->utf8String());
error->release();
}
if (showInOverlay)
{
if (isRenderThread)
g_compiling_pipelines_syncTimeSum += creationDuration;
else
g_compiling_pipelines_async++;
g_compiling_pipelines++;
}
m_pipelineObj.m_pipeline = pipeline;
return true;
}
void MetalPipelineCompiler::InitFromStateRender(const LatteFetchShader* fetchShader, const LatteDecompilerShader* vertexShader, const MetalAttachmentsInfo& lastUsedAttachmentsInfo, const MetalAttachmentsInfo& activeAttachmentsInfo, const LatteContextRegister& lcr)
{
// Render pipeline state
MTL::RenderPipelineDescriptor* desc = MTL::RenderPipelineDescriptor::alloc()->init();
// Vertex descriptor
if (!fetchShader->mtlFetchVertexManually)
{
MTL::VertexDescriptor* vertexDescriptor = MTL::VertexDescriptor::alloc()->init();
for (auto& bufferGroup : fetchShader->bufferGroups)
{
std::optional<LatteConst::VertexFetchType2> fetchType;
uint32 minBufferStride = 0;
for (sint32 j = 0; j < bufferGroup.attribCount; ++j)
{
auto& attr = bufferGroup.attrib[j];
uint32 semanticId = vertexShader->resourceMapping.attributeMapping[attr.semanticId];
if (semanticId == (uint32)-1)
continue; // attribute not used?
auto attribute = vertexDescriptor->attributes()->object(semanticId);
attribute->setOffset(attr.offset);
attribute->setBufferIndex(GET_MTL_VERTEX_BUFFER_INDEX(attr.attributeBufferIndex));
attribute->setFormat(GetMtlVertexFormat(attr.format));
minBufferStride = std::max(minBufferStride, attr.offset + GetMtlVertexFormatSize(attr.format));
if (fetchType.has_value())
cemu_assert_debug(fetchType == attr.fetchType);
else
fetchType = attr.fetchType;
if (attr.fetchType == LatteConst::INSTANCE_DATA)
{
cemu_assert_debug(attr.aluDivisor == 1); // other divisor not yet supported
}
}
uint32 bufferIndex = bufferGroup.attributeBufferIndex;
uint32 bufferBaseRegisterIndex = mmSQ_VTX_ATTRIBUTE_BLOCK_START + bufferIndex * 7;
uint32 bufferStride = (lcr.GetRawView()[bufferBaseRegisterIndex + 2] >> 11) & 0xFFFF;
auto layout = vertexDescriptor->layouts()->object(GET_MTL_VERTEX_BUFFER_INDEX(bufferIndex));
if (bufferStride == 0)
{
// Buffer stride cannot be zero, let's use the minimum stride
bufferStride = minBufferStride;
// Additionally, constant vertex function must be used
layout->setStepFunction(MTL::VertexStepFunctionConstant);
layout->setStepRate(0);
}
else
{
if (!fetchType.has_value() || fetchType == LatteConst::VertexFetchType2::VERTEX_DATA)
layout->setStepFunction(MTL::VertexStepFunctionPerVertex);
else if (fetchType == LatteConst::VertexFetchType2::INSTANCE_DATA)
layout->setStepFunction(MTL::VertexStepFunctionPerInstance);
else
{
debug_printf("unimplemented vertex fetch type %u\n", (uint32)fetchType.value());
cemu_assert(false);
}
}
bufferStride = Align(bufferStride, 4);
layout->setStride(bufferStride);
}
desc->setVertexDescriptor(vertexDescriptor);
vertexDescriptor->release();
}
SetFragmentState(desc, lastUsedAttachmentsInfo, activeAttachmentsInfo, m_rasterizationEnabled, lcr);
m_pipelineDescriptor = desc;
}
void MetalPipelineCompiler::InitFromStateMesh(const LatteFetchShader* fetchShader, const MetalAttachmentsInfo& lastUsedAttachmentsInfo, const MetalAttachmentsInfo& activeAttachmentsInfo, const LatteContextRegister& lcr)
{
// Render pipeline state
MTL::MeshRenderPipelineDescriptor* desc = MTL::MeshRenderPipelineDescriptor::alloc()->init();
SetFragmentState(desc, lastUsedAttachmentsInfo, activeAttachmentsInfo, m_rasterizationEnabled, lcr);
m_pipelineDescriptor = desc;
}

View File

@ -0,0 +1,38 @@
#pragma once
#include "Cafe/HW/Latte/Renderer/Metal/MetalAttachmentsInfo.h"
#include "Cafe/HW/Latte/ISA/LatteReg.h"
#include "Cafe/HW/Latte/LegacyShaderDecompiler/LatteDecompiler.h"
struct PipelineObject
{
MTL::RenderPipelineState* m_pipeline = nullptr;
};
class MetalPipelineCompiler
{
public:
MetalPipelineCompiler(class MetalRenderer* metalRenderer, PipelineObject& pipelineObj) : m_mtlr{metalRenderer}, m_pipelineObj{pipelineObj} {}
~MetalPipelineCompiler();
void InitFromState(const LatteFetchShader* fetchShader, const LatteDecompilerShader* vertexShader, const LatteDecompilerShader* geometryShader, const LatteDecompilerShader* pixelShader, const class MetalAttachmentsInfo& lastUsedAttachmentsInfo, const class MetalAttachmentsInfo& activeAttachmentsInfo, const LatteContextRegister& lcr);
bool Compile(bool forceCompile, bool isRenderThread, bool showInOverlay);
private:
class MetalRenderer* m_mtlr;
PipelineObject& m_pipelineObj;
class RendererShaderMtl* m_vertexShaderMtl;
class RendererShaderMtl* m_geometryShaderMtl;
class RendererShaderMtl* m_pixelShaderMtl;
bool m_usesGeometryShader;
bool m_rasterizationEnabled;
NS::Object* m_pipelineDescriptor;
void InitFromStateRender(const LatteFetchShader* fetchShader, const LatteDecompilerShader* vertexShader, const class MetalAttachmentsInfo& lastUsedAttachmentsInfo, const class MetalAttachmentsInfo& activeAttachmentsInfo, const LatteContextRegister& lcr);
void InitFromStateMesh(const LatteFetchShader* fetchShader, const class MetalAttachmentsInfo& lastUsedAttachmentsInfo, const class MetalAttachmentsInfo& activeAttachmentsInfo, const LatteContextRegister& lcr);
};

View File

@ -23,6 +23,7 @@
#include "Cafe/HW/Latte/Renderer/Metal/MetalCommon.h"
#include "Cafe/HW/Latte/Renderer/Metal/MetalLayerHandle.h"
#include "Cafe/HW/Latte/Renderer/Renderer.h"
#include "HW/Latte/Renderer/Metal/MetalPipelineCompiler.h"
#include "config/CemuConfig.h"
#define IMGUI_IMPL_METAL_CPP
@ -69,6 +70,7 @@ MetalRenderer::MetalRenderer()
MTL::TextureDescriptor* textureDescriptor = MTL::TextureDescriptor::alloc()->init();
textureDescriptor->setTextureType(MTL::TextureType1D);
textureDescriptor->setWidth(1);
textureDescriptor->setUsage(MTL::TextureUsageShaderRead);
m_nullTexture1D = m_device->newTexture(textureDescriptor);
#ifdef CEMU_DEBUG_ASSERT
m_nullTexture1D->setLabel(GetLabel("Null texture 1D", m_nullTexture1D));
@ -76,6 +78,7 @@ MetalRenderer::MetalRenderer()
textureDescriptor->setTextureType(MTL::TextureType2D);
textureDescriptor->setHeight(1);
textureDescriptor->setUsage(MTL::TextureUsageShaderRead | MTL::TextureUsageRenderTarget);
m_nullTexture2D = m_device->newTexture(textureDescriptor);
#ifdef CEMU_DEBUG_ASSERT
m_nullTexture2D->setLabel(GetLabel("Null texture 2D", m_nullTexture2D));
@ -511,13 +514,13 @@ LatteCachedFBO* MetalRenderer::rendertarget_createCachedFBO(uint64 key)
void MetalRenderer::rendertarget_deleteCachedFBO(LatteCachedFBO* cfbo)
{
if (cfbo == (LatteCachedFBO*)m_state.m_activeFBO)
m_state.m_activeFBO = nullptr;
if (cfbo == (LatteCachedFBO*)m_state.m_activeFBO.m_fbo)
m_state.m_activeFBO = {nullptr};
}
void MetalRenderer::rendertarget_bindFramebufferObject(LatteCachedFBO* cfbo)
{
m_state.m_activeFBO = (CachedFBOMtl*)cfbo;
m_state.m_activeFBO = {(CachedFBOMtl*)cfbo, MetalAttachmentsInfo((CachedFBOMtl*)cfbo)};
}
void* MetalRenderer::texture_acquireTextureUploadBuffer(uint32 size)
@ -943,15 +946,9 @@ void MetalRenderer::draw_execute(uint32 baseVertex, uint32 baseInstance, uint32
// Shaders
LatteDecompilerShader* vertexShader = LatteSHRC_GetActiveVertexShader();
if (vertexShader && !vertexShader->shader->IsCompiled())
return;
LatteDecompilerShader* geometryShader = LatteSHRC_GetActiveGeometryShader();
if (geometryShader && !geometryShader->shader->IsCompiled())
return;
LatteDecompilerShader* pixelShader = LatteSHRC_GetActivePixelShader();
const auto fetchShader = LatteSHRC_GetActiveFetchShader();
if (vertexShader && !pixelShader->shader->IsCompiled())
return;
bool neverSkipAccurateBarrier = false;
@ -1003,12 +1000,23 @@ void MetalRenderer::draw_execute(uint32 baseVertex, uint32 baseInstance, uint32
// Render pass
auto renderCommandEncoder = GetRenderCommandEncoder();
// Render pipeline state
PipelineObject* pipelineObj = m_pipelineCache->GetRenderPipelineState(fetchShader, vertexShader, geometryShader, pixelShader, m_state.m_lastUsedFBO.m_attachmentsInfo, m_state.m_activeFBO.m_attachmentsInfo, m_state.m_activeFBO.m_fbo->m_size, count, LatteGPUState.contextNew);
if (!pipelineObj->m_pipeline)
return;
if (pipelineObj->m_pipeline != encoderState.m_renderPipelineState)
{
renderCommandEncoder->setRenderPipelineState(pipelineObj->m_pipeline);
encoderState.m_renderPipelineState = pipelineObj->m_pipeline;
}
// Depth stencil state
// Disable depth write when there is no depth attachment
auto& depthControl = LatteGPUState.contextNew.DB_DEPTH_CONTROL;
bool depthWriteEnable = depthControl.get_Z_WRITE_ENABLE();
if (!m_state.m_activeFBO->depthBuffer.texture)
if (!m_state.m_activeFBO.m_fbo->depthBuffer.texture)
depthControl.set_Z_WRITE_ENABLE(false);
MTL::DepthStencilState* depthStencilState = m_depthStencilCache->GetDepthStencilState(LatteGPUState.contextNew);
@ -1221,22 +1229,6 @@ void MetalRenderer::draw_execute(uint32 baseVertex, uint32 baseInstance, uint32
// renderCommandEncoder->memoryBarrier(barrierBuffers.data(), barrierBuffers.size(), MTL::RenderStageVertex, MTL::RenderStageVertex);
//}
// Render pipeline state
MTL::RenderPipelineState* renderPipelineState;
if (usesGeometryShader)
renderPipelineState = m_pipelineCache->GetMeshPipelineState(fetchShader, vertexShader, geometryShader, pixelShader, m_state.m_lastUsedFBO, m_state.m_activeFBO, LatteGPUState.contextNew, hostIndexType);
else
renderPipelineState = m_pipelineCache->GetRenderPipelineState(fetchShader, vertexShader, pixelShader, m_state.m_lastUsedFBO, m_state.m_activeFBO, LatteGPUState.contextNew);
if (!renderPipelineState)
return;
if (renderPipelineState != encoderState.m_renderPipelineState)
{
renderCommandEncoder->setRenderPipelineState(renderPipelineState);
encoderState.m_renderPipelineState = renderPipelineState;
}
// Prepare streamout
m_state.m_streamoutState.verticesPerInstance = count;
LatteStreamout_PrepareDrawcall(count, instanceCount);
@ -1529,12 +1521,12 @@ MTL::RenderCommandEncoder* MetalRenderer::GetRenderCommandEncoder(bool forceRecr
{
if (m_encoderType == MetalEncoderType::Render)
{
bool needsNewRenderPass = (m_state.m_lastUsedFBO == nullptr);
bool needsNewRenderPass = (m_state.m_lastUsedFBO.m_fbo == nullptr);
if (!needsNewRenderPass)
{
for (uint8 i = 0; i < 8; i++)
{
if (m_state.m_activeFBO->colorBuffer[i].texture && m_state.m_activeFBO->colorBuffer[i].texture != m_state.m_lastUsedFBO->colorBuffer[i].texture)
if (m_state.m_activeFBO.m_fbo->colorBuffer[i].texture && m_state.m_activeFBO.m_fbo->colorBuffer[i].texture != m_state.m_lastUsedFBO.m_fbo->colorBuffer[i].texture)
{
needsNewRenderPass = true;
break;
@ -1544,7 +1536,7 @@ MTL::RenderCommandEncoder* MetalRenderer::GetRenderCommandEncoder(bool forceRecr
if (!needsNewRenderPass)
{
if (m_state.m_activeFBO->depthBuffer.texture && (m_state.m_activeFBO->depthBuffer.texture != m_state.m_lastUsedFBO->depthBuffer.texture || ( m_state.m_activeFBO->depthBuffer.hasStencil && !m_state.m_lastUsedFBO->depthBuffer.hasStencil)))
if (m_state.m_activeFBO.m_fbo->depthBuffer.texture && (m_state.m_activeFBO.m_fbo->depthBuffer.texture != m_state.m_lastUsedFBO.m_fbo->depthBuffer.texture || ( m_state.m_activeFBO.m_fbo->depthBuffer.hasStencil && !m_state.m_lastUsedFBO.m_fbo->depthBuffer.hasStencil)))
{
needsNewRenderPass = true;
}
@ -1562,7 +1554,7 @@ MTL::RenderCommandEncoder* MetalRenderer::GetRenderCommandEncoder(bool forceRecr
auto commandBuffer = GetCommandBuffer();
auto renderCommandEncoder = commandBuffer->renderCommandEncoder(m_state.m_activeFBO->GetRenderPassDescriptor());
auto renderCommandEncoder = commandBuffer->renderCommandEncoder(m_state.m_activeFBO.m_fbo->GetRenderPassDescriptor());
#ifdef CEMU_DEBUG_ASSERT
renderCommandEncoder->setLabel(GetLabel("Render command encoder", renderCommandEncoder));
#endif
@ -1721,7 +1713,7 @@ bool MetalRenderer::CheckIfRenderPassNeedsFlush(LatteDecompilerShader* shader)
// If the texture is also used in the current render pass, we need to end the render pass to "flush" the texture
for (uint8 i = 0; i < LATTE_NUM_COLOR_TARGET; i++)
{
auto colorTarget = m_state.m_activeFBO->colorBuffer[i].texture;
auto colorTarget = m_state.m_activeFBO.m_fbo->colorBuffer[i].texture;
if (colorTarget && colorTarget->baseTexture == baseTexture)
return true;
}

View File

@ -5,6 +5,7 @@
#include "Cafe/HW/Latte/Renderer/Metal/MetalLayerHandle.h"
#include "Cafe/HW/Latte/Renderer/Metal/MetalPerformanceMonitor.h"
#include "Cafe/HW/Latte/Renderer/Metal/MetalOutputShaderCache.h"
#include "Cafe/HW/Latte/Renderer/Metal/MetalAttachmentsInfo.h"
struct MetalBufferAllocation
{
@ -121,6 +122,12 @@ struct MetalStreamoutState
sint32 verticesPerInstance;
};
struct MetalActiveFBOState
{
class CachedFBOMtl* m_fbo = nullptr;
MetalAttachmentsInfo m_attachmentsInfo;
};
struct MetalState
{
MetalEncoderState m_encoderState{};
@ -130,9 +137,9 @@ struct MetalState
bool m_skipDrawSequence = false;
bool m_isFirstDrawInRenderPass = true;
class CachedFBOMtl* m_activeFBO = nullptr;
// If the FBO changes, but it's the same FBO as the last one with some omitted attachments, this FBO doesn't change'
class CachedFBOMtl* m_lastUsedFBO = nullptr;
MetalActiveFBOState m_activeFBO;
// If the FBO changes, but it's the same FBO as the last one with some omitted attachments, this FBO doesn't change
MetalActiveFBOState m_lastUsedFBO;
MetalBoundBuffer m_vertexBuffers[MAX_MTL_BUFFERS] = {{}};
// TODO: find out what is the max number of bound textures on the Wii U