Cemu/dependencies/ih264d/common/arm/ih264_ihadamard_scaling_a9.s
2022-08-22 22:21:23 +02:00

251 lines
8.9 KiB
ArmAsm

@/******************************************************************************
@ *
@ * Copyright (C) 2015 The Android Open Source Project
@ *
@ * Licensed under the Apache License, Version 2.0 (the "License");
@ * you may not use this file except in compliance with the License.
@ * You may obtain a copy of the License at:
@ *
@ * http://www.apache.org/licenses/LICENSE-2.0
@ *
@ * Unless required by applicable law or agreed to in writing, software
@ * distributed under the License is distributed on an "AS IS" BASIS,
@ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@ * See the License for the specific language governing permissions and
@ * limitations under the License.
@ *
@ *****************************************************************************
@ * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
@*/
@**
@ *******************************************************************************
@ * @file
@ * ih264_ihadamard_scaling_a9.s
@ *
@ * @brief
@ * Contains function definitions for inverse hadamard transform on 4x4 DC outputs
@ * of 16x16 intra-prediction
@ *
@ * @author
@ * Mohit
@ *
@ * @par List of Functions:
@ * - ih264_ihadamard_scaling_4x4_a9()
@ * - ih264_ihadamard_scaling_2x2_uv_a9()
@ *
@ * @remarks
@ * None
@ *
@ *******************************************************************************
@ *
@ * @brief This function performs a 4x4 inverse hadamard transform on the 4x4 DC coefficients
@ * of a 16x16 intra prediction macroblock, and then performs scaling.
@ * prediction buffer
@ *
@ * @par Description:
@ * The DC coefficients pass through a 2-stage inverse hadamard transform.
@ * This inverse transformed content is scaled to based on Qp value.
@ *
@ * @param[in] pi2_src
@ * input 4x4 block of DC coefficients
@ *
@ * @param[out] pi2_out
@ * output 4x4 block
@ *
@ * @param[in] pu2_iscal_mat
@ * pointer to scaling list
@ *
@ * @param[in] pu2_weigh_mat
@ * pointer to weight matrix
@ *
@ * @param[in] u4_qp_div_6
@ * Floor (qp/6)
@ *
@ * @param[in] pi4_tmp
@ * temporary buffer of size 1*16
@ *
@ * @returns none
@ *
@ * @remarks none
@ *
@ *******************************************************************************
@ *
@ *
@ *******************************************************************************
@ *
@ void ih264_ihadamard_scaling_4x4(WORD16* pi2_src,
@ WORD16* pi2_out,
@ const UWORD16 *pu2_iscal_mat,
@ const UWORD16 *pu2_weigh_mat,
@ UWORD32 u4_qp_div_6,
@ WORD32* pi4_tmp)
@**************Variables Vs Registers*****************************************
@r0 => *pi2_src
@r1 => *pi2_out
@r2 => *pu2_iscal_mat
@r3 => *pu2_weigh_mat
@r4 => u4_qp_div_6
.text
.p2align 2
.global ih264_ihadamard_scaling_4x4_a9
ih264_ihadamard_scaling_4x4_a9:
@VLD4.S16 is used because the pointer is incremented by SUB_BLK_WIDTH_4x4
@If the macro value changes need to change the instruction according to it.
@Only one shift is done in horizontal inverse because,
@if u4_qp_div_6 is lesser than 4 then shift value will be neagative and do negative left shift, in this case rnd_factor has value
@if u4_qp_div_6 is greater than 4 then shift value will be positive and do left shift, here rnd_factor is 0
stmfd sp!, {r4-r12, r14} @ stack stores the values of the arguments
ldr r4, [sp, #40] @ Loads u4_qp_div_6
vdup.s32 q10, r4 @ Populate the u4_qp_div_6 in Q10
ldrh r6, [r3] @ load pu2_weight_mat[0] , H for unsigned halfword load
ldrh r7, [r2] @ load pu2_iscal_mat[0] , H for unsigned halfword load
mul r6, r6, r7 @ pu2_iscal_mat[0]*pu2_weigh_mat[0]
vdup.s32 q9, r6 @ Populate pu2_iscal_mat[0]*pu2_weigh_mat[0] 32-bit in Q9
vpush {d8-d15}
@=======================INVERSE HADAMARD TRANSFORM================================
vld4.s16 {d0, d1, d2, d3}, [r0] @load x4,x5,x6,x7
vaddl.s16 q12, d0, d3 @x0 = x4 + x7
vaddl.s16 q13, d1, d2 @x1 = x5 + x6
vsubl.s16 q14, d1, d2 @x2 = x5 - x6
vsubl.s16 q15, d0, d3 @x3 = x4 - x7
vadd.s32 q2, q12, q13 @pi4_tmp_ptr[0] = x0 + x1
vadd.s32 q3, q15, q14 @pi4_tmp_ptr[1] = x3 + x2
vsub.s32 q4, q12, q13 @pi4_tmp_ptr[2] = x0 - x1
vsub.s32 q5, q15, q14 @pi4_tmp_ptr[3] = x3 - x2
vtrn.32 q2, q3 @Transpose the register for vertical transform
vtrn.32 q4, q5
vswp d5, d8 @Q2 = x4, Q4 = x6
vswp d7, d10 @Q3 = x5, Q5 = x7
vadd.s32 q12, q2, q5 @x0 = x4+x7
vadd.s32 q13, q3, q4 @x1 = x5+x6
vsub.s32 q14, q3, q4 @x2 = x5-x6
vsub.s32 q15, q2, q5 @x3 = x4-x7
vadd.s32 q0, q12, q13 @pi4_tmp_ptr[0] = x0 + x1
vadd.s32 q1, q15, q14 @pi4_tmp_ptr[1] = x3 + x2
vsub.s32 q2, q12, q13 @pi4_tmp_ptr[2] = x0 - x1
vsub.s32 q3, q15, q14 @pi4_tmp_ptr[3] = x3 - x2
vmul.s32 q0, q0, q9 @ Q0 = p[i] = (x[i] * trns_coeff[i]) where i = 0..3
vmul.s32 q1, q1, q9 @ Q1 = p[i] = (x[i] * trns_coeff[i]) where i = 4..7
vmul.s32 q2, q2, q9 @ Q2 = p[i] = (x[i] * trns_coeff[i]) where i = 8..11
vmul.s32 q3, q3, q9 @ Q3 = p[i] = (x[i] * trns_coeff[i]) where i = 12..15
vshl.s32 q0, q0, q10 @ Q0 = q[i] = (p[i] << (qP/6)) where i = 0..3
vshl.s32 q1, q1, q10 @ Q1 = q[i] = (p[i] << (qP/6)) where i = 4..7
vshl.s32 q2, q2, q10 @ Q2 = q[i] = (p[i] << (qP/6)) where i = 8..11
vshl.s32 q3, q3, q10 @ Q3 = q[i] = (p[i] << (qP/6)) where i = 12..15
vqrshrn.s32 d0, q0, #0x6 @ D0 = c[i] = ((q[i] + 32) >> 4) where i = 0..3
vqrshrn.s32 d1, q1, #0x6 @ D1 = c[i] = ((q[i] + 32) >> 4) where i = 4..7
vqrshrn.s32 d2, q2, #0x6 @ D2 = c[i] = ((q[i] + 32) >> 4) where i = 8..11
vqrshrn.s32 d3, q3, #0x6 @ D3 = c[i] = ((q[i] + 32) >> 4) where i = 12..15
vst1.s16 {d0, d1, d2, d3}, [r1] @IV row store the value
vpop {d8-d15}
ldmfd sp!, {r4-r12, r15} @Reload the registers from SP
@ *******************************************************************************
@ *
@ * @brief This function performs a 2x2 inverse hadamard transform for chroma block
@ *
@ * @par Description:
@ * The DC coefficients pass through a 2-stage inverse hadamard transform.
@ * This inverse transformed content is scaled to based on Qp value.
@ * Both DC blocks of U and v blocks are processesd
@ *
@ * @param[in] pi2_src
@ * input 1x8 block of ceffs. First 4 are from U and next from V
@ *
@ * @param[out] pi2_out
@ * output 1x8 block
@ *
@ * @param[in] pu2_iscal_mat
@ * pointer to scaling list
@ *
@ * @param[in] pu2_weigh_mat
@ * pointer to weight matrix
@ *
@ * @param[in] u4_qp_div_6
@ * Floor (qp/6)
@ *
@ * @returns none
@ *
@ * @remarks none
@ *
@ *******************************************************************************
@ *
@ *
@ *******************************************************************************
@ *
@ void ih264_ihadamard_scaling_2x2_uv(WORD16* pi2_src,
@ WORD16* pi2_out,
@ const UWORD16 *pu2_iscal_mat,
@ const UWORD16 *pu2_weigh_mat,
@ UWORD32 u4_qp_div_6,
.global ih264_ihadamard_scaling_2x2_uv_a9
ih264_ihadamard_scaling_2x2_uv_a9:
@Registers used
@ r0 : *pi2_src
@ r1 : *pi2_out
@ r2 : *pu2_iscal_mat
@ r3 : *pu2_weigh_mat
vld1.u16 d26[0], [r2]
vld1.u16 d27[0], [r3]
vmull.u16 q15, d26, d27 @pu2_iscal_mat[0] * pu2_weigh_mat[0]
vdup.u32 q15, d30[0]
vld1.u16 d28[0], [sp] @load qp/6
vpush {d8-d15}
vmov.u16 d29, #5
vsubl.u16 q14, d28, d29 @qp\6 - 5
vdup.s32 q14, d28[0]
vld2.s16 {d0, d1}, [r0] @load 8 dc coeffs
@i2_x4,i2_x6,i2_y4,i1_y6 -> d0
@i2_x5,i2_x7,i2_y5,i1_y6 -> d1
vaddl.s16 q1, d0, d1 @ i4_x0 = i4_x4 + i4_x5;...x2
vsubl.s16 q2, d0, d1 @ i4_x1 = i4_x4 - i4_x5;...x3
vtrn.s32 q1, q2 @i4_x0 i4_x1 -> q1
vadd.s32 q3, q1, q2 @i4_x4 = i4_x0+i4_x2;.. i4_x5
vsub.s32 q1, q1, q2 @i4_x6 = i4_x0-i4_x2;.. i4_x7
vmul.s32 q5, q3, q15
vmul.s32 q6, q1, q15
vshl.s32 q7, q5, q14
vshl.s32 q8, q6, q14
vmovn.s32 d18, q7 @i4_x4 i4_x5 i4_y4 i4_y5
vmovn.s32 d19, q8 @i4_x6 i4_x7 i4_y6 i4_y7
vst2.s32 {d18-d19}, [r1]
vpop {d8-d15}
bx lr