/****************************************************************************** * * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ***************************************************************************** * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore */ /** ******************************************************************************* * @file * ih264_ihadamard_scaling_sse42.c * * @brief * Contains definition of functions for h264 inverse hadamard 4x4 transform and scaling * * @author * Mohit * * @par List of Functions: * - ih264_ihadamard_scaling_4x4_sse42() * - ih264_ihadamard_scaling_2x2_uv_ssse42() * * @remarks * ******************************************************************************* */ /*****************************************************************************/ /* File Includes */ /*****************************************************************************/ /* User include files */ #include "ih264_typedefs.h" #include "ih264_defs.h" #include "ih264_trans_macros.h" #include "ih264_macros.h" #include "ih264_trans_data.h" #include "ih264_size_defs.h" #include "ih264_structs.h" #include "ih264_trans_quant_itrans_iquant.h" #include #include /* ******************************************************************************** * * @brief This function performs a 4x4 inverse hadamard transform on the 4x4 DC coefficients * of a 16x16 intra prediction macroblock, and then performs scaling. * prediction buffer * * @par Description: * The DC coefficients pass through a 2-stage inverse hadamard transform. * This inverse transformed content is scaled to based on Qp value. * * @param[in] pi2_src * input 4x4 block of DC coefficients * * @param[out] pi2_out * output 4x4 block * * @param[in] pu2_iscal_mat * pointer to scaling list * * @param[in] pu2_weigh_mat * pointer to weight matrix * * @param[in] u4_qp_div_6 * Floor (qp/6) * * @param[in] pi4_tmp * temporary buffer of size 1*16 * * @returns none * * @remarks none * ******************************************************************************* */ void ih264_ihadamard_scaling_4x4_sse42(WORD16* pi2_src, WORD16* pi2_out, const UWORD16 *pu2_iscal_mat, const UWORD16 *pu2_weigh_mat, UWORD32 u4_qp_div_6, WORD32* pi4_tmp) { __m128i src_r0_r1, src_r2_r3; __m128i src_r0, src_r1, src_r2, src_r3; __m128i temp0, temp1, temp2, temp3; __m128i add_rshift = _mm_set1_epi32((u4_qp_div_6 < 6) ? (1 << (5 - u4_qp_div_6)) : 0); __m128i mult_val = _mm_set1_epi32(pu2_iscal_mat[0] * pu2_weigh_mat[0]); UNUSED (pi4_tmp); src_r0_r1 = _mm_loadu_si128((__m128i *) (pi2_src)); //a00 a01 a02 a03 a10 a11 a12 a13 -- the source matrix 0th,1st row src_r2_r3 = _mm_loadu_si128((__m128i *) (pi2_src + 8)); //a20 a21 a22 a23 a30 a31 a32 a33 -- the source matrix 2nd,3rd row //sign_reg = _mm_cmpgt_epi16(zero_8x16b, src_r0_r1); src_r0 = _mm_cvtepi16_epi32(src_r0_r1); src_r0_r1 = _mm_srli_si128(src_r0_r1, 8); src_r1 = _mm_cvtepi16_epi32(src_r0_r1); src_r2 = _mm_cvtepi16_epi32(src_r2_r3); src_r2_r3 = _mm_srli_si128(src_r2_r3, 8); src_r3 = _mm_cvtepi16_epi32(src_r2_r3); /* Perform Inverse transform */ /*-------------------------------------------------------------*/ /* IDCT [ Horizontal transformation ] */ /*-------------------------------------------------------------*/ // Matrix transpose /* * a0 a1 a2 a3 * b0 b1 b2 b3 * c0 c1 c2 c3 * d0 d1 d2 d3 */ temp0 = _mm_unpacklo_epi32(src_r0, src_r1); //a0 b0 a1 b1 temp2 = _mm_unpacklo_epi32(src_r2, src_r3); //c0 d0 c1 d1 temp1 = _mm_unpackhi_epi32(src_r0, src_r1); //a2 b2 a3 b3 temp3 = _mm_unpackhi_epi32(src_r2, src_r3); //c2 d2 c3 d3 src_r0 = _mm_unpacklo_epi64(temp0, temp2); //a0 b0 c0 d0 src_r1 = _mm_unpackhi_epi64(temp0, temp2); //a1 b1 c1 d1 src_r2 = _mm_unpacklo_epi64(temp1, temp3); //a2 b2 c2 d2 src_r3 = _mm_unpackhi_epi64(temp1, temp3); //a3 b3 c3 d3 temp0 = _mm_add_epi32(src_r0, src_r3); temp1 = _mm_add_epi32(src_r1, src_r2); temp2 = _mm_sub_epi32(src_r1, src_r2); temp3 = _mm_sub_epi32(src_r0, src_r3); src_r0 = _mm_add_epi32(temp0, temp1); src_r1 = _mm_add_epi32(temp2, temp3); src_r2 = _mm_sub_epi32(temp0, temp1); src_r3 = _mm_sub_epi32(temp3, temp2); /*-------------------------------------------------------------*/ /* IDCT [ Vertical transformation ] */ /*-------------------------------------------------------------*/ // Matrix transpose /* * a0 b0 c0 d0 * a1 b1 c1 d1 * a2 b2 c2 d2 * a3 b3 c3 d3 */ temp0 = _mm_unpacklo_epi32(src_r0, src_r1); //a0 a1 b0 b1 temp2 = _mm_unpacklo_epi32(src_r2, src_r3); //a2 a3 b2 b3 temp1 = _mm_unpackhi_epi32(src_r0, src_r1); //c0 c1 d0 d1 temp3 = _mm_unpackhi_epi32(src_r2, src_r3); //c2 c3 d2 d3 src_r0 = _mm_unpacklo_epi64(temp0, temp2); //a0 a1 a2 a3 src_r1 = _mm_unpackhi_epi64(temp0, temp2); //b0 b1 b2 b3 src_r2 = _mm_unpacklo_epi64(temp1, temp3); //c0 c1 c2 c3 src_r3 = _mm_unpackhi_epi64(temp1, temp3); //d0 d1 d2 d3 temp0 = _mm_add_epi32(src_r0, src_r3); temp1 = _mm_add_epi32(src_r1, src_r2); temp2 = _mm_sub_epi32(src_r1, src_r2); temp3 = _mm_sub_epi32(src_r0, src_r3); src_r0 = _mm_add_epi32(temp0, temp1); src_r1 = _mm_add_epi32(temp2, temp3); src_r2 = _mm_sub_epi32(temp0, temp1); src_r3 = _mm_sub_epi32(temp3, temp2); src_r0 = _mm_mullo_epi32(src_r0, mult_val); src_r1 = _mm_mullo_epi32(src_r1, mult_val); src_r2 = _mm_mullo_epi32(src_r2, mult_val); src_r3 = _mm_mullo_epi32(src_r3, mult_val); //Scaling if(u4_qp_div_6 >= 6) { src_r0 = _mm_slli_epi32(src_r0, u4_qp_div_6 - 6); src_r1 = _mm_slli_epi32(src_r1, u4_qp_div_6 - 6); src_r2 = _mm_slli_epi32(src_r2, u4_qp_div_6 - 6); src_r3 = _mm_slli_epi32(src_r3, u4_qp_div_6 - 6); } else { temp0 = _mm_add_epi32(src_r0, add_rshift); temp1 = _mm_add_epi32(src_r1, add_rshift); temp2 = _mm_add_epi32(src_r2, add_rshift); temp3 = _mm_add_epi32(src_r3, add_rshift); src_r0 = _mm_srai_epi32(temp0, 6 - u4_qp_div_6); src_r1 = _mm_srai_epi32(temp1, 6 - u4_qp_div_6); src_r2 = _mm_srai_epi32(temp2, 6 - u4_qp_div_6); src_r3 = _mm_srai_epi32(temp3, 6 - u4_qp_div_6); } src_r0_r1 = _mm_packs_epi32(src_r0, src_r1); src_r2_r3 = _mm_packs_epi32(src_r2, src_r3); _mm_storeu_si128((__m128i *) (&pi2_out[0]), src_r0_r1); _mm_storeu_si128((__m128i *) (&pi2_out[8]), src_r2_r3); } void ih264_ihadamard_scaling_2x2_uv_sse42(WORD16* pi2_src, WORD16* pi2_out, const UWORD16 *pu2_iscal_mat, const UWORD16 *pu2_weigh_mat, UWORD32 u4_qp_div_6, WORD32* pi4_tmp) { __m128i src, plane_0, plane_1, temp0, temp1, sign_reg; __m128i zero_8x16b = _mm_setzero_si128(); __m128i scale_val = _mm_set1_epi32((WORD32)(pu2_iscal_mat[0] * pu2_weigh_mat[0])); UNUSED(pi4_tmp); src = _mm_loadu_si128((__m128i *) pi2_src); //a0 a1 a2 a3 b0 b1 b2 b3 sign_reg = _mm_cmpgt_epi16(zero_8x16b, src); plane_0 = _mm_unpacklo_epi16(src, sign_reg); //a0 a1 a2 a3 -- 32 bits plane_1 = _mm_unpackhi_epi16(src, sign_reg); //b0 b1 b2 b3 -- 32 bits temp0 = _mm_hadd_epi32(plane_0, plane_1); //a0+a1 a2+a3 b0+b1 b2+b3 temp1 = _mm_hsub_epi32(plane_0, plane_1); //a0-a1 a2-a3 b0-b1 b2-b3 plane_0 = _mm_hadd_epi32(temp0, temp1); //a0+a1+a2+a3 b0+b1+b2+b3 a0-a1+a2-a3 b0-b1+b2-b3 plane_1 = _mm_hsub_epi32(temp0, temp1); //a0+a1-a2-a3 b0+b1-b2-b3 a0-a1-a2+a3 b0-b1-b2+b3 temp0 = _mm_unpacklo_epi32(plane_0, plane_1); //a0+a1+a2+a3 a0+a1-a2-a3 b0+b1+b2+b3 b0+b1-b2-b3 temp1 = _mm_unpackhi_epi32(plane_0, plane_1); //a0-a1+a2-a3 a0-a1-a2+a3 b0-b1+b2-b3 b0-b1-b2+b3 plane_0 = _mm_unpacklo_epi64(temp0, temp1); //a0+a1+a2+a3 a0+a1-a2-a3 a0-a1+a2-a3 a0-a1-a2+a3 plane_1 = _mm_unpackhi_epi64(temp0, temp1); //b0+b1+b2+b3 b0+b1-b2-b3 b0-b1+b2-b3 b0-b1-b2+b3 plane_0 = _mm_shuffle_epi32(plane_0, 0xd8); //a0+a1+a2+a3 a0-a1+a2-a3 a0+a1-a2-a3 a0-a1-a2+a3 plane_1 = _mm_shuffle_epi32(plane_1, 0xd8); //b0+b1+b2+b3 b0-b1+b2-b3 b0+b1-b2-b3 b0-b1-b2+b3 temp0 = _mm_mullo_epi32(scale_val, plane_0); //multiply by pu2_iscal_mat[0] * pu2_weigh_mat[0] temp1 = _mm_mullo_epi32(scale_val, plane_1); //multiply by pu2_iscal_mat[0] * pu2_weigh_mat[0] temp0 = _mm_slli_epi32(temp0, u4_qp_div_6); temp1 = _mm_slli_epi32(temp1, u4_qp_div_6); temp0 = _mm_srai_epi32(temp0, 5); temp1 = _mm_srai_epi32(temp1, 5); temp0 = _mm_packs_epi32(temp0, temp1); //Final values are 16-bits only. _mm_storeu_si128((__m128i *) (&pi2_out[0]), temp0); }